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Outline

§ motivations for considering distributed link flexibility
§ few examples of robots with flexible links …

§ dynamic modeling of flexible link robots
§ single flexible link (in the domain of linearity)
§ multiple flexible links (nonlinear dynamics, in the planar case)

§ formulation of control problems
§ structural control properties in the linear and nonlinear case

§ control design for regulation tasks
§ control design for trajectory tracking tasks 

§ joint-space trajectory
§ end-effector trajectory

§ conclusions and basic references
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§ distributed link deformation in robot manipulators arises when 
§ very long and slender arms are needed by the specific application
§ lightweight materials are used to save weight/costs (without additional care)

§ `link rigidity’ is always an ideal assumption which may fail …
§ for larger payload-to-weight ratios
§ in high-speed motion tasks or for large exchanged forces with the environment
§ when the control bandwidth is increased

§ flexible structures in motion are present in different applications
§ manipulators in space, underwater, underground, automated cranes, …

§ neglecting link flexibility in control design 
§ limits static (steady-state errors) and dynamic (vibrations, poor tracking) 

performance
§ stability problems due to non-colocation between input commands and typical 

outputs to be controlled (non-minimum phase systems)
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Motivation
Link flexibility in robot manipulators
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Robots with link flexibility
Space applications

§ SSRMS (Space Shuttle Remote Manipulation System) and Canadarm 2
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§ Tohoku cooperating 6R flexible arms capturing a rolling satellite at

Tohoku University 
(Prof. Masaru Uchiyama) 

video 

video 
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Robots with link flexibility
Underground applications

§ Sam II, long flexible arm with macro-micro concept for remote explora&on and 
manipula&on of nuclear waste sites
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Georgia Tech
(Prof. Wayne Book) 

video 

response of joint-level PID to external disturbance 
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Robots with flexible links
One-link prototypes
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QUANSER Rotary Flexible Link: 
with strain feedback

DMA - Sapienza harmonic steel beam (0.5 kg), 
Direct-Drive DC motor, encoder, 7 strain gauges 

CUNY Brooklyn: 
vision-driven + strain feedback

IS Técnico Lisbon: with two 
piezoelectric sensing/actuation pairs

video video 

video 
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Robots with flexible links
Planar two-link prototypes
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WATFLEX planar arm with two flexible links  
(each with 2 strain gauges), encoders and tachos, 
overviewing CCD camera, moving on air bearings 

University of Waterloo (Prof. John McPhee)

DIS/DIAG FLEXARM - Sapienza
planar two-link with
flexible forearm (0.7 m, 1.8 kg), 
Direct-Drive DC motors, 
encoders, on-board opacal 
sensor measuring deformaaon 
at three points 

ARL Stanford two-link macro flexible arm, 
with mini manipulator at the end 

Stanford University 
(Profs. Stephen Rock and Robert Cannon Jr.)

video 
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Robots with flexible links
Spatial multi-link prototypes
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Kyoto spaaal 3R flexible arm
Kyoto University (Prof. Tsuneo Yoshikawa)

RST – TUDOR spatial 3R flexible arm
Technical University Dortmund 

(Dr. Jorn Malzahn and Prof. Torsten Bertram)

video 

video 
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Frequency identification
Single flexible link (DMA – Sapienza)

9EECI – IGSC – M16

§ experimental tests and dynamic model validation
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Dynamic modeling
Single flexible link
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§ one-link flexible arm modeled as a Euler-Bernoulli beam in rotation

§ length ℓ, uniform density 𝜌, Young modulus · cross-section inertia 𝐸𝐼
§ actuator inertia 𝐽!, payload mass 𝑚" and inertia 𝐽"
§ frames: 𝑋, 𝑌 absolute; (𝑥, 𝑦)moving with instantaneous 𝐶𝑜𝑀
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Dynamic modeling
Assumptions and definitions
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§ Euler-Bernoulli theory applies to slender arm design
§ length ≫ section dimensions

§ beam undergoes small deformations of the pure bending type
§ restricted to the horizontal plane of motion (no gravity) 
§ no torsion nor compression

§ bending deformation 𝑤(𝑥, 𝑡), with 𝑥 ∈ [0, ℓ] is directed along 𝑦-axis
§ no shear

§ neglect isoperimetric constraint & rotational inertia of beam sections 
§ → ‘extension’ of beam neutral axis negligible; → Timoshenko theory

§ definition of relevant angular variables
§ position 𝜃 𝑡 of the 𝐶𝑜𝑀 (not measurable, but very convenient) 
§ position 𝜃! 𝑡 of the tangent to the link base (measured by motor encoder)
§ position 𝜃" 𝑡 of a line pointing to the beam tip (measurable in several ways)
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Dynamic modeling
Basic steps
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§ build the Lagrangian from kinetic and potential energy of the arm
§ using Hamilton principle and calculus of variations, the bending 

deformation and the angle satisfy the linear differential equations

i.e., a PDE (for the beam) and an ODE (for the rigid motion), with

§ geometric/dynamic boundary conditions (b.c.’s) associated to PDE
𝐽 = 𝐽! + ⁄𝜌ℓ" 3 + 𝐽# + 𝑚#ℓ$

𝐸𝐼𝑤#### 𝑥, 𝑡 + 𝜌 �̈� 𝑥, 𝑡 + 𝑥�̈�(𝑡) = 0 𝜏 𝑡 − 𝐽�̈�(𝑡) = 0

𝜏 = torque input

𝑤 0, 𝑡 = 0
𝐸𝐼𝑤%% 0, 𝑡 = 𝐽! �̈� 𝑡 + �̈�% 0, 𝑡 − 𝜏 𝑡

𝐸𝐼𝑤%% ℓ, 𝑡 = − 𝐽# �̈� 𝑡 + �̈�% ℓ, 𝑡

𝐸𝐼𝑤%%% ℓ, 𝑡 = 𝑚# ℓ�̈� 𝑡 + �̈� ℓ, 𝑡

(balance of moments at base)

(balance of moments at tip)

(balance of shear forces at tip)

(no deformation at base 𝑥 = 0)
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Dynamic modeling
Solving the PDE and ODE
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§ in free evolution (𝜏 𝑡 ≡ 0 ⇒ �̈� 𝑡 ≡ 0), PDE is solved by 
separation of variables

for a positive constant 𝜔$ (self-adjoint problem) to be determined 
§ time solution

with 𝑐%, 𝑐$ depending on the initial conditions 𝛿 0 and �̇� 0
§ space solution

with 𝐴, 𝐵, 𝐶, 𝐷 given by the geometric/dynamic b.c.’s on 𝑤(𝑥, 𝑡)

𝑤 𝑥, 𝑡 = 𝜙 𝑥 𝛿(𝑡) ⇒
𝐸𝐼
𝜌
𝜙####(𝑥)
𝜙(𝑥)

= −
�̈� 𝑡
𝛿 𝑡

= 𝜔$

�̈� 𝑡 = −𝜔$𝛿(𝑡) ⇒ 𝛿 𝑡 = 𝑐% sin𝜔𝑡 + 𝑐$ cos𝜔𝑡

𝜙#### 𝑥 = 𝛽&𝜙(𝑥)

⇒ 𝜙 𝑥 = 𝐴 sin𝛽𝑥 + 𝐵 cos𝛽𝑥 + 𝐶 sinh𝛽𝑥 + 𝐷 cosh𝛽𝑥

𝛽& =
𝜌𝜔$

𝐸𝐼
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Dynamic modeling
Solving the PDE and ODE
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§ from 𝑤 𝑥, 𝑡 = 𝜙 𝑥 𝛿(𝑡) and �̈� 𝑡 = −𝜔$𝛿 𝑡 , and holding the 
b.c.’s for any 𝛿(𝑡), these are rewriPen in terms of 𝜙(𝑥) only

§ using the general soluQon for 𝜙 𝑥 , a system of linear homogeneous
equaQons follows

𝒜(𝐸𝐼, 𝜌, ℓ, 𝐽! , 𝑚# , 𝑚# , 𝛽)
𝐴
𝐵
𝐶
𝐷

= 0

to exclude the trivial soluQon, the determinant of matrix 𝒜 should 
be set to zero (eigenvalue problem)

𝜙 0 = 0
𝐸𝐼𝜙%% 0 + 𝐽! 𝜔$𝜙% 0 = 0
𝐸𝐼𝜙%% ℓ − 𝐽# 𝜔$𝜙% ℓ = 0
𝐸𝐼𝜙%%% ℓ + 𝑚# 𝜔$𝜙 ℓ = 0

∎
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Dynamic modeling
CharacterisIc equaIon

Rome, May 23, 2023 15EECI – IGSC – M16

§ det𝒜(𝛽) = 0 at infinite (but countable!) real, positive, increasing 
roots 𝛽 = 𝛽& (𝑖 = 1,2, … ) of a transcendental characteristic equation

𝑐 𝑠ℎ − 𝑠 𝑐ℎ −
2 𝑚!

𝜚 𝛽 𝑠 𝑠ℎ −
𝑚!

𝜚" 𝛽
# 𝐽$ + 𝐽! 𝑐 𝑠ℎ − 𝑠 𝑐ℎ −

2 𝐽!
𝜚 𝛽% 𝑐 𝑐ℎ

−
2 𝐽$
𝜚 𝛽%(1 + 𝑐 𝑐ℎ) +

𝐽$ 𝐽!
𝜚" 𝛽&(𝑐 𝑠ℎ + 𝑠 𝑐ℎ) −

𝑚!𝐽$ 𝐽!
𝜚% 𝛽'(1 − 𝑐 𝑐ℎ) = 0

where 𝑠 = sin 𝛽, 𝑐 = cos 𝛽, 𝑠ℎ = sinh 𝛽, 𝑐ℎ = cosh 𝛽

§ this is an exact result that includes common physical approximations
§ pinned-free model:    𝐽! = 𝑚# = 𝐽# = 0 ⇒ 𝑐 𝑠ℎ − 𝑠 𝑐ℎ = 0
§ clamped-free model:  𝐽! → ∞, 𝑚# = 𝐽# = 0 ⇒ 1 + 𝑐 𝑐ℎ = 0

cantilever beam
characteristic equation



Dynamic modeling
Eigenvalues (frequencies) and eigenvectors (modes)
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§ associated to each root 𝛽& > 0 of the characteristic equation we have

§ an eigenfrequency 𝜔& = 𝐸𝐼𝛽&
'/𝜌 characterizing a resonance 

(system vibration)
§ an eigenmode 𝜙& 𝑥 —a spatial shape of the deformed arm 

(defined up to a constant) 
§ a deflection time variable 𝛿& 𝑡 (oscillatory) weighting the shape

§ a finite-dimensional approximation of the distributed bending 
deformation is obtained by truncation

𝑤 𝑥, 𝑡 = ∑&()
* 𝜙& 𝑥 𝛿& 𝑡 ≈ ∑&()

+( 𝜙& 𝑥 𝛿& 𝑡

where 𝑛' is the (arbitrary) number of orthogonal modes included
§ a proper normalization of the eigenmodes is chosen (an integral of 
𝜙& 𝑥 and 𝜙&

% 𝑥 equals 1 — or equals the total link mass 𝑚 ...) 
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Dynamic model
EquaIons of moIon of a single flexible link
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§ add motor torque 𝜏 (performing work on the rhs of the E-L equations)
§ the final dynamic model is simple (after a quite complex analysis…)

𝐽�̈� = 𝜏
�̈�& + 𝜔&$𝛿& = 𝜙&% 0 𝜏 𝑖 = 1,2, … , 𝑛,

§ notable properties
§ rigid body motion 𝜃(𝑡) and each vibratory deflection 𝛿#(𝑡) are 

dynamically decoupled when the system is in free evolution (𝜏 𝑡 ≡ 0)
§ each mode is excited by an input 𝜏(𝑡), with a weight that depends on 
𝜙)* 0 —the tangent at the link base to the 𝑖-th deformation mode shape

§ arm stiffness is summarized by the (squared) eigenfrequencies 𝜔#$

§ each vibration mode is persistent during free evolution, if it is initially 
excited by 𝛿#(0) ≠ 0 (absence of damping in the modeling process)
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Dynamic model
Addition of dissipative effects
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§ modal damping can be easily included in the dynamic model

with damping coefficients 𝜁& ∈ [0,1)

𝐽�̈� = 𝜏
�̈�& + 2𝜁&𝜔&�̇�& + 𝜔&

$𝛿& = 𝜙&
% 0 𝜏 𝑖 = 1,2, … , 𝑛,

§ its matrix version, with coordinates 𝑞 = 𝜃 𝛿) . . . 𝛿+(
- ∈ ℝ+(.), 

shows the classical mass-spring-damper form

with
𝑀�̈� + 𝐷�̇� + 𝐾𝑞 = 𝐵𝜏

𝑀 =
𝐽

𝐼+(
𝐷 = 0

2𝑍Ω
𝐾 = 0

Ω$
𝐵 = 1

Φ%

Ω = diag 𝜔)…𝜔+( 𝑍 = diag 𝜁)…𝜁+( Φ% = diag 𝜙)% 0 … 𝜙+(
% 0

Rome, May 2023



Dynamic model
Change of coordinates
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§ with a different (but equivalent) choice of generalized coordinates, 
the input 𝜏 appears in just one equaQon

leading to

with diagonal damping matrix 𝐷 (including motor viscous friction 𝐹/), 
same stiffness 𝐾 matrix, but full inertia matrix 𝑀

𝐽 −𝐽Φ%-

−𝐽Φ% 𝐼+$ + 𝐽
$Φ%Φ%-

�̈�0
𝛿

+ 𝐹/
2𝑍Ω

�̇�0
�̇�

+ 0
Ω$

𝜃0
𝛿 = 

𝜏
𝟎

𝜃, 𝛿 = 𝜃, 𝛿), . . . , 𝛿+(

𝜃0 , 𝛿 = 𝜃 + 𝛿-Φ%, 𝛿 = 𝜃 +i
&()

+(
𝜙&
%(0) 𝛿& , 𝛿), . . . , 𝛿+(

⇓

clamped angle
at beam base 
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Choice of system output
Different angles to be controlled
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§ joint level (clamped angle)

always minimum phase: no zeros in right-hand side of complex plane

𝑦 = 𝜃0 = 𝜃 +i
&()

+(

𝜙&
%(0) 𝛿&

§ tip level (angle pointing to the tip)

is typically non-minimum phase (at least for no tip payload)

𝑦 = 𝜃1 = 𝜃 +i
&()

+( 𝜙&(ℓ)
ℓ

𝛿&

§ angular output at a point 𝑥 𝜖 [0, ℓ] along the flexible beam

various cases: may also have no zeros!

𝑦 = 𝜃2 = 𝜃 +i
&()

+( 𝜙&(𝑥)
𝑥

𝛿&

lim
%→'

𝜙((𝑥)
𝑥

= 𝜙() 0 !
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Transfer funcBons
Joint and tip level
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§ torque 𝜏 ⟼ clamped joint angle 𝜃0

𝑃! 𝑠 =
𝜃!(𝑠)
𝜏(𝑠)

=
1
𝐽𝑠$

+9
#%&

'$ 𝜙#((0)$

𝑠$ + 2𝜁#𝜔#𝑠 + 𝜔#$

=

1
𝐽 ∏#%&

'$ 𝑠$ + 2𝜁#𝜔#𝑠 + 𝜔#$ + 𝑠$∑#%&
'$ 𝜙#((0)$∏)*#

'$ 𝑠$ + 2𝜁)𝜔)𝑠 + 𝜔)$

𝑠$∏#%&
'$ 𝑠$ + 2𝜁#𝜔#𝑠 + 𝜔#

$

§ torque 𝜏 ⟼ tip angle 𝜃1

𝑃" 𝑠 =
𝜃"(𝑠)
𝜏(𝑠) =

1
𝐽𝑠$ +9

#%&

'$ 𝜙#((0) ⁄𝜙#(ℓ) ℓ
𝑠$ + 2𝜁#𝜔#𝑠 + 𝜔#$

=

1
𝐽 ∏#%&

'$ 𝑠$ + 2𝜁#𝜔#𝑠 + 𝜔#$ + 𝑠$∑#%&
'$ 𝜙#((0)

+*(ℓ)
ℓ ∏)*#

'$ 𝑠$ + 2𝜁)𝜔)𝑠 + 𝜔)$

𝑠$∏#%&
'$ 𝑠$ + 2𝜁#𝜔#𝑠 + 𝜔#$
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A numerical example
A simple MATLAB code is available …
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§ physical data of the flexible arm –without payload (𝑚# = 𝐽# = 0)

§ by considering up to 𝑛, = 5 modes (and no damping), we obtain

… note the alternaQng signs in the sequence of 𝜙&(ℓ)’s

𝐽! = 0.002
𝑁𝑚
𝑠$

, ℓ = 1 𝑚 , 𝜌 = 0.5
𝑘𝑔
𝑚

, 𝐸𝐼 = 1 𝑁𝑚$

Ω$ = diag 421.585, 3122.603, 10273.194, 31562.286, 82049.350

Φ%- = 7.8259 14.6803 12.1284 6.4761 3.7648

Φℓ
- = −2.6954 2.3268 −2.4970 2.7380 −2.7982

𝜔($ = 2𝜋𝑓( $ ⇒ e.g., 𝑓) = ⁄421.585 2𝜋 = 3.2678 [Hz]
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Mode shapes
Shapes of spaIal dynamic deformaIons of the flexible arm
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§ first four bending mode shapes (normalized to 1) at resonant frequencies
𝑓+ = 3.2678, 𝑓" = 8.8936, 𝑓% = 16.1314, 𝑓# = 28.2751 [Hz]
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Pole-zero paGerns
Joint and tip transfer functions (no modal damping)
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§ first two modes
𝜔+ = 20.5325, 𝜔" = 55.8801 [rad/s]
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§ adding the third mode
𝜔% = 101.3565 [rad/s]
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Frequency responses
Bode plots with the first three modes of the flexible arm
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𝜔+ = 20.5325, 𝜔" = 55.8801, 𝜔%= 101.3565 [rad/s]
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mag: multiple anti-resonance/resonance patterns
(similar as the single pattern for an elastic joint)

phase: nominally, there is always a stability margin

mag: pure resonances (no effect of specular zeros),
with mulSple 0dB crossing if gain is increased

phase: phase lag increases when adding modes …
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Control-oriented remarks 
Single flexible link

§ in the pole-zero patterns of 𝑃!(𝑠), zeros always precede and alternate with 
poles on the imaginary axis ⇒ input-output passivity property!

§ the zero patterns of 𝑃"(𝑠) are always symmetric w.r.t. the imaginary axis         
⇒ non-minimum phase property ⇒ no (direct) system inversion is feasible!
§ similar properties can be seen also from the frequency responses (Bode plots)

§ modal damping does not modify the non-minimum phase nature of 𝑃"(𝑠)
§ it destroys the perfect symmetries in the zero-pole patterns of 𝑃,(𝑠) or 𝑃- 𝑠 , 

but the open-loop system remains anyway asymptotically stable
§ when `moving’ the output along the link (𝑃/(𝑠)), zeros migrate on the 

imaginary axis and different phenomena occur 
§ total pole-zero cancellation when pointing at 𝐶𝑜𝑀 (vibrations become 

unobservable from the rigid motion variable 𝜃) 
§ for a special 𝑥∗ ∈ (0, ℓ), all zeros vanish together at infinity: 𝑃/∗(𝑠) has then 

maximum relative degree equal to 2(𝑛0 + 1)
§ beyond 𝑥∗ (e.g., for 𝑥 = ℓ, at the tip), all pairs of zeros reappear in ℝ1/ℝ2

26EECI – IGSC – M16Rome, May 2023



Dynamic modeling
Robots with multiple flexible links
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§ a convenient kinematic description should be adopted, both for rigid body 
motion and flexible deformation

§ differential relationships for computing kinetic and potential energy, within 
a Lagrangian approach 

§ use recursive procedures for open chains of flexible links, as in rigid case 
§ modeling results from the single link case can be embedded (with caution 

on boundary conditions) in the description of each flexible link of the robot 
§ to limit complexity, we sketch here only the planar case

§ robots with 𝑁 flexible links 
§ under small bending deformations 

limited to the plane of motion
§ possibly including gravity

QUANSER 2 DOF Serial Flexible Link 
with strain feedback

video 
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Kinematics
Planar robots with multiple flexible links
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for link 𝑖
§ rigid motion by clamped angle 𝜃&(𝑡); lateral bending 𝑤&(𝑥& , 𝑡), 𝑥& ∈ [0, ℓ&]
§ position vectors and (rigid/flexible) rotation matrices (𝑤&,

% = x453
423 23(ℓ3

)

θ
1

θ
2

X0

X1

Y1

Y0
w1(x1)

X2 = X3

Y2 = Y3

Y1

X1

X2

Y2

w2(x2 )

here, 𝑁 = 2

#𝑝# 𝑥# =
𝑥#

𝑤#(𝑥#)
#𝑟#0& = #𝑝# ℓ#

𝐴# =
cos 𝜃# − sin 𝜃#
sin 𝜃# cos 𝜃#

𝐸# =
1 −𝑤#1(

𝑤#1( 1
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Y1

Y0
w1(x1)

X2 = X3

Y2 = Y3

Y1
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Y2

w2(x2 )

Kinematics
Planar robots with multiple flexible links
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§ recursive equations for absolute quantities in base frame M𝑋!, M𝑌!

§ differential kinematics
§ absolute angular velocity of frame 𝑋# , 𝑌#

§ absolute angular velocity of a point on link 𝑖

with

𝑝# = 𝑟# +𝑊#
#𝑝# 𝑊# = 𝑊#2& 𝐸#2& 𝐴#𝑟#0& = 𝑟# +𝑊#

#𝑟#0&

�̇�# =9
)%&

#

�̇�) +9
3%&

#2&

�̇�31(

�̇�# = �̇�# + �̇�#
#𝑝# +𝑊#

#�̇�#

#�̇�# =
0

�̇�#(𝑥#) link extension
is neglected
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KineBc and potenBal energy
Planar robots with multiple flexible links
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§ kineQc energy of hub 𝑖

𝑇 =L
)4+

5

𝑇6) +L
)4+

5

𝑇ℓ) + 𝑇! 𝑈 =L
)4+

5

𝑈86) +L
)4+

5

𝑈8ℓ) + 𝑈8! +L
)4+

5

𝑈0)

§ elasQc energy of link 𝑖

§ kinetic energy of link 𝑖

§ gravitational energy of hub 𝑖

§ kinetic energy of payload

§ gravitational energy of link 𝑖

§ gravitaQonal energy of payload

𝑈86) = −𝑚6)𝑔$9𝑟)

𝑈8ℓ) = −𝑔$9 P
$

ℓ"
𝜌) 𝑥) 𝑝) 𝑥) 𝑑𝑥)

𝑈8! = −𝑚!𝑔$9𝑟51+

𝑈0) =
1
2P$

ℓ"
𝐸𝐼 ) 𝑥)

𝑑"𝑤)(𝑥))
𝑑𝑥)"

"

𝑑𝑥)

𝑇! =
1
2𝑚!�̇�51+9 �̇�51+ +

1
2 𝐽! �̇�5 + �̇�50

* "

𝑇6) =
1
2
𝑚6) �̇�)9 �̇�) +

1
2
𝐽6)�̇�)"

𝑇ℓ) =
1
2P$

ℓ"
𝜌) 𝑥) �̇�)9(𝑥))�̇�)(𝑥)) 𝑑𝑥)
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Euler-Lagrange equations
Planar robots with multiple flexible links
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§ introduce any finite-dimensional discretization for 𝑤& 𝑥& , 𝑡

§ the Lagrangian is given in terms of 𝑁 +𝑀 generalized coordinates, 
with 𝑀 = ∑&()6 𝑛,& (flexible variables)

and satisfies to 

being 𝜏& the torque delivered by the actuator at joint 𝑖

𝑤& 𝑥& , 𝑡 = i
7()

+(3

𝜑&7(𝑥&)𝛿&7(𝑡) 𝑖 = 1, … , 𝑁

𝐿 = 𝑇 − 𝑈 = 𝐿( 𝜃&(𝑡) , 𝛿&7(𝑡) , �̇�&(𝑡) , �̇�&7(𝑡) )

𝑑
𝑑𝑡

𝜕𝐿
𝜕�̇�&

−
𝜕𝐿
𝜕𝜃&

= 𝜏&

𝑑
𝑑𝑡

𝜕𝐿
𝜕�̇�&7

−
𝜕𝐿
𝜕𝛿&7

= 𝟎

𝑖 = 1,… , 𝑁

𝑗 = 1, … , 𝑛,& 𝑖 = 1, … , 𝑁
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Dynamic model
Planar robots with multiple flexible links
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§ the general dynamic model (with modal damping) is then given by

with blocks of suitable sizes (e.g., 𝑀89 in the inertia matrix is 𝑁 ×𝑀)
§ … or in the more compact form

being 𝑞 = 𝜃, 𝛿 ∈ ℝ6.:

§ as in the rigid case, the vector of centrifugal/Coriolis terms can be 
factorized using the Christoffel symbols 

𝑀 𝑞 �̈� + 𝑐 𝑞, �̇� + 𝑔 𝑞 + 0
𝐷�̇� + 𝐾𝛿 = 𝜏

0

𝑀44(𝜃, 𝛿) 𝑀45(𝜃, 𝛿)
𝑀45
6 (𝜃, 𝛿) 𝑀55(𝜃, 𝛿)

�̈�
�̈�

+ 𝑐4(𝜃, 𝛿, �̇�, �̇�)
𝑐5(𝜃, 𝛿, �̇�, �̇�)

+ 𝑔4(𝜃, 𝛿)
𝑔5(𝜃, 𝛿)

+ 0
𝐷�̇� + 𝐾𝛿 = 𝜏

0

𝑐 𝑞, �̇� = 𝑆 𝑞, �̇� �̇� =
𝑆44(𝑞, �̇�) 𝑆45(𝑞, �̇�)
𝑆54(𝑞, �̇�) 𝑆55(𝑞, �̇�)

�̇�
�̇�
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Model properties
Planar robots with mulIple flexible links
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§ matrix �̇� − 2𝑆 is skew-symmetric —also blockwise, e.g., �̇�99 − 2𝑆99
§ the dynamics of flexible robots can be expressed in terms of a set of 

dynamic coefficients 𝑎 ∈ ℝ# that summarize the mechanical (rigid + 
flexible) properties of the links 

§ a linear parametrization is useful for the experimental identification of 𝑎
§ possible choices of the assumed modes — i.e., the basis functions 
𝜑&7 𝑥& for describing the bending deformation shapes of the links
§ admissible functions satisfy only geometric b.c.’s
§ comparison functions (Finite Elements, Ritz-Kantorovich expansion) 

satisfy also natural b.c.’s
§ orthonormal eigenfunctions (links models as Euler-Bernoulli beams) lead 

to simplifications in inertia submatrix 𝑀55 (block diagonal, constant)

𝑌 𝜃, 𝛿, �̇�, �̇�, �̈�, �̈� 𝑎 = 𝜏
0
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Some model simplifications
Planar robots with mulIple flexible links
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§ a common approximation evaluates the total kinetic energy in the 
undeformed arm configuration, i.e., with deflections 𝛿 = 0
⇒ 𝑀 = 𝑀 𝜃 , and thus 𝑐 = 𝑐(𝜃, �̇�, �̇�)
⇒ 𝑐9 loses its quadratic dependence on �̇�

§ moreover, if 𝑀99 is constant
⇒ 𝑐9 becomes a quadratic function of �̇� only
⇒ 𝑐8 loses its quadratic dependence on �̇�

§ if also 𝑀89 is constant
⇒ 𝑐9 ≡ 0
⇒ 𝑐8 becomes a quadratic function of �̇� only

§ assumption of small deformations of each link implies 𝑔9 = 𝑔9(𝜃)
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Control problems
Formulation of objectives and operative conditions
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§ regulaQon to an equilibrium configuraQon 𝜃, 𝛿, �̇�, �̇� = (𝜃; , 𝛿; , 0, 0)
§ only a desired joint posiMon 𝜃7 is given, 𝛿7 is to be determined 
§ may use full or parMal state feedback, depending on available sensors
§ 𝜃7 may come from the kineto-staMc inversion of a desired Cartesian 

pose/posiMon 𝑟7, although no closed-form inverse soluMon exists
§ direct kinemaMcs of flexible link robots is in fact a funcMon of all the   

rigid and flexible variables: 𝑟 = kin(𝜃, 𝛿)
§ asymptoQc tracking of a joint trajectory 𝜃; 𝑡 —the easy case
§ asymptoQc tracking of an end-effector trajectory 𝑟; 𝑡 —more difficult 

§ in both cases, we assume that the full state is measurable
§ tracking control laws will sMffen the flexible arm at the chosen output

§ rest-to-rest moQon in given Qme 𝑇 (not just a trajectory planning task!)
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Sensing requirements
For full or partial state feedback

36EECI – IGSC – M16

§ full state feedback requires sensing of 
§ joint/motor position and velocity variables 𝜃 (encoders) and �̇� (tacho)
§ deflection variables 𝛿 and deflection rates �̇� (no direct sensor available) 

§ at least an encoder on motor axis + online numerical differentiation
§ different sensors can measure the link deflection 𝛿 (or deformation 

related quantities), each with pros and cons
§ strain gauges, accelerometers, optical sensors, video camera (on board 

or fixed in workspace), piezoelectric actuation/sensing devices, ….
§ use of state observers, especially in linear case (separation principle)
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Regulation with joint PD + feedforward
Partial state feedback solution
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§ consider the control law

with symmetric (diagonal) 𝐾< > 0, 𝐾= > 0, and link deflection at 
steady state corresponding to 𝜃; given by

𝜏 = 𝐾< 𝜃; − 𝜃 − 𝐾=�̇� + 𝑔8 𝜃; , 𝛿;

𝛿; = −𝐾>)𝑔9(𝜃;)

Theorem

If 
and

then the desired closed-loop equilibrium state (𝜃; , 𝛿; , 0, 0) is 
globally asymptoQcally stable                                                       ◀

𝜆?&+
𝐾< 0
0 𝐾

> 𝛼 > 0
𝜕𝑔
𝜕𝑞

≤ 𝛼
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Regulation with joint PD + feedforward
Sketch of analysis 

38EECI – IGSC – M16

§ Lyapunov-based proof, using LaSalle (as in the flexible joint case*)
§ determination of lower bound 𝛼

§ in view of small link deformations

§ bound on the gradient of the gravitational term

§ in the absence of gravity, a pure PD law on the motor position error
§ for a desired tip pose 𝑟; , compute 𝜃; solving via iterative techniques 

𝜕𝑔
𝜕𝑞

≤ 𝛼! + 𝛼) 𝛿 ≤ 𝛼! + 𝛼)
2𝑈,,?A2
𝜆?A2 𝐾

= 𝛼

𝑈, =
1
2
𝛿-𝐾𝛿 ≤ 𝑈,,?A2 ⇒ 𝛿 ≤

2𝑈,,?A2
𝜆?A2(𝐾)

kin 𝜃, −𝐾>)𝑔9 𝜃 = 𝑟;

< ∞
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Regulation with joint PD + feedforward
Numerical results 
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§ a planar two-link flexible robot with gravity (in vertical plane), with two bending 
modes for each link at 𝑓++ = 1.4, 𝑓+" = 5.1 and 𝑓"+ = 5.3, 𝑓"" = 32.4 [Hz]

§ at rest from the downward vertical 𝜃 0 = −90°, 0° to 𝜃: = (−45°, 0°)
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0

50

0 1 2 3 4

joint angles

sec

de
g

-10

0

10

20

0 1 2 3 4

joint torques

sec

N
m

-0.2

-0.1

0

0.1

0 1 2 3 4

1st link deflections

sec

m

-0.01

-0.005

0

0.005

0 1 2 3 4

2nd link deflections

sec

m

desired positions
at steady state

steady-state torques
balancing gravity

(feedforward term)

negligible for
second mode
of both links

deflecRons
at steady-state 
due to gravity

satisfactory
transient
behaviors

no need to use
full state
feedback

for vibration
suppression …

α ≅ 17
𝐾+ = 18, 18
𝐾, = 10, 2
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Joint trajectory tracking
Control design approach
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§ assume that
§ the dynamic model of the (planar) robot with flexible links is available
§ the system state is fully measurable

§ given a desired joint trajectory 𝜃; 𝑡 ∈ 𝐶$, we proceed by system 
inversion from the joint position output

§ a nonlinear static state feedback is obtained that exactly linearizes and
decouples the input-output behavior, leaving an unobservable internal 
(nonlinear) dynamics 

§ exponential stabilization of the output tracking error is performed on 
the linear side of the problem 

§ stability/boundedness of the internal dynamics should be enforced 
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Joint trajectory tracking
System input-output inversion
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§ from second set of 𝑀 equations in dynamic model, solve (globally) for

�̈� = −𝑀99
>) 𝑐9 + 𝑔9 + 𝐾𝛿 + 𝐷�̇� + 𝑀89

- �̈�

§ plug it in the first set of 𝑁 equations  ⇒ effects of flexible dynamics 
on rigid dynamics

𝑀88 −𝑀89𝑀99
>)𝑀89

- �̈� + 𝑐8 + 𝑔8 −𝑀89𝑀99
>) 𝑐9 + 𝑔9 + 𝐾𝛿 + 𝐷�̇� = 𝜏

§ the matrix weighting �̈� has always full rank (as Schur complement of 
an invertible matrix)

§ �̈� depends on 𝜏 in a nonsingular way, and thus the output 𝜃 has 
uniform vector relative degree {2, 2, . . . , 2}

𝑀88 𝑀89
𝑀89
- 𝑀99

𝐼 0
−𝑀99

>)𝑀89
- 𝐼 = 𝑀88 −𝑀89𝑀99

>)𝑀89
- 𝑀89

0 𝑀99
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Joint trajectory tracking
Input-output decoupling and exact linearization
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§ define the nonlinear control law

𝜏 = 𝑀88 −𝑀89𝑀99
>)𝑀89

- 𝑎 + 𝑐8 + 𝑔8 −𝑀89𝑀99
>) 𝑐9 + 𝑔9 + 𝐾𝛿 + 𝐷�̇�

in which the only inversion needed is of the simpler inertia block 𝑀99

§ the closed-loop system is
�̈� = 𝑎
�̈� = −𝑀99

>) 𝑀89
- 𝑎 + 𝑐9 + 𝑔9 + 𝐷�̇� + 𝐾𝛿

§ for exponentially stabilizing the output tracking error 𝑒 = 𝜃; − 𝜃, set 

𝑎 = �̈�; + 𝐾= �̇�; − �̇� + 𝐾< 𝜃; − 𝜃
with (diagonal) 𝐾< > 0, 𝐾= > 0
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Joint trajectory tracking
Analysis of the internal dynamics
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§ zero dynamics: when the output 𝜃(𝑡) ≡ 0 (or is a constant)

�̈� = −𝑀99
>) 𝑐9 + 𝑔9 + 𝐷�̇� + 𝐾𝛿

has an asymptoQcally stable equilibrium at 𝛿, = −𝐾>)𝑔9(0)
§ shown via Lyapunov argument (the enMre closed-loop system is stable)

§ clamped dynamics: when the output 𝜃 𝑡 ≡ 𝜃; 𝑡
�̈� = −𝐴$(𝑡)�̇� − 𝐴)(𝑡)𝛿 + 𝑓9 𝑡

where (in the simpler case of inerQa matrix independent from 𝛿)
𝑓9 𝑡 = −𝑀99

>)(𝜃;) 𝑀89
- 𝜃; �̈�; + 𝑐9 𝜃; , �̇�; + 𝑔9 𝜃;

𝐴) 𝑡 = 𝑀99
>) 𝜃; 𝐾

𝐴$ 𝑡 = 𝑀99
>) 𝜃; 𝐷

all Qme-varying funcQons are bounded ⇒ closed-loop stability holds
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Joint trajectory tracking
Numerical results
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§ a planar two-link flexible robot without gravity (in horizontal plane), with two
modes for each link at 𝑓++ = 0.48, 𝑓+" = 1.8 and 𝑓"+ = 2.18, 𝑓"" = 15.9 [Hz]

§ rest-to-rest sinusoidal trajectory: 𝜃: 0 = 0°, 0° to 𝜃:(𝑇) = (45°, 45°) in 𝑇 = 8 s

perfect
tracking
on both

joints

𝐾+ = 1, 4
𝐾, = 2, 4
low gains, 
but “stiffer”
at joint 2

—– = joint 1
- - - = joint 2

less than 0.3° error 
at second joint

moderate
control torque

efforts

non-minimum 
phase behavior 
of 2nd link tip: 
error 𝑦-" − 𝜃."
is opposite to
error 𝜃" − 𝜃."
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Joint trajectory tracking
Final remarks
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§ input-output linearization as nonlinear/MIMO counterpart of inverting 
𝑃0 𝑠 = ⁄𝜃0(𝑠) 𝜏(𝑠) with minimum phase zeros (stable zero dynamics)

§ the ‘stiffer’ is the tracking of a desired trajectory at the joint level, the 
less vibrational energy is dissipated in the rest of the flexible arm! 

§ a nominal feedforward is computed by integration of flexible dynamics
�̈� = −𝑀55

2&(𝜃7 , 𝛿) 𝑐5 𝜃7 , 𝛿, �̇�7 , �̇� + 𝑔5 𝜃7 + 𝐷�̇� + 𝐾𝛿 + 𝑀45
6 (𝜃7 , 𝛿)�̈�7

starting from 𝛿7 0 = 𝛿8, �̇�7 0 = �̇�8 (typically, both = 0) ⇒ nominal 
(bounded) evolutions 𝛿7 𝑡 , �̇�7(𝑡) associated to the output 𝜃;(𝑡)

§ use of 𝜃7(𝑡), 𝛿7 𝑡 , �̇�7(𝑡), �̇�7(𝑡) in the inversion control law (without 
nonlinear feedback) yields 𝜏;(𝑡) and a simple local tracking controller

𝜏 = 𝜏;(𝑡) + 𝐾= �̇�;(𝑡) − �̇� + 𝐾< 𝜃;(𝑡) − 𝜃
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End-effector trajectory tracking
Control design approaches
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§ accurate end-effector trajectory tracking is the `hardest’ control 
problem for robots with flexible links

§ direct applicaQon of inversion control to the end-effector/Qp output 
leads to closed-loop instability (viz. unboundedness of internal state)
§ linear (single-link) case: non-minimum phase Mp transfer funcMon 
§ nonlinear (mulMlink) case: unstable zero dynamics in end-effector moMon 

§ main ideas suggested in the literature
§ resort to tailored feedforward strategies (input shaping, flatness,         

non-causal bounded soluMons for exact output trajectory reproducMon)
§ use feedback for stabilizaMon to a suitable state trajectory, avoiding

cancelaMons (causal soluMons for asymptoMc output trajectory tracking)
§ choice of smooth trajectories inducing smaller arm deflecQons is in 

any case of interest (but not sufficient)
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Stable inversion of non-minimum phase system
Worked out SISO linear example for an exact and causal soluIon

47EECI – IGSC – M16

§ a plant with transfer function

𝑃 𝑠 =
𝑦(𝑠)
𝑢(𝑠)

=
𝑠 − 1

𝑠 𝑠 + 2
§ an equivalent minimal (reachable and observable) state-space realization

�̇� = 𝐴𝑥 + 𝐵𝑢 𝑦 = 𝐶𝑥 𝐶 𝑠𝐼 − 𝐴 2&𝐵 = 𝑃 𝑠

𝐴 = 0 1
0 −2 𝐵 = 0

1 𝐶 = −1 1

or                     �̇�& = 𝑥$ �̇�$ = −2𝑥$ + 𝑢 𝑦 = 𝑥$ − 𝑥&

§ desired output trajectory 

𝑦7 𝑡 = 1 − 𝑒29" 𝛼 > 0 (𝑦7 0 = 0)

§ we proceed first in the time domain and then in the Laplace domain
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Stable inversion of non-minimum phase system
In the time domain
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§ differentiate the output as many times as needed (here, just once) to obtain 𝑢

𝑦 = 𝑥$ − 𝑥& �̇� = �̇�$ − �̇�& = −3𝑥$ + 𝑢
§ the inversion-based control

𝑢 = 3𝑥$ + �̇�7 = 𝑢7 𝑥, �̇�7 ⇒ �̇� = �̇�7
guarantees, with 𝑦 0 = 𝑥+ 0 − 𝑥" 0 = 𝑦: 0 , that 𝑦 𝑡 = 𝑦: 𝑡 , ∀𝑡 ≥ 0, 
provided the evolution of the internal state remains bounded

§ the inverse system of our plant is

̇𝜉 = 𝐴𝜉 + 𝐵𝑢7 𝜉, �̇�7 𝑢 = 𝑢7 𝑥, �̇�7 with  𝜉 0 = 𝑥 0

or                     ̇𝜉& = 𝜉$ ̇𝜉$ = 𝜉$ + �̇�7 𝑢 = 3𝜉$ + �̇�7
which is clearly unstable: for a generic initial condition, its evolution is unbounded …
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Stable inversion of non-minimum phase system
In the time domain
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§ for the desired output trajectory, the second state variable evolves as

�̇�$ = 𝑥$ + �̇�7 = 𝑥$ + 𝛼𝑒29"

§ its solu&on is 

𝑥$ 𝑡 = 𝑥$ 0 +
𝛼

𝛼 + 1
𝑒" −

𝛼
𝛼 + 1

𝑒29"

and is bounded if and only if 𝑥" 0 = − ⁄𝛼 𝛼 + 1
§ from 𝑦: 0 = 0, it also follows that 𝑥+ 0 = 𝑥" 0 = − ⁄𝛼 𝛼 + 1

§ with these ini&al condi&ons, the state evolu&on is bounded under inverse control 

𝑥& 𝑡 =
1

𝛼 + 1
𝑒29" − 𝛼 + 1 𝑥$ 𝑡 = −

𝛼
𝛼 + 1

𝑒29"

and the exact trajectory tracking problem is solved by 

𝑢7 𝑡 = 3𝑥$ 𝑡 + �̇�7 𝑡 =
𝛼 𝛼 − 2
𝛼 + 1

𝑒29"

Rome, May 2023



Stable inversion of non-minimum phase system
In the Laplace domain
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§ invert the transfer function of the plant
𝑢(𝑠)
𝑦(𝑠)

= 𝑃2& 𝑠 =
𝑠 𝑠 + 2
𝑠 − 1

=
𝑑:(𝑠)
𝑛:(𝑠)

§ compute in the transformed domain

𝑢7 𝑠 = 𝑃>) 𝑠 𝑦7 𝑠 =
𝑠 + 2
𝑠 − 1

�̇�7 (𝑠)

§ however, the transfer function is a `complete’ representation of a plant only in the 
zero state (𝑥 0 = 0) 

§ we should take instead the initial conditions into account when using the Laplace 
transform of the state and output equations in time, i.e.,

𝑠𝑥& 𝑠 − 𝑥& 𝑡 = 0 = 𝑥$ 𝑠 𝑠𝑥$ 𝑠 − 𝑥$ 𝑡 = 0 = −2𝑥$ 𝑠 + 𝑢(𝑠)

𝑦 𝑠 = 𝑥$ 𝑠 − 𝑥& 𝑠
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Stable inversion of non-minimum phase system
In the Laplace domain
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§ the complete (input + ini&al state)-output mapping in the Laplace domains is thus

𝑦 𝑠 =
𝑠 − 1

𝑠 𝑠 + 2
𝑢 𝑠 +

𝑥$ 0 − 𝑥& 0 𝑠 − 2𝑥& 0 + 𝑥$ 0
𝑠 𝑠 + 2

= 𝑃 𝑠 𝑢 𝑠 +
𝑁(𝑥 0 , 𝑠)
𝑠(𝑠 + 2)

§ inversion for a desired 𝑦: 𝑠 is given by

𝑢7 𝑠 = 𝑃2& 𝑠 𝑦7 𝑠 −
𝑁 𝑥 0 , 𝑠
𝑑: 𝑠

= 𝑃2& 𝑠 𝑦7 𝑠 −
𝑁 𝑥 0 , 𝑠
𝑛: 𝑠

§ the Laplace transform of the desired output trajectory 𝑦: 𝑡 is

𝑦7 𝑠 =
1
𝑠
−

1
𝑠 + 𝛼

𝛼 > 0
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Stable inversion of non-minimum phase system
In the Laplace domain
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§ expansion in partial fractions/residuals of 𝑢: 𝑠 leads (with tedious passages) to

𝑢: 𝑠 =
𝑠(𝑠 + 2)
𝑠 − 1

1
𝑠 −

1
𝑠 + 𝛼 −

𝑁(𝑥 0 , 𝑠)
𝑠 − 1

= (<1")
<2+

− <(<1")
<2+ <1>

− 5(/ $ ,<)
<2+

= 1 + %
<2+

− 1 − %2> <1>
<2+ <1>

− 5(/ $ ,<)
<2+

= %
<2+

− ⁄% >1+
<2+

+ ⁄> "2> >1+
<1>

− 5(/ $ ,<)
<2+

=
⁄3𝛼 𝛼 + 1 − 𝑁(𝑥 0 , 𝑠)

𝑠 − 1 +
⁄𝛼 𝛼 − 2 𝛼 + 1

𝑠 + 𝛼
§ to discard the presence of the unstable pole in 𝑠 = 1 (i.e., of the unbounded 

exponential 𝑒- in the time domain), it is necessary and sufficient that 

𝑁 𝑥 0 , 𝑠 =
3𝛼
𝛼 + 1 ⟺ 𝑥" 0 − 𝑥+ 0 = 0 2𝑥+ 0 + 𝑥" 0 = −

3𝛼
𝛼 + 1

which lead to the same initial conditions (and inversion command) already found
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Inversion in the frequency domain
Non-causal exact reproducIon of end-effector trajectories
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§ to get rid of initial conditions, the idea is to view the desired trajectory 
as part of a periodic profile ⇒ use Fourier transform (in linear domain)

§ single-link flexible arm (with generic variables)
𝑚88 𝑚98

-

𝑚98 𝑚99

�̈�
�̈�

+ 0 0
0 𝐷

�̇�
�̇�

+ 0 0
0 𝐾

𝜃
𝛿 = 𝜏

0

§ tip position output

𝑦 𝑡 = 1 𝑐,-
𝜃
𝛿

§ dynamic model rewritten in terms of 𝑦, 𝛿
𝑚88 𝑚98

- − 𝑚88𝑐,-

𝑚98 𝑚99 − 𝑚98𝑐,-
�̈�
�̈�
+ 0 0

0 𝐷
�̇�
�̇�
+ 0 0

0 𝐾
𝑦
𝛿 = 𝜏

0

non-symmetric!
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Inversion in the frequency domain
In the Fourier domain
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§ take bilateral Fourier transforms (at the acceleration level)

�̈� 𝜔 = P
2A

1A
exp 𝑗𝜔𝑡 �̈� 𝑡 𝑑𝑡 ∆̈ 𝜔 = P

2A

1A
exp 𝑗𝜔𝑡 �̈� 𝑡 𝑑𝑡

𝑇 𝜔 = P
2A

1A
exp 𝑗𝜔𝑡 𝜏 𝑡 𝑑𝑡

and obtain in the dynamic model
𝑚BB 𝑚CB

9 −𝑚BB𝑐09

𝑚CB 𝑚CC −𝑚CB𝑐09 +
1
𝑗𝜔 𝐷 −

1
𝜔" 𝐾

�̈� 𝜔
∆̈ 𝜔

= 𝑇 𝜔
0

§ solve for the accelerations and then for the torque, by `inversion’ in 
frequency domain

�̈� 𝜔
∆̈ 𝜔

= 𝑔++(𝜔) 𝑔+"9 (𝜔)
𝑔"+(𝜔) 𝐺""(𝜔)

𝑇 𝜔
0

⇒ 𝑇 𝜔 = &
;//(<)

�̈� 𝜔 = 𝑟(𝜔)�̈� 𝜔
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Inversion in the frequency domain
Computational procedure
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§ for a zero-mean �̈�; 𝑡 , with �̈�; 𝑡 = 0 for 𝑡 ≤ − ⁄𝑇 2 and 𝑡 ≥ ⁄𝑇 2, 
acceleraQon can be embedded in (−∞,+∞) as a signal of period 𝑇

§ �̈�; 𝑡 ⟶ �̈�; 𝜔 ⟶ 𝑇; 𝜔 ⟶ 𝜏; 𝑡 : finite inverse Fourier transform

𝜏7 𝑡 = f
2=

0=
𝑟(𝑡 − 𝜎)�̈�7 𝜎 𝑑𝜎 = f

26/$

06/$
𝑟(𝑡 − 𝜎)�̈�7 𝜎 𝑑𝜎

expanding beyond the definiQon interval [− ⁄𝑇 2, ⁄𝑇 2] (non-causal)

bang-bang acceleration
profile �̈�! 𝑡 of 𝑇 = 0.5 s

for rest-to-rest motion 
of a single flexible link

input torque profile
𝜏! 𝑡 lasts 𝑇! ≈ 0.95 s,

starting before (and 
ending after) �̈�! 𝑡
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Inversion in the frequency domain
Remarks
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§ outside the given interval 𝑇 of output motion, the input torque has
§ a pre-charging action, to bring the  internal flexible state from rest to a 

suitable initial state at 𝑡 = − ⁄𝑇 2
§ a discharging action, to bring the internal flexible state from the final 

state at 𝑡 = ⁄𝑇 2 back to rest
§ from the obtained initial state at 𝑡 = − ⁄𝑇 2 (unique for the given 

trajectory) inversion control gives a bounded internal evolution
§ truncations (in time and/or in frequency) are inherent to the actual 

computations (FFT) 
§ the method was recast also in the time domain (stable/anti-stable 

dynamics) and extended to the (multilink flexible) nonlinear setting
§ by iterative linear approximations along the nominal trajectory (starting 

from the rigid body motion) 
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Inversion in the frequency domain
Application to the two-link FLEXARM 

57EECI – IGSC – M16
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End-effector trajectory tracking by state feedback
Based on the general regulation theory
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§ the end-effector trajectory tracking task in robots with flexible links  
is an instance of asymptotic output tracking problems (𝑒 → 0) with 
internal state stability –including disturbances (regulator problem) 

§ well-established solution techniques in the linear case and, by now, 
also in the nonlinear case

§ to avoid internal instability during output tracking, the idea is to 
compute a `natural’ (and bounded!) state trajectory 
§ that corresponds to the desired output trajectory 
§ with the desired output trajectory (and the disturbances, if present) 

being generated by an autonomous dynamic system (exosystem)
§ stabilizing the system with a feedback on the state trajectory error
§ including in the control design also a feedforward that keeps the error 

to zero in nominal conditions
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End-effector trajectory tracking by state feedback
Linear regulator problem
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§ let the state-output-error equations (with 𝑥 = (𝑞, �̇�)) of the flexible arm be
�̇� = 𝐴𝑥 + 𝐵𝜏 𝑦 = 𝐶𝑥 𝑒 = 𝑦 − 𝑦7

§ a (smooth) desired output trajectory is assumed to be generated by the 
autonomous (anti-stable) exosystem (with state 𝑤)

�̇� = 𝑆𝑤 𝑦7 = −𝑄𝑤
§ when (𝐴, 𝐵) is stabilizable, the problem has a solution (∀𝑥(0), 𝑤(0)) if and 

only if the regulator equations are solvable in matrices Π and Γ
Π𝑆 = 𝐴Π + 𝐵Γ 𝐶Π + 𝑄 = 0

§ a state feedback + feedforward controller is then
𝜏 = 𝐹 𝑥 − Π𝑤 + Γ𝑤

§ with gain matrix 𝐹 such that 𝐴 + 𝐵𝐹 is Hurwitz (Re(𝜆) < 0) 
§ 𝑥7(𝑡) = Π𝑤(𝑡) is the desired state trajectory: 𝑥7 0 is the unique initial 

state giving a bounded state solution under inversion control!
§ from 𝑥7 0 = Π𝑤(0), 𝜏7(𝑡) = Γ𝑤(𝑡) will give exact trajectory tracking



Output regulation by state feedback
Reprise of worked out SISO linear example of a non-minimum phase system
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§ plant (with a zero in 𝑠 = 1)

�̇� = 𝐴𝑥 + 𝐵𝑢 𝑦 = 𝐶𝑥 𝐴 = 0 1
0 −2 𝐵 = 0

1 𝐶 = −1 1

§ exosystem for the (class of) output trajectories 𝑦: 𝑡 = 1 − 𝑒2>- , α > 0

�̇� = 𝑆𝑤 = 0 0
0 −𝛼 𝑤 ⇒ 𝑤+ (𝑡) = 𝑤+(0), 𝑤" (𝑡) = 𝑤"(0)𝑒2>-

𝑦: = −𝑄𝑤 = 1 −1 𝑤 ⇒ |𝑦:(𝑡) D $ 4(+,+) = 1 − 𝑒2>-

§ regulator equations for Π 2×2 and Γ 1×2
0 −𝛼𝜋+"
0 −𝛼𝜋""

=
𝜋"+ 𝜋""

−2𝜋"+ −2𝜋"" + 0 0
𝛾+ 𝛾"

−1 1

𝜋"+ − 𝜋++ 𝜋"" − 𝜋+" + −1 1 = 0 0
§ solution

Π =
−1 +

>1+

0 − >
>1+

Γ =
0

>(>2")
>1+

⇒ 𝑥: 𝑡 =
D#($)
>1+ 𝑒

2>- − 𝑤+(0)

− >D#($)
>1+ 𝑒2>-

stabilizing gains 𝐹 = 𝐹+ < 0 𝐹" < 0 𝜏: 𝑡 = 𝑤" 0 ⁄𝛼 𝛼 − 2 𝛼 + 1 𝑒2>-

indeed, for 
𝑤 0 = (1,1)
it is the same 
soluSon as 
before

Rome, May 2023



End-effector trajectory tracking by regulation
Numerical results
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§ a single-link flexible with three modes at 𝑓+ = 3.2, 𝑓" = 8.9 and 𝑓% = 16.1 [Hz]
§ sinusoidal tip trajectory: 𝑦-: 𝑡 = ⁄𝜋 2 sin ⁄2𝜋𝑡 3

gains 𝐹
place all
eigenvalues
in −10

—– = 𝛿!
- - - = 𝛿"
- - - = 𝛿#

0 1 2 3 4 5 6 7 8 9 10
-1.5

-1

-0.5

0

0.5

1

1.5
autovalori in -10 (quattro) e -10 (quattro)

sec

co
nt

ro
llo

 (N
m

)

0 1 2 3 4 5 6 7 8 9 10
-0.03

-0.02

-0.01

0

0.01

0.02

0.03
autovalori in -10 (quattro) e -10 (quattro)

sec

va
ria

bi
li 

de
fo

rm
az

io
ne

 d
el

ta
 (m

)

0 1 2 3 4 5 6 7 8 9 10
-10

0

10

20

30

40

50

60

70
autovalori in -10 (quattro) e -10 (quattro)

sec

er
ro

re
 a

l t
ip

 (d
eg

)

0 1 2 3 4 5 6 7 8 9 10
-100

-80

-60

-40

-20

0

20

40

60

80

100
autovalori in -10 (quattro) e -10 (quattro)

sec

us
ci

ta
 ti

p 
(d

eg
)

0 1 2 3 4 5 6 7 8 9 10
-100

-80

-60

-40

-20

0

20

40

60

80

100
autovalori in -10 (quattro) e -10 (quattro)

sec

us
ci

ta
 a

l g
iu

nt
o 

(d
eg

)

torque input

clamped joint angle (—)
and desired Sp trajectory (---)

tip angle output

Sp trajectory error

deflection variables

Rome, May 2023



End-effector trajectory tracking by nonlinear regulaBon
Experimental results on FLEXARM

Rome, May 23, 2023 62EECI – IGSC – M16

§ nonlinear version of the regulator equations … 
§ two modes of the flexible forearm at 𝑓+ = 4.7 and 𝑓% = 14.7 [Hz]
§ rest-to-rest 7th-order polynomial trajectory for (𝜃+, 𝑦-")

from (0,0) to ⁄(𝜋 4, ⁄𝜋 4) in 𝑇 = 1.5 s

video 

from (0,0) to ⁄(𝜋 4, ⁄𝜋 2) in 𝑇 = 2 s

[rad]

desired and
actual output
trajectories

tracking
errors



Rest-to-rest moBon
Problem formulation and solution approach
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§ task: execute a rest-to-rest slew motion with a flexible link robot 
between two (undeformed) configurations in given time 

§ issue: fast transfers induce residual oscillations, extending the actual 
task completion time 

§ strategy: design suitable system outputs and plan their trajectories 
(and associated torque profiles) so to induce a complete absence of 
vibrations at the given final time 

§ idea: find outputs with maximum relative degree (no zero dynamics)
§ closed-form solution in the SISO linear case (absence of zeros) 
§ direct extension to MIMO nonlinear case (flat outputs `to be found’, 

meaning that the system is exactly linearizable by dynamic feedback …)
§ a feedforward torque command, that can be made more robust, e.g.,  

by adding a PD action on errors w.r.t. the associated joint trajectories
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Rest-to-rest motion
Algorithm for a single flexible link
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§ choose a parametric output 𝑦, with yet unknown coefficients 𝑐#’s 

𝑦 = 𝜃 +L
)4+

E$
𝑐)𝛿) = 𝜃 + 𝑐9𝛿

§ impose input 𝜏-independence of the successive (even) derivatives 

�̈� = �̈� + ∑)4+
E$ 𝑐)�̈�) =

+
F
+ ∑)4+

E$ 𝑐)𝜙)*(0) 𝜏 − ∑)4+
E$ 𝑐)𝜔)"𝛿) ⇒ ∑𝑐)𝜙)* 0 = − +

F

𝑦[#] = :%I
:-%

= −∑)4+
E$ 𝑐)𝜔)"𝜙)* 0 𝜏 + ∑)4+

E$ 𝑐)𝜔)#𝛿) ⇒ ∑𝑐)𝜔)"𝜙)* 0 = 0

𝑦 & = ⋯
and so on, until a set of 𝑛1 equations is obtained 
§ the torque 𝜏 will appear in the 2(𝑛0 + 1)-th output derivative (the last one)

§ solve for the coefficients 𝑐 = (𝑐&, … , 𝑐'$ )
𝑉 � diag 𝜙+* 0 , … , 𝜙E$

* 0 𝑐 = −1/𝐽 0 … 0 9

with a Vandermonde matrix 𝑉 generated by 𝜔&$, … , 𝜔'$
$

Rome, May 2023

𝐽�̈� = 𝜏 �̈�# + 𝜔#
$𝛿# = 𝜙#

( 0 𝜏 𝑖 = 1,2, … , 𝑛1



Rest-to-rest moBon
Algorithm for a single flexible link
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§ the torque 𝜏7 𝑡 is found by inversion of the highest derivative, imposing  

𝑦[" E$1+ ] = 𝑦:
["(E$1+)]

for a suitably planned trajectory 𝑦7 𝑡 , 𝑡 ∈ 0, 𝑇 (the given transfer time)
§ e.g., by solving the interpolation problem

𝑦: 0 = 𝜃) 𝑦: 𝑇 = 𝜃J 𝑦:
) 0 = 𝑦:

) 𝑇 = 0 𝑖 = 1, … , 2𝑛0 + 1

for which a polynomial of degree 4𝑛1 + 3 will be sufficient
§ in the Laplace domain, imposing no zeros to the transfer function leads to  

the closed-form expression

𝜏: 𝑠 =
𝐽

∏)4+
E$ 𝜔)"

𝑠"�
)4+

E$

𝑠" + 𝜔)" 𝑦: 𝑠

to be transformed back in time to yield 𝜏7 𝑡
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Rest-to-rest motion
Numerical results

66EECI – IGSC – M16Rome, May 2023

§ single flexible link with 𝑛0 = 3 modes at 𝑓+ = 4.05, 𝑓" = 12.34 and 𝑓% = 22.87 [Hz]
§ angular displacement of 𝜃J − 𝜃) = 90° in 𝑇 = 2 s
§ 19-th degree polynomial (also with continuous torque derivatives)
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Rest-to-rest motion
Remarks
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§ method applies to any linear model of a single-link flexible arm
§ output design is related to the controllability canonical form

§ in the limit, design output is a specific point 𝑥∗ on the physical beam: 
for a given 𝑛, , 𝑐& = 𝜙&(𝑥+(

∗ )/𝑥+(
∗ while lim

+(→*
𝑥+(
∗ = 𝑥∗

§ modified output structure for modal damping in the dynamics 

𝑦 = 𝜃 +9
#%&

'$
𝑐#𝛿# + 𝛾�̇� +9

#%&

'$
𝑑#�̇�#

§ for better torque/time performance, use smoothed bang-bang or 
bang-coast-bang torques (with polynomial interpolating phases) 

§ the planned feedforward command can be combined with an error 
feedback action, e.g., on the clamped joint reference (a by-product)

𝜏 = 𝜏7 𝑡 + 𝐾: 𝜃!,7 𝑡 − 𝜃! + 𝐾M �̇�!,7 𝑡 − �̇�!
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§ data: ℓ = 0.655 m, 𝜌 = 0.7733 kg/m, 𝐸𝐼 = 6.22 Nm2

§ three modes at 𝑓+ = 14.4, 𝑓" = 34.2 and 𝑓% = 69.3 [Hz]
§ rest-to-rest 19th-order polynomial trajectory for the design output

slew of ⁄𝜋 2 in 𝑇 = 1 s

video 

slew of 𝜋 in 𝑇 = 2 s

control torque
(including PD) 

Sp angle
(deformaSon)
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§ two flat outputs can be found (with relative degrees 4 + 4 after dynamic extension 
with 2 integrators), when only one mode is considered (state dimension = 6)

§ rest-to-rest 11th-order polynomial trajectories for the two design outputs

control torques first deflection
variable

from (0,0) to ⁄(𝜋 2, ⁄𝜋 2)
in 𝑇 = 2 s
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Other issues
Many aspects have been left out!
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§ spill-over effects
§ when trunca&ng infinite-dimensional models

§ vibra&on damping
§ especially in regula&on tasks

§ strain feedback 
§ direct use in the control design and analysis of the PDE equa&ons

§ handling model uncertain&es and disturbances
§ model iden&fica&on with link flexibility, robust and adap&ve control

§ state observers
§ reconstruc&ng missing informa&on from different sensor suites

§ interac&on with the environment
§ collision detec&on and reac&on, control of the exchanged forces

§ other control methods
§ singular perturba&on approach, itera&ve learning, op&mal control, …



Conclusions
… in short
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§ extra effort in dynamic modeling pays off
§ model-based controllers for accurate trajectory tracking
§ proof of stability for model-independent regulation controllers

§ more classical control strategies tend to suppress vibrations 
wherever they arise
§ outcome of our analysis is that the controlled system should be 

brought to a vibratory behavior compatible with the given output task
§ paradigm shift 

§ intentional deformation and flexibility to be preserved, rather than 
handled as a parasitic effect to be eliminated by control

§ robots with flexible links versus robots with flexible joints
§ although mechanically similar in a first approximation, they are 

intrinsically different from the control point of view
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