

2023 International Graduate School on Control Course M16

Control of Soft and Articulated Elastic Robots

Rome, May 22-26, 2023

Robots with Flexible Joints: Modeling and Control

Alessandro De Luca

Dipartimento di Ingegneria Informatica, Automatica e Gestionale (DIAG)

deluca@diag.uniroma1.it

Outline

cases of articulated soft robots

- manipulators with flexible transmissions, variable stiffness actuation (VSA), serial elastic actuation (SEA), ...
- application: safe physical Human-Robot Interaction (pHRI)
- dynamic modeling of flexible joint manipulators
 - with few comments on their structural properties and extensions
- classical control tasks and their solution
 - a closer look into the linear case: single elastic joint (with no gravity)
 - regulation with partial/full state feedback and gravity compensation
 - inverse dynamics and feedback linearization for trajectory tracking
- model-based design based on feedback equivalence
 - exact gravity cancellation
 - damping injection on the link side of the flexible transmission
- conclusions and basic references

Classes of articulated soft robots

Robots with elastic joints

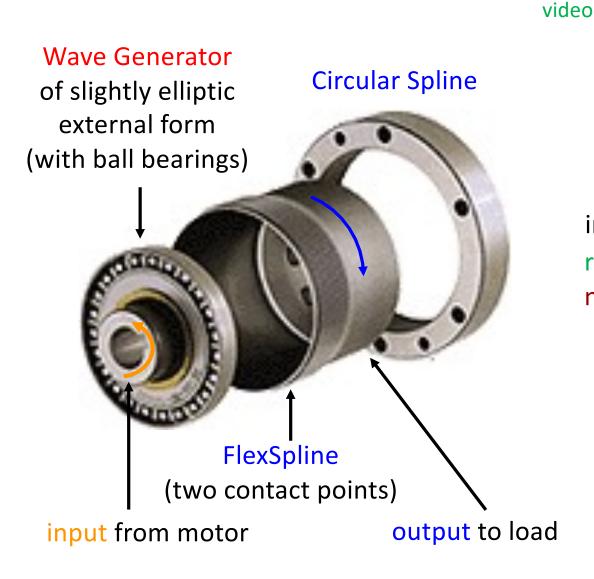
- design of lightweight robots with stiff links for end-effector accuracy
- compliant elements absorb impact energy
 - soft coverage of links (safe bags)
 - elastic transmissions (HD, tendons, cable-driven, ...)

- elastic joints decouple instantaneously the larger inertia of the driving motors from smaller inertia of the links (involved in contacts/collisions!)
- relatively soft joints need more sensing (e.g., joint torque) and better control to compensate for static deflections and dynamic vibrations

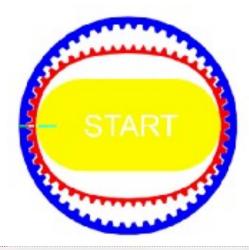
torque-controlled robots (DLR LWR-III, KUKA LWR-IV & iiwa, Franka, ...)

Harmonic Drive

Compact, in-line, high reduction (up to 1:160), power efficient transmission

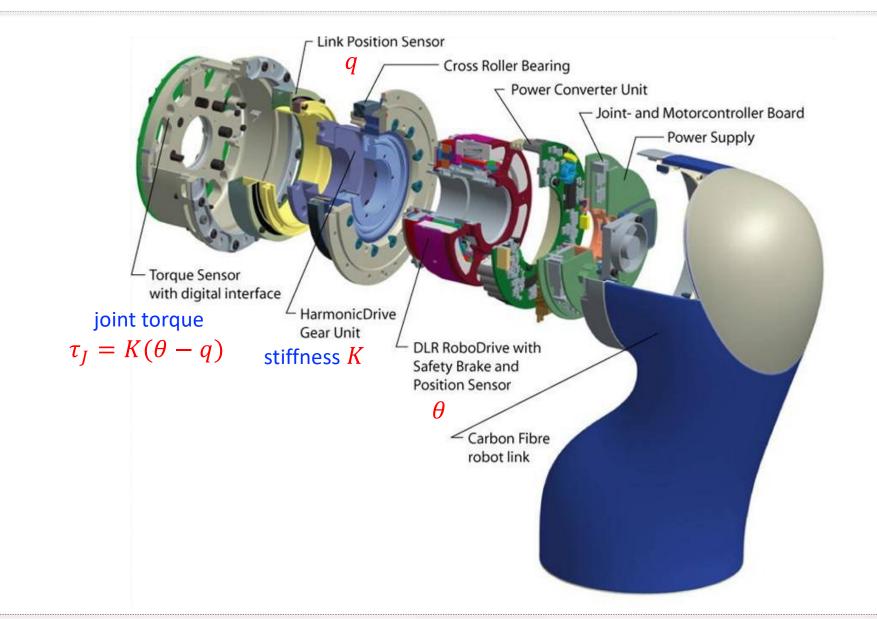


inner #teeth CS = outer #teeth FS + 2
reduction ratio
n = #teeth FS / (#teeth CS - #teeth FS)
 = #teeth FS / 2



Sensors in an elastic joint

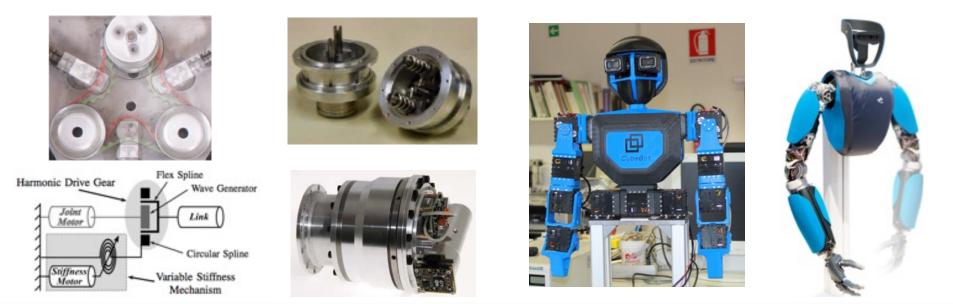
Exploded view of a joint of the DLR-III robot



Classes of soft robots

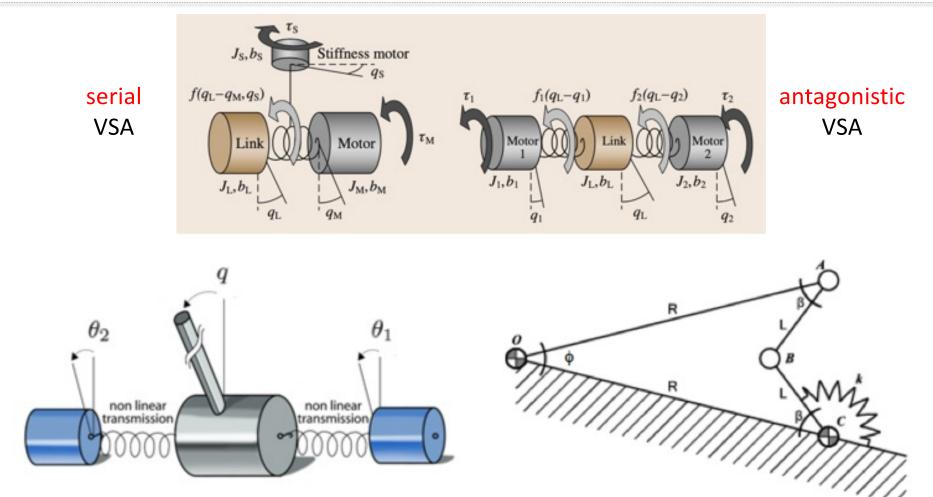
Robots with Variable Stiffness Actuation (VSA)

- uncertain/dynamic interaction with the environment requires to adjust the compliant behavior of the robot and/or to control contact forces
 - passive joint elasticity & active impedance control used in parallel
- nonlinear flexible joints with variable (controlled) stiffness work at best:
 - can be made stiff when moving slow (performance), soft when fast (safety)
 - enlarge the set of achievable task-oriented compliance matrices
 - feature also: robustness, optimal energy use, explosive motion tasks, ...



Serial and Antagonistic VSA

With antagonistic VSA-II by University of Pisa



- bi-directional, symmetric arrangement of two motors in antagonistic mode
- nonlinear flexible transmission: four-bar linkage + linear spring

A matter of terminology (or of purpose?)

Different sources of softness/flexibility, though similar robotic systems

- elastic joints vs. SEA (Serial Elastic Actuators)
 - based on the same physical phenomenon: compliance in actuation
 - compliance added on purpose in SEA, mostly a disturbance in elastic joints
 - different range of stiffness: 5-10K Nm/rad down to 0.2-1K Nm/rad in SEA
- joint deformation is often considered in the linear domain
 - modeled as a concentrated torsional spring with constant stiffness at the joint
 - nonlinear flexible joints share similar control properties
 - nonlinear stiffness characteristics are needed instead in VSA
 - a (serial or antagonistic) VSA working at constant stiffness is an elastic joint
- flexible joint robots are classified as underactuated mechanical systems
 - have less commands than generalized coordinates
 - non-collocation of command inputs and of dynamic behaviors to be controlled
 - however, they are controllable in the first approximation (the easier case!)

Control drawbacks due to joint elasticity

Neglecting softness may generate vibrations and trajectory oscillations

anywhere: conventional/massive industrial manipulators, lightweight (loaded) research-oriented robots, educational devices, ...

video

video

A CONTRACTOR

Rome, May 2023

Linear

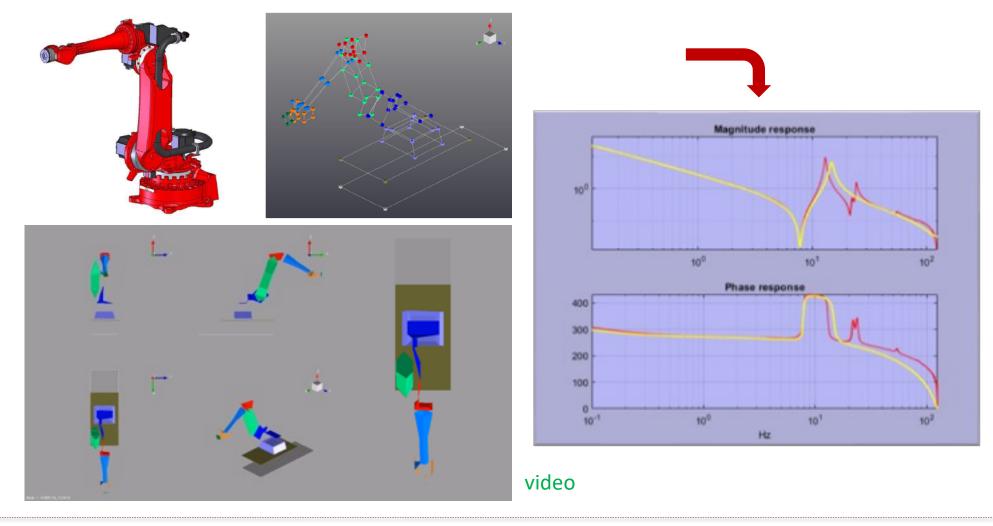
Flexible Joint

(LINFLEX)

Modal analysis of an industrial robot

Assumed to be fully rigid

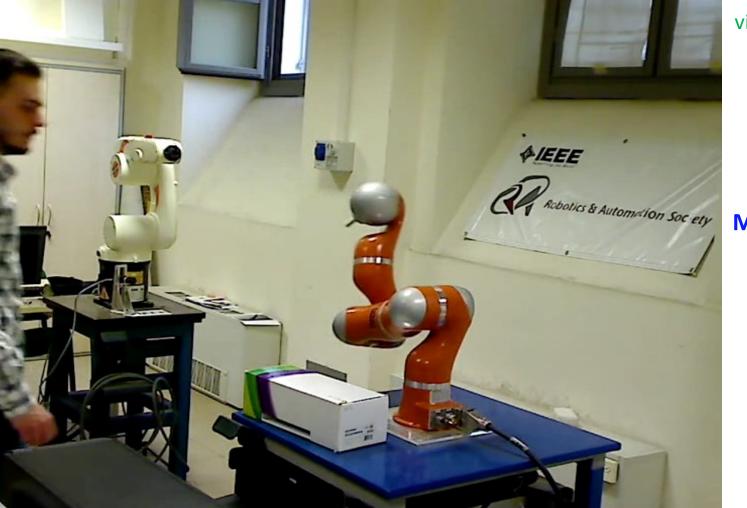
• lowest mode is a torsional vibration around the base vertical joint axis with $f_1 = 6.9$ Hz (but slightly changing with robot configuration and payload)



Exploiting joint elasticity in pHRI

Detection and selective reaction in torque control mode, based on residuals

collision detection & reaction for safety (model-based + joint torque sensing)



video

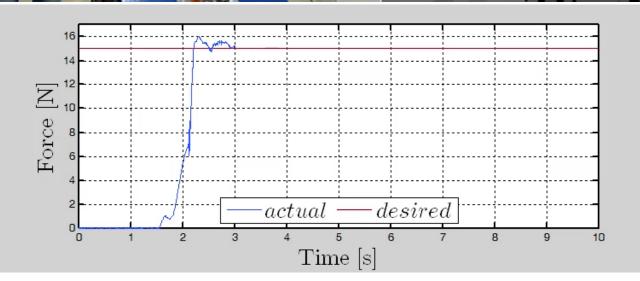
[De Luca, Mattone, 2005; Haddadin *et al,* 2017]

Exploiting joint elasticity in pHRI

Human-robot collaboration in torque control mode

contact force estimation & control (virtual force sensor, anywhere/anytime)

video

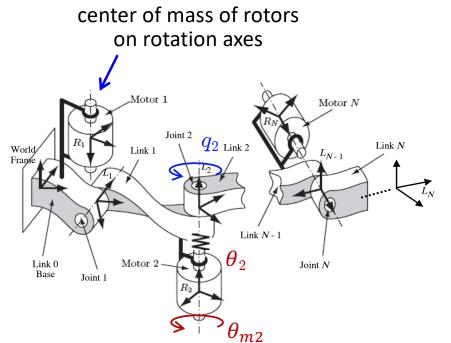


[Magrini *et al,* 2015]

Dynamic modeling

Lagrangian formulation (so-called reduced model of [Spong, 1987])

- open chain manipulator with N joints driven by electrical actuators, with elastic transmission to N rigid links
- use N motor variables θ (as reflected through the gear ratios $\dot{\theta}_{mi} = n_{ri}\dot{\theta}_i$) and N link variables q
- assumptions
 - A1) small deflection at joints
 - A2) axis-balanced motors
 - A3) each motor mounted on the robot in a position preceding the driven link
 - A4) no inertial couplings between motors and links



angular kinetic energy of each motor is due only to its own spinning

no dissipative effects here (can be added later)

Dynamic modeling

Derivation

 kinetic energy and potential energy due to gravity of the links (including on each link the mass of the carried actuator, under assumption A3 (and A2)

$$T_l = \frac{1}{2} \dot{q}^T M(q) \dot{q} \qquad \qquad U_g = U_g(q)$$

angular kinetic energy of the motors, under assumption A4 (and A2)

$$T_{mi} = \frac{1}{2} I_{mi} \dot{\theta}_{mi}^2 = \frac{1}{2} I_{mi} n_{ri}^2 \dot{\theta}_i^2 = \frac{1}{2} B_i \dot{\theta}_i^2 \qquad T_m = \sum_{i=1}^N T_{mi} = \frac{1}{2} \dot{\theta}^T B \dot{\theta}$$

potential energy due to joint elasticity (under assumption A1)

diagonal matrices

$$U_{ei} = \frac{1}{2} K_i (q_i - \theta_i)^2 \qquad \qquad U_e = \sum_{i=1}^N U_{ei} = \frac{1}{2} (q - \theta)^T K(q - \theta)$$

robot Lagrangian and E-L equations

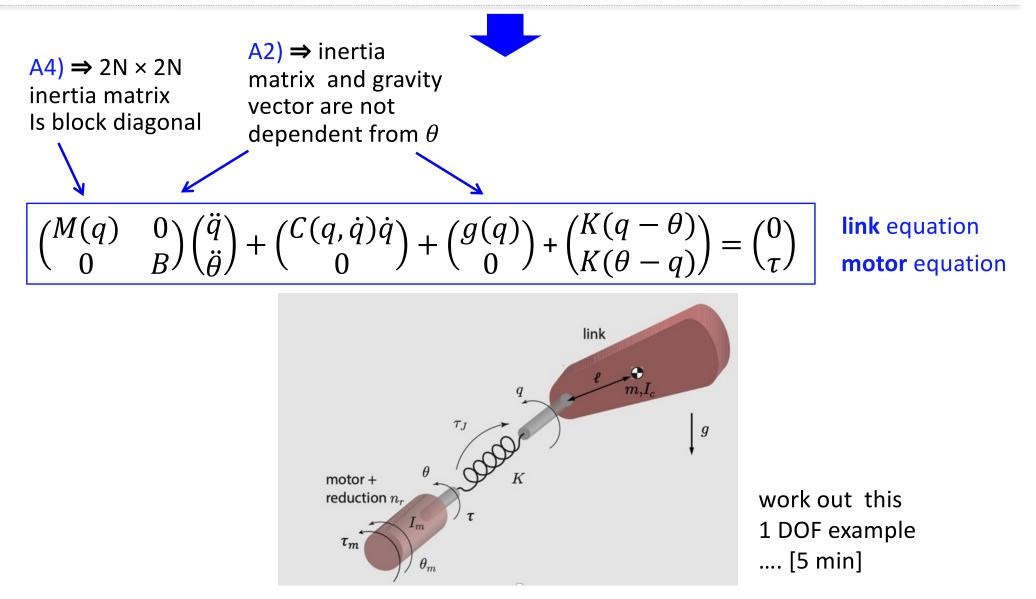
$$L = T - U = (T_l + T_m) - (U_g + U_e)$$

= $L(q, \theta, \dot{q}, \dot{\theta})$

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right)^T - \left(\frac{\partial L}{\partial q} \right)^T = 0$$
$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}} \right)^T - \left(\frac{\partial L}{\partial \theta} \right)^T = \tau$$

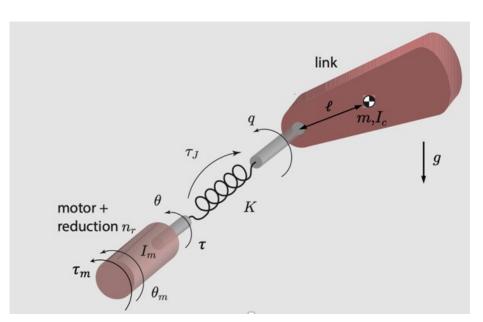
Dynamic model

Robots with elastic joints



Single elastic joint

Adding also viscous friction on motor and link sides



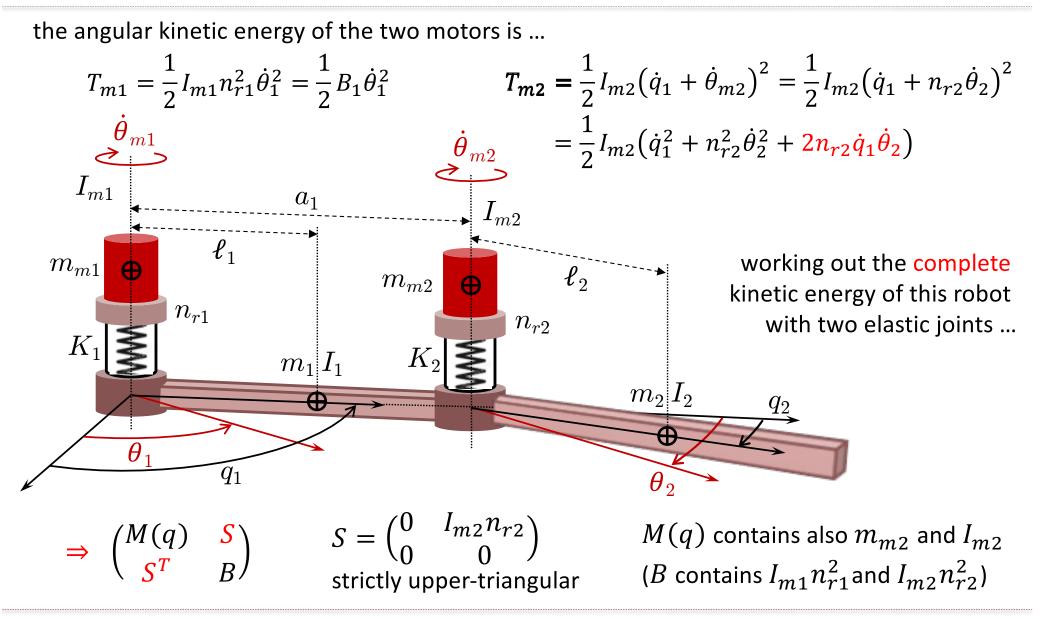
$$T_{m} = \frac{1}{2} I_{m} \dot{\theta}_{m}^{2} = \frac{1}{2} I_{m} n_{r}^{2} \dot{\theta}^{2} = \frac{1}{2} B \dot{\theta}^{2}$$
$$T_{l} = \frac{1}{2} (I_{c} + m\ell^{2}) \dot{q}^{2} = \frac{1}{2} M \dot{q}^{2}$$
$$U_{g} = mg\ell \sin q + U_{0}$$
$$U_{e} = \frac{1}{2} K(q - \theta)^{2}$$

link equation

$$\begin{split} M\ddot{q} + K(q-\theta) + mg\ell\cos q &= -D_q\dot{q} \\ B\ddot{\theta} + K(\theta-q) &= n_r(\tau_m - D_{m\theta}\dot{\theta}_m) = \tau - D_\theta\dot{\theta} \end{split} \qquad \begin{array}{l} \text{on the rhs} \\ \text{non-conservative} \\ \text{torques performing} \\ \text{work on } q \text{ and } \theta \\ \tau &= n_r\tau_m \\ D_\theta &= D_{\theta m}n_r^2 \end{split}$$

Dynamic modeling

A more complete model without the Spong assumption A4



Model properties

Robots with elastic joints

• for $K \to \infty$ (rigid joints), $\theta \to q$ and $K(q - \theta) \to \infty$ (a finite value) and the equivalent rigid model is recovered (adding up link and motor equations)

$$(M(q) + B)\ddot{q} + C(q, \dot{q})\dot{q} + g(q) = \tau$$

• the nonlinear dynamic model is linear in a set of dynamic coefficients $\tilde{a} = (a, a_K, a_B)$ (i.e., including K and B)

$$Y(q, \dot{q}, \ddot{q}) a + \operatorname{diag}(q - \theta) a_{K} = 0 \qquad \Rightarrow \quad \tilde{Y}(q, \dot{q}, \ddot{q}, \theta, \ddot{\theta}) \tilde{a} = \begin{pmatrix} 0 \\ \tau \end{pmatrix}$$
$$\operatorname{diag}(\ddot{\theta}) a_{B} - \operatorname{diag}(q - \theta) a_{K} = \tau \qquad \qquad \tilde{Y} = \begin{pmatrix} Y(q, \dot{q}, \ddot{q}) & \operatorname{diag}(q - \theta) & 0 \\ 0 & -\operatorname{diag}(q - \theta) & \operatorname{diag}(\ddot{\theta}) \end{pmatrix}$$

as in the rigid case, there exists a bound on the norm of the gradient of the gravity vector g(q)

$$\left\|\frac{\partial g}{\partial q}\right\| \leq \alpha \quad \forall q \quad \Rightarrow \quad \|g(q_1) - g(q_2)\| \leq \alpha \|q_1 - q_2\| \quad \forall q_1, q_2$$

Control problems

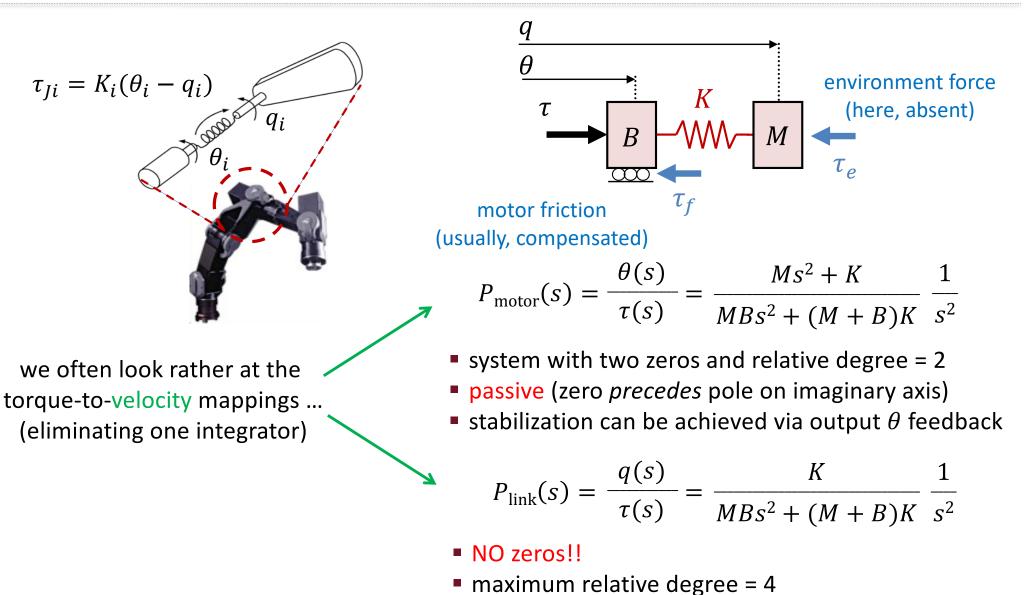
A CONTRACTOR

Robots with elastic joints

- regulation to an equilibrium configuration $(q, \theta, \dot{q}, \dot{\theta}) = (q_d, \theta_d, 0, 0)$
 - direct kinematics of elastic joint robots is a function of link variables
 only: r = kin(q)
 - only a desired link position q_d is given, θ_d is to be determined
 - q_d may come from the inverse kinematics of a desired Cartesian pose/position r_d
 - using partial or full state feedback
- asymptotic tracking of a (sufficiently) smooth link trajectory $q_d(t)$
 - the corresponding motor trajectory $\theta_d(t)$ is to be determined
 - mostly using full, but also partial state feedback
- model matching by feedback
 - less conventional problem, based on equivalence under feedback transformations

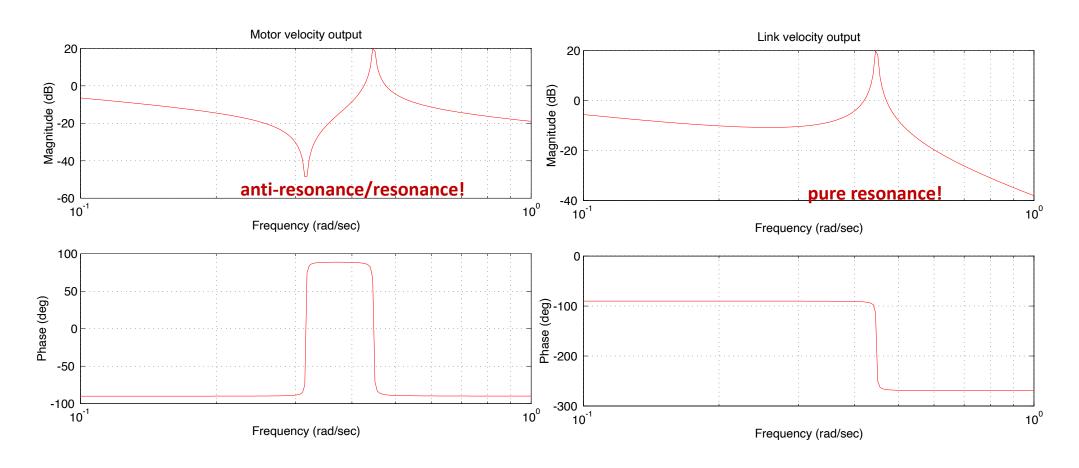
Single elastic joint

Transfer functions of interest



Single elastic joint

Transfer functions of interest (some small damping added on motor/link side)



- single anti-resonance/resonance behavior on motor output
- pure resonance on link output (weak or no zeros)

Regulation of a single elastic joint

Feedback schemes with reduced measurements

- link PD feedback $\tau = u_{qd} (K_{P,q}q + K_{D,q}\dot{q})$ $W_{qq}(s) = \frac{q(s)}{u_{qd}(s)} = \frac{K}{MBs^4 + (M+B)Ks^2 + KK_{D,q}s + KK_{P,q}}$
- always unstable for any value of the gains (s^3 term is missing ...)
- inclusion of dissipative terms would lead to a very small interval of stability
- motor PD feedback $\tau = u_{\theta d} (K_{P,\theta}\theta + K_{D,\theta}\dot{\theta})$

$$W_{\theta\theta}(s) = \frac{q(s)}{u_{\theta d}(s)} = \frac{K}{MBs^4 + MK_{D,\theta}s^3 + \left((M+B)K + MK_{P,\theta}\right)s^2 + KK_{D,\theta}s + KK_{P,\theta}}$$

- asymptotically stable for any $K_{P,\theta} > 0$, $K_{D,\theta} > 0$ (Routh criterion ...)
- as in a rigid joint!

Regulation of a single elastic joint

Feedback schemes with reduced measurements (mixed cases)

- link position and motor velocity feedback $\tau = u_{qd} (K_{P,q}q + K_{D,\theta}\dot{\theta})$ $W_{q\theta}(s) = \frac{q(s)}{u_{qd}(s)} = \frac{K}{MBs^4 + MK_{D,\theta}s^3 + (M+B)Ks^2 + KK_{D,\theta}s + KK_{P,q}}$
- asymptotically stable for $0 < K_{P,q} < K, K_{D,\theta} > 0$
- Imited proportional gain, not overriding the spring stiffness
- motor position and link velocity feedback $\tau = u_{\theta d} (K_{P,\theta}\theta + K_{D,q}\dot{q})$ $W_{\theta q}(s) = \frac{q(s)}{u_{\theta d}(s)} = \frac{K}{MBs^4 + ((M+B)K + MK_{P,\theta})s^2 + KK_{D,q}s + KK_{P,\theta}}$
- always unstable for any value of the gains
- caution must be used in dealing with different partial state measurements
- In the nonlinear/MIMO case (regulation under gravity) we consider only the best of these feedback schemes: motor PD feedback

Partial state feedback solution

consider the control law

very similar to flexible link case!

$$\tau = K_P(\theta_d - \theta) - K_D \dot{\theta} + g(q_d)$$

with symmetric (diagonal) $K_P > 0$, $K_D > 0$, and with the motor reference position at steady state corresponding to q_d given by

$$\theta_d = q_d + K^{-1}g(q_d)$$

Theorem [Tomei, 1991] If $\left\|\frac{\partial g}{\partial q}\right\| \leq \alpha \text{ and } \lambda_{min}(K_E) = \lambda_{min}\begin{pmatrix} K & -K \\ -K & K+K_P \end{pmatrix} > \alpha > 0$

then the desired closed-loop equilibrium state $(q_d, \theta_d, 0, 0)$ is globally asymptotically stable

Lyapunov-based proof in detail

$$K(q - \theta) + g(q) = 0$$
$$K(\theta - q) - K_P(\theta_d - \theta) - g(q_d) = 0$$

• adding/subtracting $K(\theta_d - q_d) - g(q_d)$ (= 0, by definition of θ_d) yields

$$K(q - q_d) - K(\theta - \theta_d) + g(q) - g(q_d) = 0$$
$$-K(q - q_d) + (K + K_P)(\theta - \theta_d) = 0$$

or in matrix form

$$\begin{pmatrix} K & -K \\ -K & K+K_P \end{pmatrix} \begin{pmatrix} q-q_d \\ \theta-\theta_d \end{pmatrix} = K_E \begin{pmatrix} q-q_d \\ \theta-\theta_d \end{pmatrix} = \begin{pmatrix} g(q_d)-g(q) \\ 0 \end{pmatrix}$$

Lyapunov-based proof in detail

• using the assumptions of the Theorem, for all $(q, \theta) \neq (q_d, \theta_d)$ we have

$$\begin{aligned} \left\| K_E \begin{pmatrix} q - q_d \\ \theta - \theta_d \end{pmatrix} \right\| &\geq \lambda_{min}(K_E) \left\| \begin{pmatrix} q - q_d \\ \theta - \theta_d \end{pmatrix} \right\| \\ &> \alpha \left\| \begin{pmatrix} q - q_d \\ \theta - \theta_d \end{pmatrix} \right\| \geq \alpha \left\| q - q_d \right\| \\ &\geq \left\| g(q_d) - g(q) \right\| = \left\| \begin{pmatrix} g(q_d) - g(q) \\ 0 \end{pmatrix} \right\| \end{aligned}$$

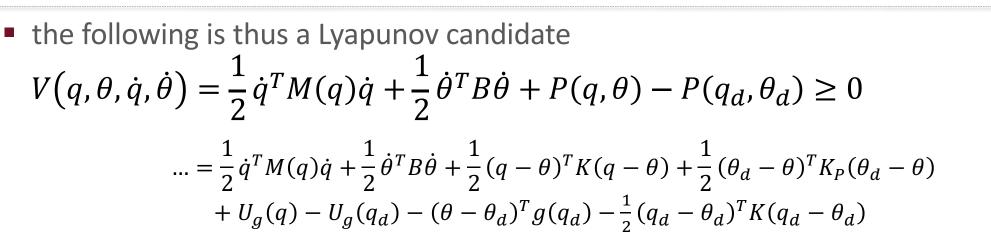
and hence (q_d, θ_d) is the unique equilibrium configuration

define the position-dependent (potential-like) function

$$P(q,\theta) = \frac{1}{2}(q-\theta)^T K(q-\theta) + \frac{1}{2}(\theta_d - \theta)^T K_P(\theta_d - \theta) + U_g(q) - \theta^T g(q_d)$$

• the gradient $\nabla P(q, \theta) = 0$ only at (q_d, θ_d) (using the same argument above) + the Hessian $\nabla^2 P(q, \theta) > 0 \Rightarrow (q_d, \theta_d)$ is an absolute minimum of $P(q, \theta)$

Lyapunov-based proof in detail



• its time derivative evaluated along the closed-loop system trajectories is $\dot{V} = \dot{q}^{T} M(q) \ddot{q} + \frac{1}{2} \dot{q}^{T} \dot{M}(q) \dot{q} + \dot{\theta}^{T} B \ddot{\theta} + (\dot{q} - \dot{\theta})^{T} K(q - \theta) - \dot{\theta}^{T} K_{P}(\theta_{d} - \theta) + \frac{\partial U_{g}(q)}{\partial q} \dot{q} - \dot{\theta}^{T} g(q_{d})$ $= \dot{q}^{T} \left(-C(q, \dot{q}) \dot{q} - g(q) - K(q - \theta) + \frac{1}{2} \dot{M}(q) \dot{q} + K(q - \theta) + \left(\frac{\partial U_{g}(q)}{\partial q} \right)^{T} \right)$ $+ \dot{\theta}^{T} (\tau - K(\theta - q) - K(q - \theta) - K_{P}(\theta_{d} - \theta) - g(q_{d}))$ $= \dot{\theta}^{T} \left(K_{P}(\theta_{d} - \theta) - K_{D} \dot{\theta} + g(q_{d}) - K_{P}(\theta_{d} - \theta) - g(q_{d}) \right) = -\dot{\theta}^{T} K_{D} \dot{\theta} \leq 0$

where the skew-symmetry of $\dot{M} - 2C$ has been used

Lyapunov-based proof in detail

- since $\dot{V} = 0 \Leftrightarrow \dot{\theta} = 0$, the proof is completed using LaSalle
- substituting $\ddot{\theta} = 0$ in the closed-loop equations yields

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) + Kq = K\theta = \text{constant}$$
(*)

$$Kq = K\theta - K_P(\theta_d - \theta) - g(q_d) = \text{constant}$$
(**)

• from (**) it follows that $\dot{q} = \ddot{q} = 0$, which in turn simplifies (*) to

$$g(q) + Kq - K\theta = 0 \qquad (***)$$

- from the first part of the proof $q = q_d$, $\theta = \theta_d$ is the unique solution to (**)-(***) and thus the configuration (q_d, θ_d) is the only one contained in the largest invariant set of states such that $\dot{V} = 0$
- ⇒ global asymptotic stability of the desired equilibrium state $(q_d, \theta_d, 0, 0)$

Comments

... on this regulation control law in the joint elasticity case

- if joint stiffness K is large enough (always true in non-pathological cases), the assumption of the Theorem $\lambda_{min}(K_E) > \alpha$ can always be satisfied by increasing $\lambda_{min}(K_P)$
- in the presence of model uncertainties, the control law

$$\tau = K_P(\hat{\theta}_d - \theta) - K_D \dot{\theta} + \hat{g}(q_d) \qquad \hat{\theta}_d = q_d + \hat{K}^{-1} \hat{g}(q_d)$$

provides asymptotic stability for a different equilibrium $(\bar{q}, \bar{\theta})$ (still unique, and possibly close to the desired one, if K_P is sufficiently large)

a motor PD + on-line gravity compensation scheme

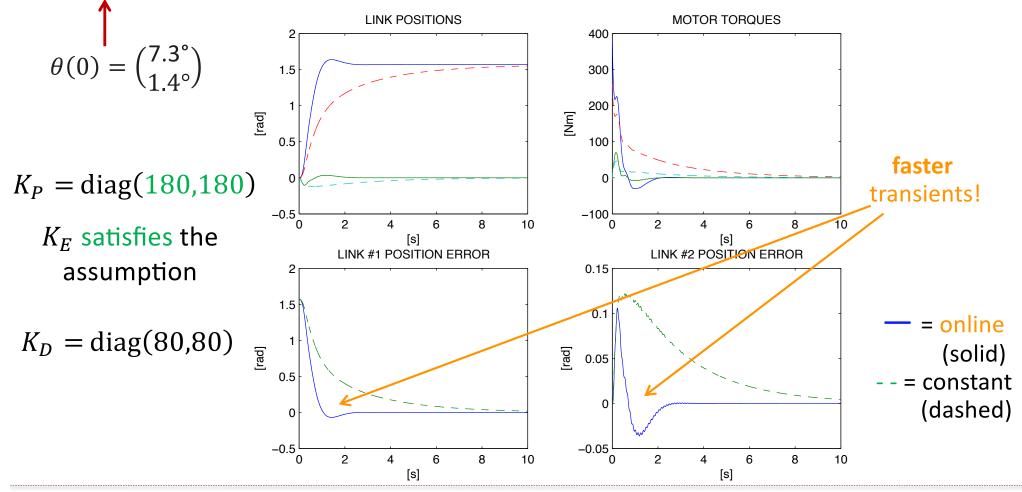
 $\tau = K_P(\theta_d - \theta) - K_D \dot{\theta} + g(\bar{\theta}) \qquad \bar{\theta} = \theta + \hat{K}^{-1} \hat{g}(q_d) \qquad \text{motor position}$ can be proven to achieve global asymptotic stability (with expected better transients), by using a modified Lyapunov candidate

$$P(q,\theta) = \frac{1}{2}(q-\theta)^T K(q-\theta) + \frac{1}{2}(\theta_d - \theta)^T K_P(\theta_d - \theta) + U_g(q) - U_g(\bar{\theta})$$

Regulation with motor PD+ ...

Comparative numerical results with constant or on-line gravity compensation

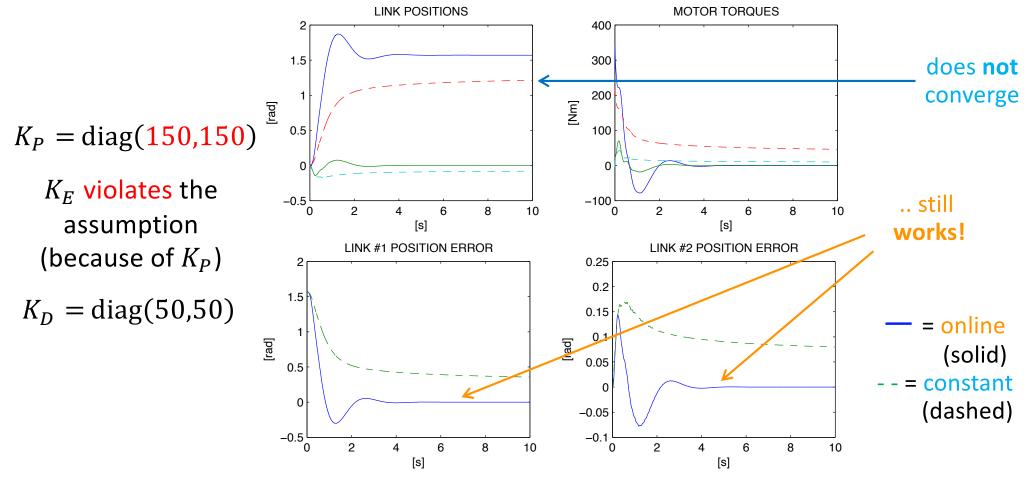
- a planar robot with two elastic joints robot under gravity (in the vertical plane), with $K_1 = K_2 = 1000$ [Nm/rad] and $\alpha \approx 133$
- at rest from the horizontal $q(0) = (0^{\circ}, 0^{\circ})$ to the upward vertical $q_d = (90^{\circ}, 0^{\circ})$



Regulation with motor PD+ ...

Comparative numerical results with constant or on-line gravity compensation

- a planar robot with two elastic joints robot under gravity (in the vertical plane), with $K_1 = K_2 = 1000$ [Nm/rad] and $\alpha \approx 133$
- at rest from the horizontal $q(0) = (0^{\circ}, 0^{\circ})$ to the upward vertical $q_d = (90^{\circ}, 0^{\circ})$



Summary of control laws for regulation

Using a minimal PD+ action on the motor side

for a desired constant link position q_d

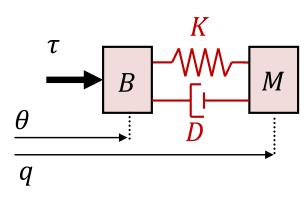
- evaluate the associated desired motor position θ_d at steady state
- collocated (partial state) feedback on motor variables preserves passivity
- a sufficiently stiff K_P gain should be used to dominate gravity
- focus on term for (link side) gravity compensation based on motor measurements

$$\theta_d = q_d + K^{-1}g(q_d) \qquad \tau = \tau_g + K_P(\theta_d - \theta) - K_D\dot{\theta} \qquad K_D > 0$$

$ au_g$	gain criteria for stability	
$g(q_d)$	$\lambda_{min} \begin{bmatrix} K & -K \\ -K & K + K_P \end{bmatrix} > \alpha$	[Tomei, 1991]
$g(\theta - K^{-1}g(q_d))$	$\lambda_{min} \begin{bmatrix} K & -K \\ -K & K + K_P \end{bmatrix} > \alpha$	[De Luca, Siciliano, Zollo, 2004]
$g(\overline{q}(\theta)), \ \overline{q}(\theta): \ g(\overline{q}) = K(\theta - \overline{q})$	$K_P > 0$, $\lambda_{min}(K) > \alpha$	[Ott, Albu-Schäffer, et al 2004]
$g(q) + BK^{-1}\ddot{g}(q)$	$K_P > 0, \qquad K > 0$	[De Luca, Flacco, 2010]
<pre> exact gravity cancellation (with full state feedback) more on this soon</pre>		

Visco-elasticity at the joints

Introduces a structural change ...



on Spong model

$$\begin{pmatrix} M(q) & 0 \\ 0 & B \end{pmatrix} \begin{pmatrix} \ddot{q} \\ \ddot{\theta} \end{pmatrix} + \begin{pmatrix} C(q, \dot{q})\dot{q} \\ 0 \end{pmatrix} + \begin{pmatrix} g(q) \\ 0 \end{pmatrix} + \begin{pmatrix} K(q-\theta) + D(\dot{q} - \dot{\theta}) \\ K(\theta - q) + D(\dot{\theta} - \dot{q}) \end{pmatrix} = \begin{pmatrix} 0 \\ \tau \end{pmatrix}$$

coupling type	consequence for the model	
stiffness	basic static coupling, maximum relative degree (= 4) of output q	
damping	reduced relative degree (= 3), only I/O linearization [#] by static feedback	
inertia*	reduced relative degree, I/O linearization needs dynamic feedback	

[#] with asymptotically stable zero dynamics

* so-called complete dynamic model

Inverse dynamics

Feedforward action for following a desired trajectory in nominal conditions

given a desired smooth link trajectory $q_d(t) \in C^4$

 compute symbolically the desired motor acceleration and, therefore, also the desired link jerk and snap (i.e., up to the fourth time derivative of the desired motion)

$$\begin{pmatrix} M(q) & 0 \\ 0 & B \end{pmatrix} \begin{pmatrix} \ddot{q} \\ \ddot{\theta} \end{pmatrix} + \begin{pmatrix} C(q, \dot{q}) \dot{q} \\ 0 \end{pmatrix} + \begin{pmatrix} g(q) \\ 0 \end{pmatrix} + \begin{pmatrix} K(q - \theta) \\ K(\theta - q) \end{pmatrix} = \begin{pmatrix} 0 \\ \tau_m \end{pmatrix}$$

$$\tau_{m,d} = B\ddot{\theta}_d + K(\theta_d - q_d)$$

$$= BK^{-1} \left(M(q_d) q_d^{[4]} + 2\dot{M}(q_d) q_d^{[3]} + \ddot{M}(q_d) \ddot{q}_d + \frac{d^2}{dt^2} \left(C(q_d, \dot{q}_d) \dot{q}_d + g(q_d) \right) \right)$$

$$+ (M(q_d) + B)\ddot{q}_d + C(q_d, \dot{q}_d) \dot{q}_d + g(q_d)$$

- the inverse dynamics can be efficiently computed using a modified Newton-Euler algorithm (with link recursions up to the fourth differential order) running in O(N)
- the feedforward command can be used in combination with a PD feedback control on the motor position/velocity error, so to obtain a local but simple trajectory tracking control law

Feedback linearization

For accurate trajectory tracking tasks

$$\begin{bmatrix} M(q) & 0 \\ 0 & B \end{bmatrix} \begin{pmatrix} \ddot{q} \\ \ddot{\theta} \end{pmatrix} + \begin{pmatrix} C(q, \dot{q})\dot{q} \\ 0 \end{pmatrix} + \begin{pmatrix} g(q) \\ 0 \end{pmatrix} + \begin{pmatrix} K(q-\theta) \\ K(\theta-q) \end{pmatrix} = \begin{pmatrix} 0 \\ \tau \end{pmatrix} \longleftrightarrow \qquad q^{(4)} = u$$

differentiating twice the link equation and using the motor acceleration yields

$$\tau = BK^{-1}M(q)u + K(\theta - q) + B\ddot{q} + BK^{-1}\left(2\dot{M}q^{[3]} + \ddot{M}\ddot{q} + \frac{d^2}{dt^2}(C\dot{q} + g(q))\right)$$

- an exactly linear and I/O decoupled closed-loop system is obtained
 - to be stabilized with standard techniques for linear dynamics (pole placement, LQ, ...)
- requires higher derivatives of q
- ... but these can be computed from the model using the state measurements
- requires higher derivatives of the dynamic components
- ... a $O(N^3)$ Newton-Euler recursive numerical algorithm is available for this

Feedback linearization

Based on the rigid model only vs. when modeling also joint elasticity

$$\tau = (M(q) + B)(\ddot{q}_d + K_D(\dot{q}_d - \dot{q}) + K_P(q_d - q)) + C(q, \dot{q})\dot{q} + g(q)$$

$$\tau = BK^{-1}M(q)u + K(\theta - q) + B\ddot{q} + BK^{-1}\left(2\dot{M}q^{[3]} + \ddot{M}\ddot{q} + \frac{d^2}{dt^2}(C\dot{q} + g(q))\right)$$

$$u = \left(q_d^{[4]} + K_J(\ddot{q}_d - \ddot{q}) + K_A(\ddot{q}_d - \ddot{q}) + K_D(\dot{q}_d - \dot{q}) + K_P(q_d - q)\right)$$

video
video

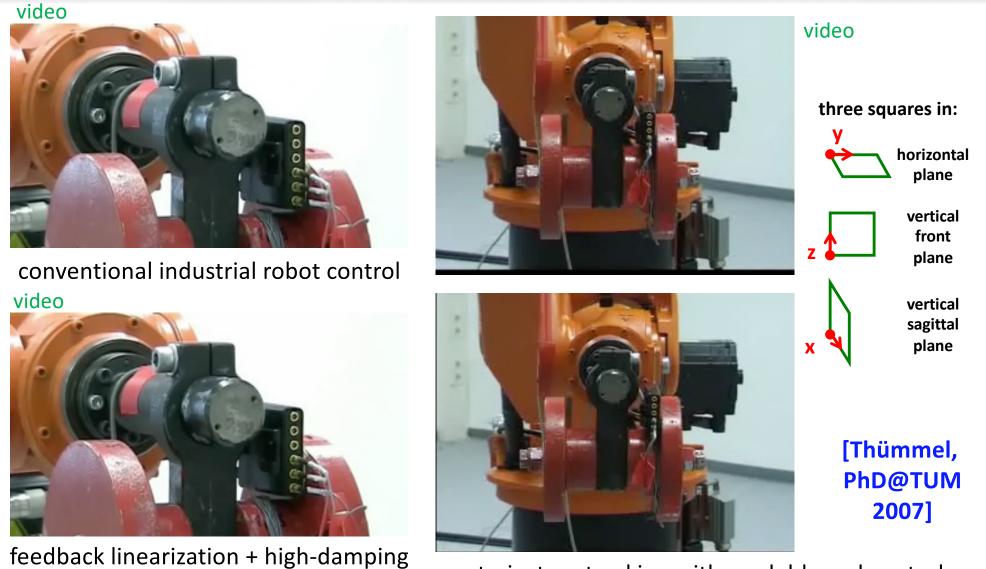


rigid computed torque

[Spong, 1987] elastic joint feedback linearization

Feedback linearization

Benefits on an industrial KUKA KR-15/2 robot (235 kg) with joint elasticity



trajectory tracking with model-based control

Torque control

A different set of state measurements can be used directly for tracking control

$$\begin{bmatrix} M(q) & 0 \\ 0 & B \end{bmatrix} \begin{pmatrix} \ddot{q} \\ \ddot{\theta} \end{pmatrix} + \begin{pmatrix} C(q, \dot{q})\dot{q} \\ 0 \end{pmatrix} + \begin{pmatrix} g(q) \\ 0 \end{pmatrix} + \begin{pmatrix} K(q - \theta) \\ K(\theta - q) \end{pmatrix} = \begin{pmatrix} 0 \\ \tau \end{pmatrix}$$
$$\tau_J = K(\theta - q) \qquad \text{measurable by a joint torque sensor}$$
$$BK^{-1}\ddot{\tau}_J + \tau_J = \tau - B\ddot{q} \qquad \text{rewriting the motor dynamics}$$

$$\tau = BK^{-1}\ddot{\tau}_{J,d} + \tau_{J,d} + K_T(\tau_{J,d} - \tau_J) + K_S(\dot{\tau}_{J,d} - \dot{\tau}_J)$$

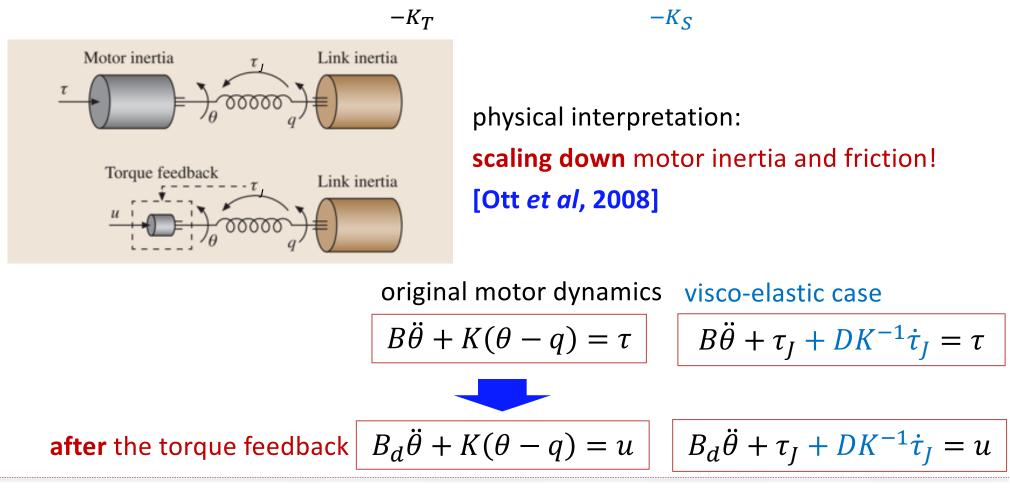
- useful for designing a motor side disturbance observer, e.g., to realize friction compensation
- basis for many cascaded controller designs, starting from a given rigid body control law $\tau = \tau(q, \dot{q}, t)$ taken as $\tau_{I,d}(t)$ in the above formulas
- higher derivatives are still required (either \ddot{q} or $\ddot{\tau}_I$)

Torque feedback

An inner loop that largely reduces motor inertia (and friction)

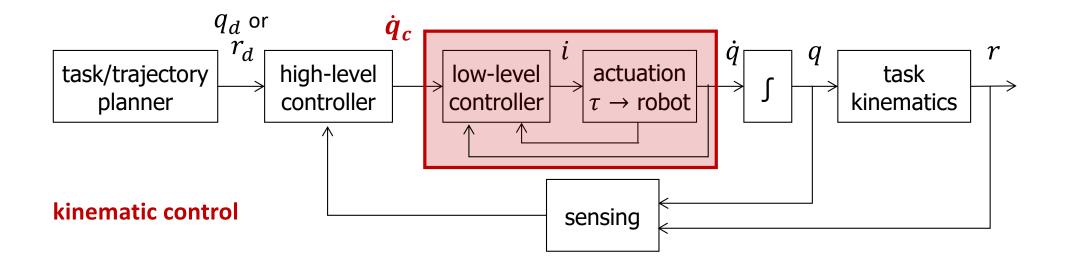
a pure proportional torque feedback (+ a derivative term for the visco-elastic case)

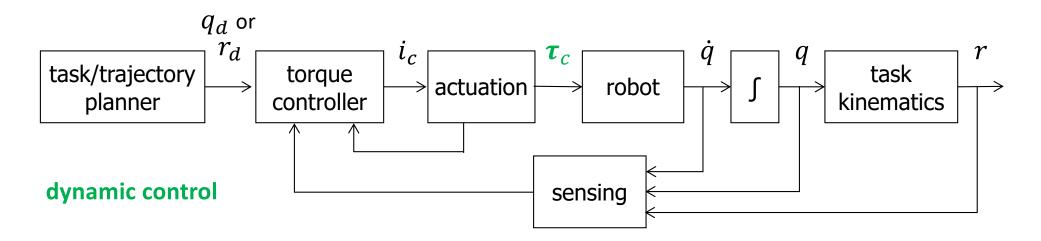
$$\tau = BB_d^{-1}u + (I - BB_d^{-1})\tau_J + (I - BB_d^{-1})DK^{-1}\dot{\tau}_J$$



Position- vs torque-controlled robots

Joint elasticity and joint torque sensing allows better dynamic control





Rome, May 2023

⇒ joint level control structure of the DLR (and KUKA) lightweight robots dynamics feedforward and

Combining torque feedback with a motor PD regulation law

inertia scaling via torque feedback $\tau = (I + K_T)u - K_T \tau_J - K_S \dot{\tau}_J$

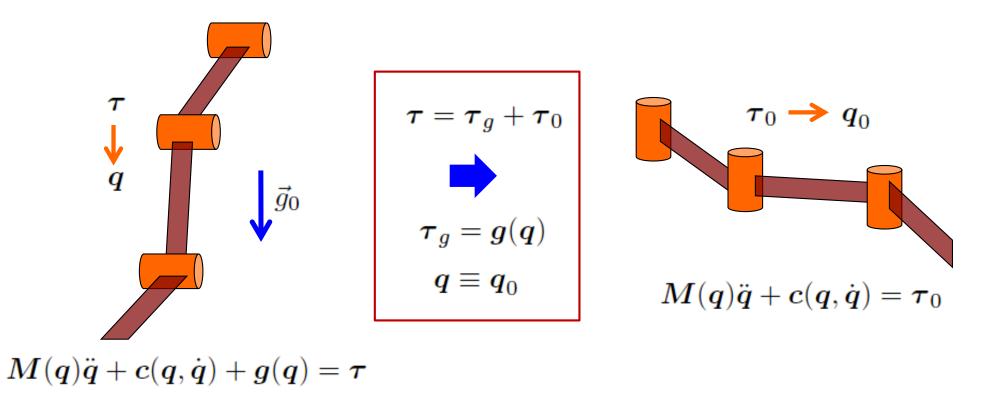
regulation via motor PD, e.g., with $u = g(\bar{q}(\theta)) + K_{\theta}(\theta_d - \theta) - D_{\theta}\dot{\theta}$

[Albu-Schäffer et al,

2007]

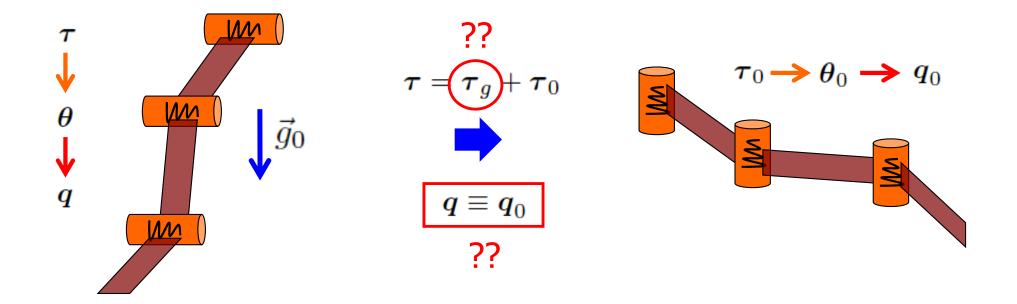
A slightly different view

• for rigid robots this is trivial, due to full actuation and collocation



... exploiting the concept of **feedback equivalence** between nonlinear systems

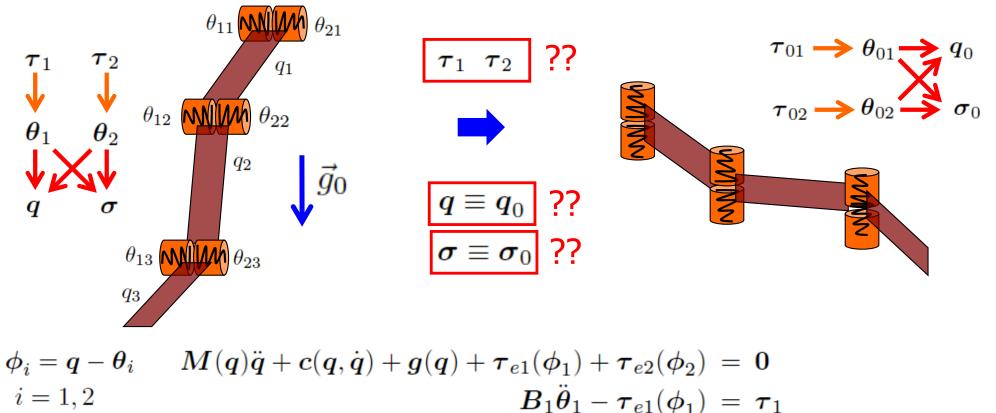
• for elastic joint robots, non-collocation of input torque and gravity term



$$egin{aligned} M(q)\ddot{q}+c(q,\dot{q})+g(q)+K(q- heta)&=0\ &B\ddot{ heta}+K(heta-q)&=& au \end{aligned}$$

... can be generalized also to VSA robots

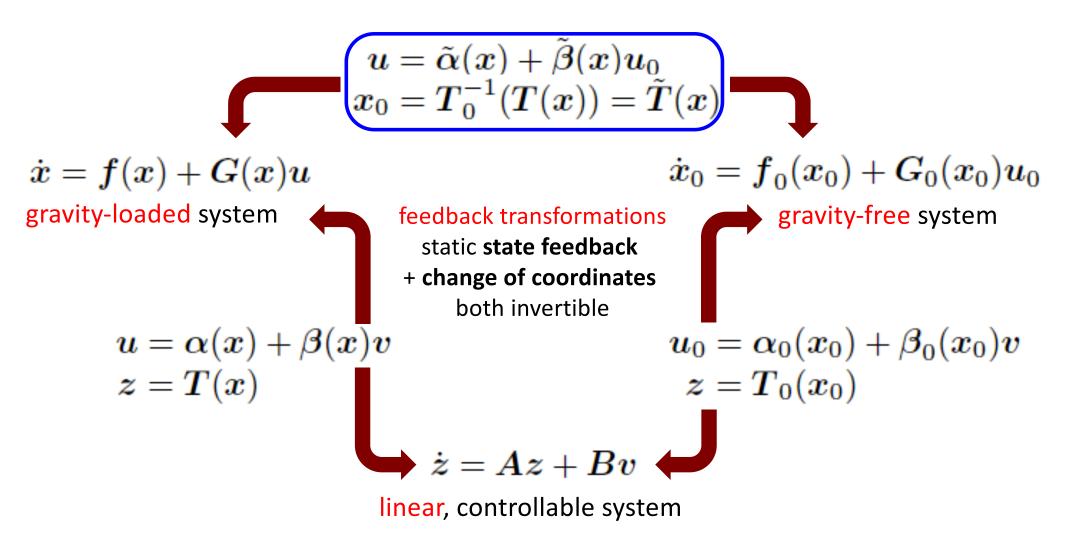
 same problem formulation holds also for VSA robots (here, in antagonistic configuration), with the additional consideration of the internal stiffness state



 $B_2\ddot{ heta}_2- au_{e2}(\phi_2)= au_2$

Feedback equivalence

Use the system property of being feedback linearizable (without forcing it!)



Elastic joint robots (including link/motor damping) [De Luca, Flacco, 2010]

$$egin{aligned} M(q)\ddot{q}+c(q,\dot{q})+g(q)+D_q\dot{q}+K(q- heta)&=0\ &B\ddot{ heta}+D_ heta\dot{ heta}+K(heta-q)&= au \end{aligned}$$

 $q(t) \equiv q_0(t) \quad \forall t \ge 0 \qquad \mathbf{\tau} = \mathbf{\tau}_g + \mathbf{\tau}_0$

$$\boldsymbol{\tau}_g = \boldsymbol{g}(\boldsymbol{q}) + \boldsymbol{D}_{\theta} \boldsymbol{K}^{-1} \dot{\boldsymbol{g}}(\boldsymbol{q}) + \boldsymbol{B} \boldsymbol{K}^{-1} \ddot{\boldsymbol{g}}(\boldsymbol{q})$$

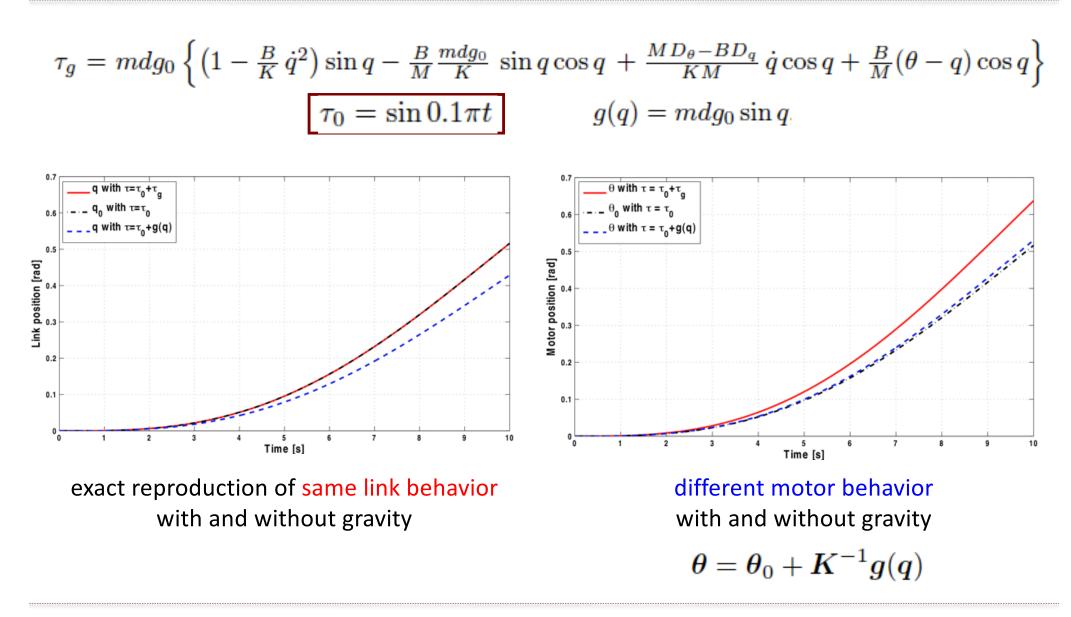
$$\dot{g}(q) = rac{\partial g(q)}{\partial q} \dot{q}$$

 $\ddot{g}(q) = rac{\partial g(q)}{\partial q} M^{-1}(q) \left(K(\theta - q) - c(q, \dot{q}) - g(q) - D_q \dot{q} \right) + \sum_{i=1}^n rac{\partial^2 g(q)}{\partial q \partial q_i} \dot{q} \dot{q}_i$

requires (in principle) full state feedback

Numerical results

Exact gravity cancellation for a 1-DOF elastic joint



A global PD-type regulator

Exact gravity cancellation combined with PD law on modified motor variables

$$egin{aligned} & m{ au} = m{ au}_g + m{ au}_0 \ & m{ au}_g = m{g}(m{q}) + m{D}_{ heta}m{K}^{-1}\dot{m{g}}(m{q}) + m{B}m{K}^{-1}\ddot{m{g}}(m{q}) \ & m{ au}_0 = m{K}_P(m{ heta}_{d0} - m{ heta}_0) - m{K}_D\dot{m{ heta}}_0 \ & = m{K}_P(m{q}_d - m{ heta} + m{K}^{-1}m{g}(m{q})) - m{K}_D(\dot{m{ heta}} - m{K}^{-1}\dot{m{g}}(m{q})) \end{aligned}$$

Global asymptotic stability can be shown using a Lyapunov analysis under "minimal" sufficient conditions (also without viscous friction)

$$\boldsymbol{K}_P > 0$$
 $\boldsymbol{K} > 0$

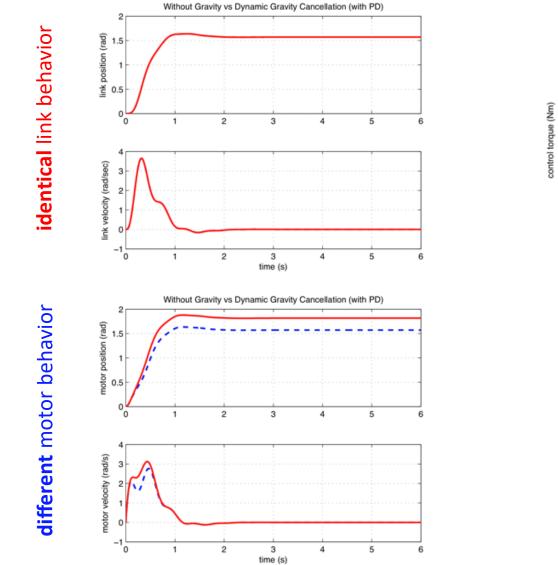
i.e., **no** strictly positive lower bounds are needed any longer

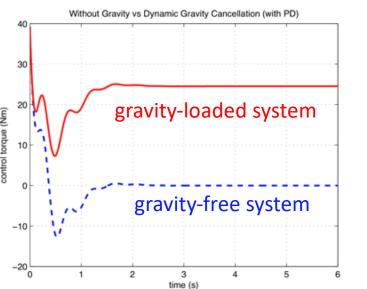
and
$$oldsymbol{K}_D>0$$

[De Luca, Flacco, 2011]

Numerical results

Regulation of a 1-DOF arm with elastic joint under gravity

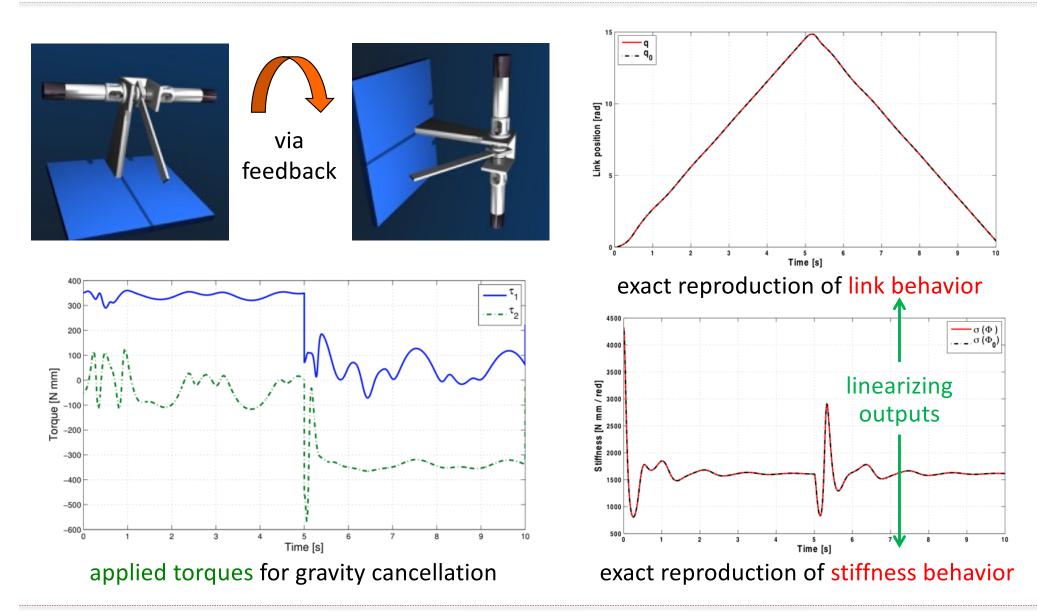




gravity-loaded system under PD + gravity cancellation vs. gravity-free system under PD (with same gains)

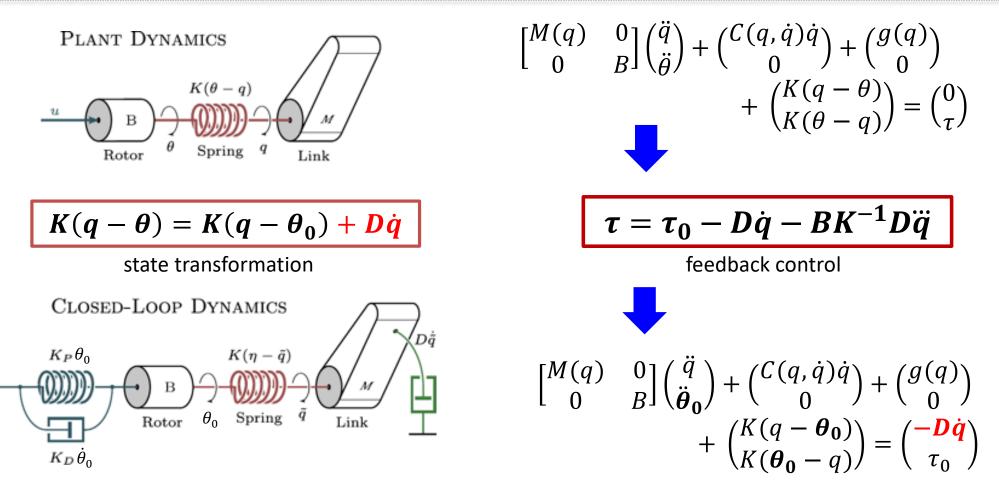
Numerical results

Exact gravity cancellation for VSA-II of the University of Pisa



Damping injection on the link side

Method for the VSA-driven bimanual humanoid torso David



- same principle of feedback equivalence (including state transformation)
- ESP = Elastic Structure Preserving control by DLR [Keppler et al, 2018]
- generalizations to trajectory tracking, to nonlinear joint flexibility, and to visco-elastic joints

Damping injection on the link side

Method for VSA-driven bimanual humanoid torso David at DLR

video

[Keppler et al, 2018]

- domains and other classes of soft-bodied robots (and vice versa)
 - Iocomotion, shared manipulation, physical interaction in complex tasks ...

Conclusions

53

mature field revamped by a new "explosion" of interest

Control of flexible link/joint robots vs. continuum soft robots in 2023+

- simpler control laws for compliant and soft robots are very welcome
- sensing requirements could be a bottleneck
- combine (learned) feedforward and feedback to achieve robustness
 - learning on repetitive tasks (ILC) already available for flexible manipulators
- optimal control (min time, min energy, max force, ...) still "open for fun"
- revisiting model-based control design
 - do not fight against the natural dynamics of the system
 - unwise to stiffen what was designed/intended to be soft on purpose!
 - don't give up too much of desirable performance (use feedback equivalence)
 - keep in mind under-actuation and control limitations (e.g., instabilities in the system inversion of tip trajectories for flexible link robots, I/O synergies, ...)

Basic references

Robots with elastic joints

- M.W. Spong, "Modeling and control of elastic joint robots," *Transactions of ASME Journal of Dynamic Systems, Measurement and Control*, vol. 109, no. 4, pp. 310–319, 1987 <u>https://doi.org/10.1115/1.3143860</u>
- P. Tomei, "A simple PD controller for robots with elastic joints," *IEEE Transactions on Automatic Control*, 36(10), 1208–1213, 1991 <u>https://doi.org/10.1109/9.90238</u>
- S. Nicosia and P. Tomei, "Design of global tracking controllers for flexible-joint robots," Journal of Robotic Systems, vol. 10, no. 6, pp. 835–846, 1993 <u>https://doi.org/10.1002/rob.4620100604</u>
- B. Brogliato, R. Ortega, R. Lozano, "Global tracking controllers for flexible-joint manipulators: A comparative study," *Automatica*, vol. 31, no. 7, pp. 941–956, 1995 <u>https://doi.org/10.1016/0005-1098(94)00172-F</u>
- C. Ott, A. Albu-Schäffer, A. Kugi, S. Stramigioli, G. Hirzinger, "A passivity based Cartesian impedance controller for flexible joint robots - Part I: torque feedback and gravity compensation," 2004 IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, pp. 2659-2665, 2004 <u>https://doi.org/10.1109/ROBOT.2004.1307462</u>

Basic references

Robots with elastic joints

- A. Bicchi and G. Tonietti, "Fast and "soft-arm" tactics: Dealing with the safety-performance tradeoff in robot arms design and control]," *IEEE Robotics & Automation Magazine*, vol. 11, no. 2, pp. 22-33, 2004, <u>https://doi.org/10.1109/MRA.2004.1310939</u>
- A. Albu-Schäffer, C. Ott, G. Hirzinger, "A unified passivity-based control framework for position, torque and impedance control of flexible joint robots," *International Journal of Robotics Research*, vol. 26, no. 1, pp. 23–39, 2007 <u>https://doi.org/10.1177/0278364907073776</u>
- C. Ott, A. Albu-Schäffer, A. Kugi, G. Hirzinger, "On the passivity-based impedance control of flexible joint robots," *IEEE Transactions on Robotics*, vol. 24, no. 2, pp. 416-429, 2008 <u>https://doi.org/10.1109/TRO.2008.915438</u>
- M. Keppler, D. Lakatos, C. Ott, A. Albu-Schäffer, "Elastic Structure Preserving (ESP) control for compliantly actuated robots," *IEEE Transactions on Robotics*, vol. 34, no. 2, pp. 317-335, 2018, <u>https://doi.org/10.1109/TRO.2017.2776314</u>

- A. Palleschi, R. Mengacci, F. Angelini, D. Caporale, L. Pallottino, A. De Luca, M. Garabini, "Time-optimal trajectory planning for flexible joint robots," *IEEE Robotics and Automation Letters*, vol. 5, no. 2, pp. 938-945, 2020 <u>DOI:10.1109/LRA.2020.2965861</u>
- M. Keppler, A. De Luca, "On time-optimal control of elastic joints under bounded input," 59th IEEE Conference on Decision and Control, Jeju Island, KOR, pp. 4149-4156, 2020 DOI:10.1109/CDC42340.2020.9304224
- S. Haddadin, A. De Luca, A. Albu-Schäffer, "Robot collisions: A survey on detection, isolation, and identification," <u>IEEE Transactions on Robotics</u>, vol. 33, no. 6, pp. 1292-1312, 2017 <u>DOI:10.1109/TRO.2017.2723903</u>
- G. Buondonno, A. De Luca, "Efficient computation of inverse dynamics and feedback linearization for VSA-based robots," <u>IEEE Robotics and Automation Letters</u>, vol. 1, no. 2, pp. 908-915, 2016 <u>DOI:10.1109/LRA.2016.2526072</u>
- A. De Luca, W. Book, "Robots with flexible elements," in B. Siciliano, O. Khatib (Eds.) <u>Springer</u> <u>Handbook of Robotics</u> (2nd Edition), Springer, chapter 11, pp. 243-282, 2016 <u>DOI:10.1007/978-3-</u> <u>319-32552-1_11</u>
- G. Buondonno, A. De Luca, "A recursive Newton-Euler algorithm for robots with elastic joints and its application to control," 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems, Hamburg, DEU, pp. 5526-5532, 2015 <u>DOI:10.1109/IROS.2015.7354160</u>

- E. Magrini, F. Flacco, A. De Luca, "Control of generalized contact motion and force in physical human-robot interaction," 2015 IEEE International Conference on Robotics and Automation, Seattle, WA, USA, pp. 2298-2304, 2015 <u>DOI:10.1109/ICRA.2015.7139504</u>
- F. Flacco, A. De Luca, I. Sardellitti, N. Tsagarakis, "On-line estimation of variable stiffness in flexible robot joints," <u>The International Journal of Robotics Research</u>, vol. 31, no. 13, pp. 1556-1577, 2012 <u>DOI:10.1177/0278364912461813</u>
- F. Flacco, A. De Luca, "Residual-based stiffness estimation in robots with flexible transmissions," 2011 IEEE International Conference on Robotics and Automation, Shanghai, CHN, pp. 5541-5547, 2011 DOI:10.1109/ICRA.2011.5980541
- A. De Luca, F. Flacco, "A PD-type regulator with exact gravity cancellation for robots with flexible joints," 2011 IEEE International Conference on Robotics and Automation, Shanghai, CHN, pp. 317-323, 2011 DOI:10.1109/ICRA.2011.5979615
- A. De Luca, F. Flacco, "Dynamic gravity cancellation in robots with flexible transmissions," 49th IEEE Conference on Decision and Control, Atlanta, GA, USA, pp. 288-295, 2010 DOI:10.1109/CDC.2010.5718020
- A. De Luca, F. Flacco, A. Bicchi, R. Schiavi, "Nonlinear decoupled motion-stiffness control and collision detection/reaction for the VSA-II variable stiffness device," 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, pp. 5487-5494, 2009 DOI:10.1109/IROS.2009.5354809

- L. Le Tien, A. Albu-Schäffer, A. De Luca, G. Hirzinger, "Friction observer and compensation for control of robots with joint torque measurements," 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, FRA, pp. 3789-3795, 2008 DOI:10.1109/IROS.2008.4651049
- G. Palli, C. Melchiorri, A. De Luca, "On the feedback linearization of robots with variable joint stiffness," 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, pp. 1753-1759, 2008 DOI:10.1109/ROBOT.2008.4543454
- A. De Luca, D. Schröder, M. Thümmel, "An acceleration-based state observer for robot manipulators with elastic joints," 2007 IEEE International Conference on Robotics and Automation, Roma, ITA, pp. 3817-3823, 2007 <u>DOI:10.1109/ROBOT.2007.364064</u>
- A. De Luca, R. Mattone, "Sensorless robot collision detection and hybrid force/motion control," 2005 IEEE International Conference on Robotics and Automation, Barcelona, ESP, pp. 999-1004, 2005 DOI:10.1109/ROBOT.2005.1570247
- L. Zollo, B. Siciliano, A. De Luca, E. Guglielmelli, P. Dario, "Compliance control for an anthropomorphic robot with elastic joints: Theory and experiments," <u>ASME Transactions:</u> <u>Journal of Dynamic Systems, Measurements, and Control</u>, vol. 127, no. 3, pp. 321-328, 2005 <u>DOI:10.1115/1.1978911</u>
- A. De Luca, B. Siciliano, L. Zollo, "PD control with on-line gravity compensation for robots with elastic joints: Theory and experiments," <u>Automatica</u>, vol. 41, no. 10, pp. 1809-1819, 2005 <u>DOI:10.1016/j.automatica.2005.05.009</u>

- A. De Luca, R. Farina, P. Lucibello, "On the control of robots with visco-elastic joints," 2005 IEEE International Conference on Robotics and Automation, Barcelona, ESP, pp. 4297-4302, 2005 <u>DOI:10.1109/ROBOT.2005.1570781</u>
- A. De Luca, R. Farina, "Dynamic properties and nonlinear control of robots with mixed rigid/elastic joints," 2004 International Symposium on Robotics and Automation (2004 World Automation Congress), Seville, ESP, pp. 97-104, 2004 <u>ieeexplore.ieee.org/document/1438536</u>
- A. De Luca, R. Farina, "Dynamic scaling of trajectories for robots with elastic joints," 2002 IEEE International Conference on Robotics and Automation, Washington, DC, USA, pp. 2436-2442, 2002 DOI:10.1109/ROBOT.2002.1013597
- A. De Luca, "Feedforward/feedback laws for the control of flexible robots," 2000 IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, pp. 233-240, 2000 DOI:10.1109/ROBOT.2000.844064
- A. De Luca, "Decoupling and feedback linearization of robots with mixed rigid/elastic joints," <u>International Journal of Robust and Nonlinear Control</u>, vol. 8, no. 11, pp. 965-977, 1998 <u>DOI:10.1002/(SICI)1099-1239(199809)8:11<965::AID-RNC371>3.0.CO;2-4</u>
- A. De Luca, P. Lucibello, "A general algorithm for dynamic feedback linearization of robots with elastic joints," 1998 IEEE International Conference on Robotics and Automation, Leuven, BEL, pp. 504-510, 1998 <u>DOI:10.1109/ROBOT.1998.677024</u>

- A. De Luca, S. Panzieri, "End-effector regulation of robots with elastic elements by an iterative scheme," *International Journal of Adaptive Control and Signal Processing*, vol. 10, no. 4/5, pp. 379-393, 1996 DOI:10.1002/(SICI)1099-1115(199607)10:4/5<379::AID-ACS369>3.0.CO;2-O
- A. De Luca, P. Tomei, "Elastic joints," in C. Canudas de Wit, B. Siciliano, G. Bastin (Eds.) Theory of Robot Control, pp. 179-217, Springer, 1996
- A. De Luca, L. Lanari, "Robots with elastic joints are linearizable via dynamic feedback," 34th IEEE Conference on Decision and Control, New Orleans, LA, USA, pp. 3895-3897, 1995 DOI:10.1109/CDC.1995.479209
- A. De Luca, S. Panzieri, "An iterative scheme for learning gravity compensation in flexible robot arms," <u>Automatica</u>, vol. 30, no. 6, pp. 993-1002, 1994 <u>DOI:10.1016/0005-1098(94)90192-9</u>
- A. De Luca, G. Ulivi, "Iterative learning control of robots with elastic joints," 1992 IEEE International Conference on Robotics and Automation, Nice, FRA, pp. 1920-1926, 1992 DOI:10.1109/ROBOT.1992.219948
- A. De Luca, "Dynamic control of robots with joint elasticity," 1988 IEEE International Conference on Robotics and Automation, Philadelphia, PA, USA, pp. 152-158, 1988 DOI:10.1109/ROBOT.1988.12040