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Abstract. One of the most interesting usages of shared conceptualizations is
ontology-based data accesEhat is, to the usual data layer of an information
system we superimpose a conceptual layer to be exported to the cliehtaSuc
layer allows the client to have a conceptual view of the information in the sys-
tem, which abstracts away from how such information is maintained in the data
layer of the system itself. While ontologies are the best candidates foringaliz
the conceptual layer, relational DBMSs are natural candidates for dmage-
ment of the data layer. The need of efficiently processing large amotidtta
requires ontologies to be expressed in a suitable fragment of OWL:apmént
should allow, on the one hand, for modeling the kind of intensional knayeled
needed in real-world applications, and, on the other hand, for delegatingela-
tional DBMS the part of reasoning (in particular query answering) thatxwith

the data. In this paper, we propose one such a fragment, in fact tlestdrgg-
ment currently known to satisfy the above requirements. Furthermerprovide
means to access databases that are independent from the ontolpgypbging

a novel mapping language that solves the so-called “impedance misrbatch
tween values in the databases and objects represented in the ontology.

1 Introduction

In several areas, such as Enterprise Application Integrafata Integration [9], and
the Semantic Web [6], clients need to access the servicestexpby the system, and
hence require a representation of the intensional levéle@pplication domain in terms
of which they can specify the access to the exported servies of the most interest-
ing usages of such a shared conceptualizatioontslogy-based data accesshere
a conceptual layer is exported to the client, abstractingyafrom how actual data is
maintained. While ontologies are the best candidates féiziegthe conceptual layer,
relational DBMSs are natural candidates for the manageuoféné data layer, since re-
lational database technology is nowadays the best teaiyédo efficient management
of very large quantities of data.

Recently, basic research has shown that none of the vagi@$VL is suitable
to act as the formalism for representing ontologies in toistext [4, 11, 8], if not re-



stricted (they all are coNP-hard w.r.t. data complexitygs$tble restrictions that guar-
antee polynomial reasoning (at least, if we concentrat@stance checking only) have
been looked at, such as Ho8HZ Q [8], ££' [2], DLP [5]. Among such fragments,
of particular interest are those belonging to the DL-Litmilst [3, 4]. These logics allow
for answering complex queries (namely, conjunctive quelie., SQL select-project-
join queries, and unions of conjunctive queries) indSPACE w.r.t. data complexity
(i.e., the complexity measured only w.r.t. the size of theayldMore importantly, they
allow for delegating query processing, after a preprooggshase which is independent
of the data, to the relational DBMS managing the data layer.

In this paper, we propose to use a hew DL, ca[lHdLitejg, which keeps the above
mentioned features of the other languages inDhelite family, while allowing to
distinguish between objects and values, by introducingjdes concepts and roles,
also concept-attributes and role-attributes, that desquroperties of concepts (resp.,
roles) represented by values rather than objects. Thengekedt the problem of ac-
cessing databases that are independent from the ontolbger@, however, that such
databases, being relational, store only values, not abjefgnce, to deal with the so-
called “impedance mismatch”, we propose to relate datatsises to the ontology by
using a novel mapping language [9], such that objects argtearied from such values.

2 The description logicDL-Litel,

In this section we present a new logic of the-Lite family, caIIedDL—Litejl. As usual

in DLs, all logics of theDL-Lite family allow one to represent the universe of discourse
in terms of concepts, denoting sets of objects, and rolemtaey binary relations be-
tween objects. In addition, the DLs discussed in this papewane to useif value-
domains, a.k.a. concrete domains [10], denoting sets ¢é)dalues, i{) concept at-
tributes, denoting binary relations between objects atakega andi(i) role attributes,
denoting binary relations between pairs of objects andegal@bviously, a role attribute
can be also seen as a ternary relation relating two objedts anlue.

We first introduce the DIDL-Lite s, that combines the main features of two DLs
presented in [4], calle@L-Liter andDL-Liteg, respectively, and forms the basics of
DL—Litej. The value-domains that we consideDh-Lite - are those corresponding
to the data types adopted by the Resource Description FrarkéRDF)'. Intuitively,
these types represent sets of values that are pairwiséntlisjothe following, we de-
note such value-domains i, ..., T,,. Furthermore, we denote with the alphabet
for constants, which we assume partitioned into two setsiehg 'y, (the set of con-
stant symbols for values), ard@, (the set of constant symbols for objects). In tufk,
is partitioned inton setsly,,..., Iy, , where eaclly, is the set of constants for the
values in the value-domair;.

In providing the specification of our logics, we use the faflog notation:A denotes
an atomic conceptB a basic conceptC a general conceptand T the universal
concept E denotes a basic value-domain, i.e., the range of an agtibutienotes a
general value-domairand T p the universal value-domainP denotes amtomic role
Q abasic role andR ageneral role Us denotes amatomic attribute andV ageneral
attribute Uy denotes aatomic role attributeandVr ageneral role attribute
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Given a concept attributé. (resp. a role attribut&’z), we calldomainof U (resp.
Ur), denoted by (U¢) (resp.d(Ur)), the set of objects (resp. of pairs of objects) that
Uc (resp.Ug) relates to values, and we cadingeof Uq (resp.Ug), denoted by (U¢)
(resp.p(Ug)), the set of values thdl~ (resp.Ug) relates to objects (resp. pairs of
objects). Notice that the domadiU) of a concept attribut&/ is a concept, whereas
the domaind(Ug) of a role attributd/ is a role.

In particular,DL-Liter expressions are defined as follows.

— Basic and general concept expressions:
Bu=A13Q|6Uc), Cu=Tc|B]|-B

— Basic and general value-domain expressions:

E = pUc) | pUg), Fu=Tp |Ti| - | T,
— General concept and role attribute expressions:

Ve = Uc | =Uc, Vr = Ugr | ~Ug

— Basic and general role expressions:

Q=P | P7 [ 6(Ur) | 6(Ur)~, R:==Q[Q

A DL-Literz knowledge bas@<B) K = (7, A) is constituted by two components:
a TBox 7, used to represent intensional knowledge, and an ABpxsed to represent
extensional knowledg®L-Literz TBoxassertions are of the form:

BCC concept inclusion (funct P) role functionality

QCR role inclusion (funct P~) inverse role functionality
ECF value-domain inclusion (funct Usz) concept attribute functionality
Uc C Ve concept attribute inclusion (funct Ug) role attribute functionality
Ur C Vg role attribute inclusion

A concept inclusion assertion expresses that a (basicepbics subsumed by a (gen-
eral) conceptC. Analogously for the other types of inclusion assertionsoke func-
tionality assertion expresses the (global) functionadityan atomic role. Analogously
for the other types of functionality assertions.

A DL-Literr ABox is a finite set of assertions of the form:

A(a), P(a,b), Uc(a,b), Ug(a,b,c)

wherea, b andc are constants in the alphakiét

Following the classical approach in DLs, the semanticBflLiter% is given in
terms of first-order logic interpretations. All such intefations agree on the semantics
assigned to each value-domdhand to each constant ifiy, . In particular, eacH’; is
interpreted as the seul(T;) of values of the corresponding RDF data type, and each
¢; € I'y isinterpreted as one specific value, denatet¢;), in val(T;). Note that, for
i # j, it holds thatal(T;) Nval(T;) = 0.

Based on the above observations, we can now define the ndtiotepretation in
DL-Literx. An interpretationis a pairl = (A%, .T), where



— A7 is the interpretation domain, that is the disjoint unionwbtsets:AZ, called
the domain of objectsand AZ,, called thedomain of valuesin turn, AZ is the
union ofval(Th), ..., val(T},).

— T is theinterpretation functiopi.e., a function that assigns an element®f to
each constant i,

e foreacha € I'y, a = val(a),

e foreacha € I'p, a* € AL,

e foreacha,b € I', a # bimpliesa’ # b7,
e for eachT;, T = val(T;),

K}

o the following conditions are satisfied:

TS =45 (P7)* ={(0,0) ] (¢/,0) € P }

% = AL (p(Uc)E = { v | Fo.(0,) € UZ }

A* - Ag (p(UR))I = {U | Jo, 0" (o, 0/71}) € UI% }
PT C AL x AL (S(Uc)E ={ o] Iv.(o,v) € UL}
UE C AL x AL (6(Ur))E = { (0,0") | . (0,0 ,v) € UL }
Uk C AL x AL x AL (B3Q)* ={o0|30.(0,0) € Q* }
(~UG)E = (AL x AL)\ UZ (~Q)F = (4% x A5)\ @

)
(~Ur)* = (A6 x A x AV)\ UL (=B)* = A5\ B*

Note that the above definition implies that different contstare interpreted differently
in the domain, i.e DL-Literr adopts the so-called uniqgue name assumption.

We define when an interpretatidhsatisfies an assertion (i.e., is a model of it) as
follows (below, eaclv, possibly with subscript, is an element 4f, anda, b andc
are constants iff"). Specifically, an interpretatioh satisfies(i) an inclusion assertion
a C 3,if o C 3% (i) afunctional assertioffunct ), wherey is eitherP, P~, orUc,
if, for eachoy , 02, 03, (01, 02) € ¥X and(o1, 03) € v implieso, = o3; (iii ) a functional
assertion(funct Ug), if for eacho, 02, 03, 04, (01,02,03) € UL and(o1,02,04) € U%
impliesos = o4; (iv) a membership assertiena), wherea is either4 or D, if aZ €
ot; (v) a membership assertigH(a, b), whereg is eitherP or U¢, if (a%,b?) € %;
(vi) a membership assertidig (a, b, ¢), if (a*,b%,c*) € U. A model of a KBK is
an interpretatiorf that is a model of all assertions k. A KB is satisfiableif it has at
least one model.

A conjunctive query (CQy over a knowledge bag€ is an expression of the form
q(x) «— Jy.conj(x,y), wherex are the so-calledistinguished variablesy are ex-
istentially quantified variables called tmen-distinguishedvariables, andconj(x, y)
is a conjunction of atoms of the form(z), D(x), P(x,y), Uc(x,y), Ur(x,y, z), Of
x = y, wherex, y, z are either variables ir or in y or constants inl". A union of
conjunctive queriefUCQ) is a query of the form(x) « \/, y;.conj(x, y;) A query
q(x) «— o(x) is interpreted irf as the set” of tupleso € AT x --- x AT such that,
when we assigw to the variables, the formulap(x) evaluates to true iff.

The reasoning service we are interested iquery answeringgiven a knowledge
baseX and a UCQq(x) over K, return thecertain answergo ¢(x) over K, i.e., all
tuplest of elements of " such that for every modél of K.

From the results in [4] it follows that, in general, queryapsing overDL-Lite r
KBs is PTiME-hard in data complexity (i.e., the complexity measurectvitre size of
the ABox only). As a consequence, to solve query answeriegl-Literr KBs, we



need at least the power of general recursive Datalog. Simcare interested in DLs
where query answering can be done iDdSPACE, we introduce the DLDL-Litej‘,
which is obtained fronDL-Lite 7z by imposing a limitation on the use of the function-
ality assertions in the TBox, as described next.

Definition 1. A DL-Lite/; knowledge base is paifT,.A), where A is a DL-Literr
ABox, and? is a DL-Literr TBox satisfying the following conditions:

1. for every role inclusion assertio C R in 7, whereR is an atomic role or the
inverse of an atomic role, the assertiofisnct R) and (funct R~) are notin7;

2. for every concept attribute inclusion assertiter C V¢ in 7, whereVg is an
atomic concept attribute, the assertiffanct V) is notin7;

3. for every role attribute inclusion assertiéfiz = Vg in 7, whereVy is an atomic
role attribute, the assertioffunct Vi) isnotin7.

Roughly speaking, ®L-Lite’, TBox imposes the condition thavery functional role
cannot be specializebly using it in the right-hand side of role inclusion assersicthe
same condition is also imposed on every functional (roleooicept) attribute.

In fact, it turns out that the above restriction is necesganrder to perform query
answering over E)L—Litej ontology by following a technique similar to the one devel-
oped for the other logics in thBL-Lite family [3]. In particular, it can be shown [12]
that query answering can be reduced to the evaluation oftafider query over a rela-
tional database representing the ontology ABox. Such ggeigtained by reformulat-
ing the original query based on the TBox assertions. Notahiy reformulation does
not depend on the data, and hence query answering&SkACE in data complexity.

3 Linking datato DL-Litej; ontologies

Most work on DLs do not deal with the problem of how to store ABsertions, nor
do they address the issue of how to acquire ABox assertionséxisting data sources.
It is our opinion that this topic is of special importance everal contexts where the
use of ontologies is advocated, especially in the case wher@ntology is used to
provide a unified conceptual model of an organization (&ggnterprise Application
Integration). In these contexts, the problem can be destris follows: the ontology
is a virtual representation of a universe of discourse, hadrtstances of concepts and
roles in the ontology are simply an abstract representatic@ome real data stored in
existing data sources. Therefore, the problem arises abkstiing sound mechanisms
for linking existing data to the instances of the conceptsthe roles in the ontology.

In this section we sketch our solution, by presenting a mappiechanism that en-
ables a designer to link data sources to an ontology expidats&L—Litej. Before delv-
ing into the details of the method, a preliminary discussinrithe notorious impedance
mismatch problem between data and objects is in order. Whepingdata sources
to ontologies, one should take into account that sources dlimta, whereas instances
of concepts are objects, where each object should be dehgtad ad hoc identifier
(e.g., a constant in logic), not to be confused with any data.i In DL—Litej‘, we ad-
dress this problem by keeping data value constants seferat@bject identifiers, and
by accepting that object identifiers be created using ddteesain particular as (logic)



terms over data items. Note that this idea traces back to trk done in deductive
object-oriented databases [7].

To realize this idea, we modify the st as follows. We assume that data appearing
at the sources are denoted by constantByin and we introduce a new alphabétof
function symbols irDL—Litej, where each function symbol has an associated arity,
specifying the number of argument it accepts. On the badig afnd A, we inductively
define the set (4, I'y) of all termsof the form f(dy, ..., d,) such thati) f € A, (i)
the arity of f isn > 0, and {ii) di, ..., d, € I'y. We finally sanction that the séb
of symbols used irDL-LitejQ1 for denoting objects actually coincides wittiA, I'y).
In other words, we use the terms built outidf using the function symbols irl for
denoting the instances of concept:D'h—Litej‘ ontologies.

All the notions defined for our logics remain unchanged. Irtipalar, an interpre-
tation] = (A%, .7) still assigns a different element gf” to every element of”, which
means that different terms in(A, I') are interpreted as different objectsAy, i.e.,
we enforce the unique name assumption on terms.

Let us now turn our attention to the problem of linking datéhia sources to objects
in the ontology. To this aim, as we said before, we assumeathadlue constants stored
in DB belong tol'y,, and that the data sources are wrapped into a relationdaista
DB (constituted by the relational schema, and the extensibtigeaelations), so that
we can query such data by using SQL. Then, we adapt principlegechniques from
the literature on data integration [9]. In particular, we tise notion ofnapping which
we now introduce by means of an example.

Example 1.Consider aDL-Litejg TBox in which personis a concept nameyge and
cityName are concept attributes nam&d,TY-OF-BIRTHis a role name, and a rela-
tional database contains the ternary relation symBalandS2and the unary relation
symbolS3 We want to model the situation where every tuples, a) € S1corresponds
to a person whose nameris whose surname i and whose age is, and we want to
denote such a person witkin, s). Note that this implies that we know that there are no
two persons in our application that have the same (pais) stored inS1 Similarly, we
want to model the fact that every tuple, s, cb) € S2corresponds to a person whose
name isn, whose surname is, and whose city of birth igb. Finally, we know that
sourceS3directly stores object constants denoting instances afoperThe following

is the set of mapping assertions modeling the above situatio

S2qn, s,cb) ~ CITY-OF-BIRTHp(n, s), ct(cb)), cityName(ct(cb), cb)
S3¢) ~ persoriq).

Above,n, s, a, cb andq are variable symbolg; andct are function symbols, whereas
p(n, s) andct(n) are so-called variable terms (see below). "

The example shows that, in specifying mapping assertioasieed variable terms, i.e.,
terms containing variables. Indeed, we extend termvatimble term=f the formf(z),
wheref is a function symbol im of arity m, andz denotes amn-tuple of variables.
We can now provide the definition of mapping assertions. Ii@ihca mapping we
associate a conjunctive query over atomic concepts, danailes, attributes, and role



attributes (generically referred to pedicatesn the following) with a first-order (more
precisely, SQL) query of the appropriate arity over the base. The intuition is that,
by evaluating such a query, we retrieve the facts that domstihne ABox assertions for
the predicates appearing in the conjunctive query. Foymathapping assertiors an
assertion of the formp ~» 1, wherey is an arbitrary SQL query of arity > 0 over
DB, andy is a UCQ overT of arity n’ > 0 without non-distinguished variables, that
possibly involves variable terms.

We now describe the semantics of mapping assertions. Teethiswe introduce
the notion of ground instance of a formula. Lgtz) be a formula over DL-Lite’;
TBox with n distinguished variables, and letv a tuple of value constants of arity.
Then the ground instanegx/v] of v(x) is the formula obtained by substituting every
occurrence ofe; with v; (for i € {1,..,n}) in ¢¥(x). Let M be a mapping assertion
of the formp(x) ~ (¢, y), wherex andy are variablesy C « andt are variable
terms of the formf(z), f € Aandz C z. We say thatl satisfiesM with respect to
a databas®B, if for every tuple of value® such thaw € ans(y, DB), and for each
ground atomX in ¢ [x/v], we have that:ij if X has the formx(s), wherea is either
Aor D, thens? € oZ; (i) if X has the form3(sy, s2), whereg is eitherP or U¢, then
(sT,s%) € g%; (iii) if X has the fornUg(s1, s2, s3), then(s?, s3, s%) € UZ.

Finally, we can summarize the semantics dijlaLitej ontology with mapping as-
sertions, denoted witfZ", M, DB), whereDB is a database as defined abd¥eis a
DL—Litejl TBox, andM a set of mapping assertions betwdel and7 . An interpreta-
tionZ = (A%, .Z)is amodelof if Z is a model of7 and satisfies all mapping assertions
in M wrt DB. The notion of certain answer to queries posedZoM, DB) remains
the same as the one described in the previous section.

We now briefly sketch the technique for query answering O\Eéta.itej ontology
with mappings. First, we split each mapping assertion» v into several assertions
of the formy ~» p, one for each atormp in ¢. Then, we unify in all possible ways
the atoms in the query to be evaluated with the right-hand side atoms of the (split)
mappings, thus obtaining a (bigger) union of conjunctivereggs containing variable
object terms. Then, we unfold each atom with the correspyidit-hand side mapping
query. Observe that, after unfolding, we obtain an SQL qtleaycan be evaluated over
DB, and possibly returns terms built from values extractethfioB.

Example 2.Refer to the previous example, and consider now the follgwmery over
the TBox, asking for the age of those people that are born mdRo

q(2) < Fz,y. persor{z), CITY-OF-BIRTHz, y), cityName(y, Roma), age(z, z)

Let us, for simplicity, assume that no reasoning on the TBaxth be done in order to
answer the query, and hence let us directly evaluate such a query by expipitie
mapping, without materializing the ABox of the KB.

We first split the mapping (left as an exercise), and thenyuhi atoms in the query
with the right-hand side atoms in the split mapping, thusioting

q(z) « persorip(n, s)), CITY-OF-BIRTHp(n, s), ct(Roma)),
cityName(ct(Roma), Roma), age(p(n, s), 2).



Then, we unfold each atom with the corresponding left-haahel af the mapping query,
and obtain the queryi(z) « S2n, s, Roma), S1(n, s, z), which can be simply evalu-
ated over the database to get the certain answers to u

4 Conclusions

We argue that, for ontology-based data access, ontologiesd to be expressed in a
fragment of OWL that is bGSPACEn data complexity, and that allows for delegating
to the relational DBMS managing the data layer the part cfaring that deals with the
data. We have proposed one such fragrriahtLitejZ, which is in fact the biggest frag-
ment currently known to satisfy the above requirementshibygaper we have looked at
binary roles only, but all the results presented here caxtaméded to relations of arbi-
trary arity. All features introduced in this paper, haverbaaplemented in the QuOnto
system [1] (originally based on a DL, calleBL-Liter, that is a subset cﬁ?L—Lite};).
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