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Abstract. One of the most interesting usages of shared conceptualizations is
ontology-based data access. That is, to the usual data layer of an information
system we superimpose a conceptual layer to be exported to the client. Such a
layer allows the client to have a conceptual view of the information in the sys-
tem, which abstracts away from how such information is maintained in the data
layer of the system itself. While ontologies are the best candidates for realizing
the conceptual layer, relational DBMSs are natural candidates for the manage-
ment of the data layer. The need of efficiently processing large amountsof data
requires ontologies to be expressed in a suitable fragment of OWL: the fragment
should allow, on the one hand, for modeling the kind of intensional knowledge
needed in real-world applications, and, on the other hand, for delegatingto a rela-
tional DBMS the part of reasoning (in particular query answering) that deals with
the data. In this paper, we propose one such a fragment, in fact the largest frag-
ment currently known to satisfy the above requirements. Furthermore,we provide
means to access databases that are independent from the ontology, byproposing
a novel mapping language that solves the so-called “impedance mismatch” be-
tween values in the databases and objects represented in the ontology.

1 Introduction

In several areas, such as Enterprise Application Integration, Data Integration [9], and
the Semantic Web [6], clients need to access the services exported by the system, and
hence require a representation of the intensional level of the application domain in terms
of which they can specify the access to the exported services. One of the most interest-
ing usages of such a shared conceptualization isontology-based data access, where
a conceptual layer is exported to the client, abstracting away from how actual data is
maintained. While ontologies are the best candidates for realizing the conceptual layer,
relational DBMSs are natural candidates for the managementof the data layer, since re-
lational database technology is nowadays the best technology for efficient management
of very large quantities of data.

Recently, basic research has shown that none of the variantsof OWL is suitable
to act as the formalism for representing ontologies in this context [4, 11, 8], if not re-



stricted (they all are coNP-hard w.r.t. data complexity). Possible restrictions that guar-
antee polynomial reasoning (at least, if we concentrate on instance checking only) have
been looked at, such as Horn-SHIQ [8], EL++ [2], DLP [5]. Among such fragments,
of particular interest are those belonging to the DL-Lite family [3, 4]. These logics allow
for answering complex queries (namely, conjunctive queries, i.e., SQL select-project-
join queries, and unions of conjunctive queries) in LOGSPACE w.r.t. data complexity
(i.e., the complexity measured only w.r.t. the size of the data). More importantly, they
allow for delegating query processing, after a preprocessing phase which is independent
of the data, to the relational DBMS managing the data layer.

In this paper, we propose to use a new DL, calledDL-Lite+

A
, which keeps the above

mentioned features of the other languages in theDL-Lite family, while allowing to
distinguish between objects and values, by introducing, besides concepts and roles,
also concept-attributes and role-attributes, that describe properties of concepts (resp.,
roles) represented by values rather than objects. Then, we look at the problem of ac-
cessing databases that are independent from the ontology. Observe, however, that such
databases, being relational, store only values, not objects. Hence, to deal with the so-
called “impedance mismatch”, we propose to relate databasevalues to the ontology by
using a novel mapping language [9], such that objects are constructed from such values.

2 The description logicDL-Lite+

A

In this section we present a new logic of theDL-Lite family, calledDL-Lite+

A
. As usual

in DLs, all logics of theDL-Lite family allow one to represent the universe of discourse
in terms of concepts, denoting sets of objects, and roles, denoting binary relations be-
tween objects. In addition, the DLs discussed in this paper allow one to use (i) value-
domains, a.k.a. concrete domains [10], denoting sets of (data) values, (ii ) concept at-
tributes, denoting binary relations between objects and values, and (iii ) role attributes,
denoting binary relations between pairs of objects and values. Obviously, a role attribute
can be also seen as a ternary relation relating two objects and a value.

We first introduce the DLDL-LiteFR, that combines the main features of two DLs
presented in [4], calledDL-LiteF andDL-LiteR, respectively, and forms the basics of
DL-Lite+

A
. The value-domains that we consider inDL-LiteFR are those corresponding

to the data types adopted by the Resource Description Framework (RDF)1. Intuitively,
these types represent sets of values that are pairwise disjoint. In the following, we de-
note such value-domains byT1, . . . , Tn. Furthermore, we denote withΓ the alphabet
for constants, which we assume partitioned into two sets, namely,ΓV (the set of con-
stant symbols for values), andΓO (the set of constant symbols for objects). In turn,ΓV

is partitioned inton setsΓV1
, . . . , ΓVn

, where eachΓVi
is the set of constants for the

values in the value-domainTi.
In providing the specification of our logics, we use the following notation:A denotes

an atomic concept, B a basic concept, C a general concept, and⊤C the universal
concept; E denotes a basic value-domain, i.e., the range of an attribute, F denotes a
general value-domain, and⊤D theuniversal value-domain; P denotes anatomic role,
Q abasic role, andR ageneral role; UC denotes anatomic attribute, andVC ageneral
attribute; UR denotes anatomic role attribute, andVR ageneral role attribute.

1 http://www.w3.org/RDF/



Given a concept attributeUC (resp. a role attributeUR), we calldomainofUC (resp.
UR), denoted byδ(UC) (resp.δ(UR)), the set of objects (resp. of pairs of objects) that
UC (resp.UR) relates to values, and we callrangeof UC (resp.UR), denoted byρ(UC)
(resp.ρ(UR)), the set of values thatUC (resp.UR) relates to objects (resp. pairs of
objects). Notice that the domainδ(UC) of a concept attributeUC is a concept, whereas
the domainδ(UR) of a role attributeUR is a role.

In particular,DL-LiteFR expressions are defined as follows.

– Basic and general concept expressions:

B ::= A | ∃Q | δ(UC), C ::= ⊤C | B | ¬B

– Basic and general value-domain expressions:

E ::= ρ(UC) | ρ(UR), F ::= ⊤D | T1 | · · · | Tn

– General concept and role attribute expressions:

VC ::= UC | ¬UC , VR ::= UR | ¬UR

– Basic and general role expressions:

Q ::= P | P− | δ(UR) | δ(UR)−, R ::= Q | ¬Q

A DL-LiteFR knowledge base(KB) K = 〈T ,A〉 is constituted by two components:
a TBoxT , used to represent intensional knowledge, and an ABoxA, used to represent
extensional knowledge.DL-LiteFR TBoxassertions are of the form:

B ⊑ C concept inclusion (funct P ) role functionality
Q ⊑ R role inclusion (funct P−) inverse role functionality
E ⊑ F value-domain inclusion (funct UC) concept attribute functionality
UC ⊑ VC concept attribute inclusion (funct UR) role attribute functionality
UR ⊑ VR role attribute inclusion

A concept inclusion assertion expresses that a (basic) conceptB is subsumed by a (gen-
eral) conceptC. Analogously for the other types of inclusion assertions. Arole func-
tionality assertion expresses the (global) functionalityof an atomic role. Analogously
for the other types of functionality assertions.

A DL-LiteFR ABox is a finite set of assertions of the form:

A(a), P (a, b), UC(a, b), UR(a, b, c)

wherea, b andc are constants in the alphabetΓ .
Following the classical approach in DLs, the semantics ofDL-LiteFR is given in

terms of first-order logic interpretations. All such intepretations agree on the semantics
assigned to each value-domainTi and to each constant inΓV . In particular, eachTi is
interpreted as the setval(Ti) of values of the corresponding RDF data type, and each
ci ∈ ΓV is interpreted as one specific value, denotedval(ci), in val(Ti). Note that, for
i 6= j, it holds thatval(Ti) ∩ val(Tj) = ∅.

Based on the above observations, we can now define the notion of interpretation in
DL-LiteFR. An interpretationis a pairI = (∆I , ·I), where



– ∆I is the interpretation domain, that is the disjoint union of two sets:∆I
O, called

the domain of objects, and∆I
V , called thedomain of values. In turn,∆I

V is the
union ofval(T1), . . . , val(Tn).

– ·I is the interpretation function, i.e., a function that assigns an element of∆I to
each constant inΓ ,
• for eacha ∈ ΓV , aI = val(a),
• for eacha ∈ ΓO, aI ∈ ∆I

O,
• for eacha, b ∈ Γ , a 6= b impliesaI 6= bI ,
• for eachTi, T I

i = val(Ti),
• the following conditions are satisfied:

⊤I

C = ∆I

O

⊤I

D = ∆I

V

AI ⊆ ∆I

O

P I ⊆ ∆I

O × ∆I

O

UI

C ⊆ ∆I

O × ∆I

V

UI

R ⊆ ∆I

O × ∆I

O × ∆I

V

(¬UC)I = (∆I

O × ∆I

V ) \ UI

C

(¬UR)I = (∆I

O × ∆I

O × ∆I

V ) \ UI

R

(P−)I = { (o, o′) | (o′, o) ∈ P I }
(ρ(UC))I = { v | ∃o. (o, v) ∈ UI

C }
(ρ(UR))I = { v | ∃o, o′. (o, o′, v) ∈ UI

R }
(δ(UC))I = { o | ∃v. (o, v) ∈ UI

C }
(δ(UR))I = { (o, o′) | ∃v. (o, o′, v) ∈ UI

R }
(∃Q)I = { o | ∃o′. (o, o′) ∈ QI }
(¬Q)I = (∆I

O × ∆I

O) \ QI

(¬B)I = ∆I

O \ BI

Note that the above definition implies that different constants are interpreted differently
in the domain, i.e.,DL-LiteFR adopts the so-called unique name assumption.

We define when an interpretationI satisfies an assertion (i.e., is a model of it) as
follows (below, eacho, possibly with subscript, is an element of∆I , anda, b andc
are constants inΓ ). Specifically, an interpretationI satisfies(i) an inclusion assertion
α ⊑ β, if αI ⊆ βI ; (ii ) a functional assertion(funct γ), whereγ is eitherP ,P−, orUC ,
if, for eacho1, o2, o3, (o1, o2) ∈ γI and(o1, o3) ∈ γ

I implieso2 = o3; (iii ) a functional
assertion(funct UR), if for eacho1, o2, o3, o4, (o1, o2, o3) ∈ U

I
R and(o1, o2, o4) ∈ U

I
R

implieso3 = o4; (iv) a membership assertionα(a), whereα is eitherA orD, if aI ∈
αI ; (v) a membership assertionβ(a, b), whereβ is eitherP or UC , if (aI , bI) ∈ βI ;
(vi) a membership assertionUR(a, b, c), if (aI , bI , cI) ∈ UI

R. A model of a KBK is
an interpretationI that is a model of all assertions inK. A KB is satisfiableif it has at
least one model.

A conjunctive query (CQ)q over a knowledge baseK is an expression of the form
q(x) ← ∃y.conj (x,y), wherex are the so-calleddistinguished variables, y are ex-
istentially quantified variables called thenon-distinguishedvariables, andconj (x,y)
is a conjunction of atoms of the formA(x), D(x), P (x, y), UC(x, y), UR(x, y, z), or
x = y, wherex, y, z are either variables inx or in y or constants inΓ . A union of
conjunctive queries(UCQ) is a query of the formq(x)←

∨
i ∃yi.conj (x,yi) A query

q(x) ← ϕ(x) is interpreted inI as the setqI of tupleso ∈ ∆I × · · · ×∆I such that,
when we assigno to the variablesx, the formulaϕ(x) evaluates to true inI.

The reasoning service we are interested in isquery answering: given a knowledge
baseK and a UCQq(x) overK, return thecertain answersto q(x) overK, i.e., all
tuplest of elements ofΓ such that for every modelI of K.

From the results in [4] it follows that, in general, query answering overDL-LiteFR

KBs is PTIME-hard in data complexity (i.e., the complexity measured w.r.t. the size of
the ABox only). As a consequence, to solve query answering overDL-LiteFR KBs, we



need at least the power of general recursive Datalog. Since we are interested in DLs
where query answering can be done in LOGSPACE, we introduce the DLDL-Lite+

A
,

which is obtained fromDL-LiteFR by imposing a limitation on the use of the function-
ality assertions in the TBox, as described next.

Definition 1. A DL-Lite+

A
knowledge base is pair〈T ,A〉, whereA is a DL-LiteFR

ABox, andT is a DL-LiteFR TBox satisfying the following conditions:

1. for every role inclusion assertionQ ⊑ R in T , whereR is an atomic role or the
inverse of an atomic role, the assertions(funct R) and(funct R−) are not inT ;

2. for every concept attribute inclusion assertionUC ⊑ VC in T , whereVC is an
atomic concept attribute, the assertion(funct VC) is not inT ;

3. for every role attribute inclusion assertionUR ⊑ VR in T , whereVR is an atomic
role attribute, the assertion(funct VR) is not inT .

Roughly speaking, aDL-Lite+

A
TBox imposes the condition thatevery functional role

cannot be specializedby using it in the right-hand side of role inclusion assertions; the
same condition is also imposed on every functional (role or concept) attribute.

In fact, it turns out that the above restriction is necessaryin order to perform query
answering over aDL-Lite+

A
ontology by following a technique similar to the one devel-

oped for the other logics in theDL-Lite family [3]. In particular, it can be shown [12]
that query answering can be reduced to the evaluation of a first-order query over a rela-
tional database representing the ontology ABox. Such queryis obtained by reformulat-
ing the original query based on the TBox assertions. Notably, this reformulation does
not depend on the data, and hence query answering is LOGSPACE in data complexity.

3 Linking data to DL-Lite+

A
ontologies

Most work on DLs do not deal with the problem of how to store ABox assertions, nor
do they address the issue of how to acquire ABox assertions from existing data sources.
It is our opinion that this topic is of special importance in several contexts where the
use of ontologies is advocated, especially in the case wherethe ontology is used to
provide a unified conceptual model of an organization (e.g.,in Enterprise Application
Integration). In these contexts, the problem can be described as follows: the ontology
is a virtual representation of a universe of discourse, and the instances of concepts and
roles in the ontology are simply an abstract representationof some real data stored in
existing data sources. Therefore, the problem arises of establishing sound mechanisms
for linking existing data to the instances of the concepts and the roles in the ontology.

In this section we sketch our solution, by presenting a mapping mechanism that en-
ables a designer to link data sources to an ontology expressed in DL-Lite+

A
. Before delv-

ing into the details of the method, a preliminary discussionon the notorious impedance
mismatch problem between data and objects is in order. When mapping data sources
to ontologies, one should take into account that sources store data, whereas instances
of concepts are objects, where each object should be denotedby an ad hoc identifier
(e.g., a constant in logic), not to be confused with any data item. InDL-Lite+

A
, we ad-

dress this problem by keeping data value constants separatefrom object identifiers, and
by accepting that object identifiers be created using data values, in particular as (logic)



terms over data items. Note that this idea traces back to the work done in deductive
object-oriented databases [7].

To realize this idea, we modify the setΓO as follows. We assume that data appearing
at the sources are denoted by constants inΓV , and we introduce a new alphabetΛ of
function symbols inDL-Lite+

A
, where each function symbol has an associated arity,

specifying the number of argument it accepts. On the basis ofΓV andΛ, we inductively
define the setτ(Λ, ΓV ) of all termsof the formf(d1, . . . , dn) such that (i) f ∈ Λ, (ii )
the arity off is n > 0, and (iii ) d1, . . . , dn ∈ ΓV . We finally sanction that the setΓO

of symbols used inDL-Lite+

A
for denoting objects actually coincides withτ(Λ, ΓV ).

In other words, we use the terms built out ofΓV using the function symbols inΛ for
denoting the instances of concepts inDL-Lite+

A
ontologies.

All the notions defined for our logics remain unchanged. In particular, an interpre-
tationI = (∆I , ·I) still assigns a different element of∆I to every element ofΓ , which
means that different terms inτ(Λ, ΓV ) are interpreted as different objects in∆I

O, i.e.,
we enforce the unique name assumption on terms.

Let us now turn our attention to the problem of linking data inthe sources to objects
in the ontology. To this aim, as we said before, we assume thatall value constants stored
in DB belong toΓV , and that the data sources are wrapped into a relational database
DB (constituted by the relational schema, and the extensions of the relations), so that
we can query such data by using SQL. Then, we adapt principlesand techniques from
the literature on data integration [9]. In particular, we use the notion ofmapping, which
we now introduce by means of an example.

Example 1.Consider aDL-Lite+

A
TBox in which personis a concept name,age and

cityName are concept attributes names,CITY-OF-BIRTHis a role name, and a rela-
tional database contains the ternary relation symbolsS1andS2and the unary relation
symbolS3. We want to model the situation where every tuple(n, s, a) ∈ S1corresponds
to a person whose name isn, whose surname iss, and whose age isa, and we want to
denote such a person withp(n, s). Note that this implies that we know that there are no
two persons in our application that have the same pair(n, s) stored inS1. Similarly, we
want to model the fact that every tuple(n, s, cb) ∈ S2corresponds to a person whose
name isn, whose surname iss, and whose city of birth iscb. Finally, we know that
sourceS3directly stores object constants denoting instances of person. The following
is the set of mapping assertions modeling the above situation.

S1(n, s, a) ; person(p(n, s)),age(p(n, s), a)
S2(n, s, cb) ; CITY-OF-BIRTH(p(n, s), ct(cb)), cityName(ct(cb), cb)
S3(q) ; person(q).

Above,n, s, a, cb andq are variable symbols,p andct are function symbols, whereas
p(n, s) andct(n) are so-called variable terms (see below).

The example shows that, in specifying mapping assertions, we need variable terms, i.e.,
terms containing variables. Indeed, we extend terms tovariable termsof the formf(z),
wheref is a function symbol inΛ of aritym, andz denotes anm-tuple of variables.

We can now provide the definition of mapping assertions. Through a mapping we
associate a conjunctive query over atomic concepts, domains, roles, attributes, and role



attributes (generically referred to aspredicatesin the following) with a first-order (more
precisely, SQL) query of the appropriate arity over the database. The intuition is that,
by evaluating such a query, we retrieve the facts that constitute the ABox assertions for
the predicates appearing in the conjunctive query. Formally, amapping assertionis an
assertion of the form:ϕ ; ψ, whereϕ is an arbitrary SQL query of arityn > 0 over
DB , andψ is a UCQ overT of arity n′ > 0 without non-distinguished variables, that
possibly involves variable terms.

We now describe the semantics of mapping assertions. To thisend, we introduce
the notion of ground instance of a formula. Letγ(x) be a formula over aDL-Lite+

A

TBox with n distinguished variablesx, and letv a tuple of value constants of arityn.
Then the ground instanceγ[x/v] of γ(x) is the formula obtained by substituting every
occurrence ofxi with vi (for i ∈ {1, .., n}) in ψ(x). Let M be a mapping assertion
of the formϕ(x) ; ψ(t,y), wherex andy are variables,y ⊆ x andt are variable
terms of the formf(z), f ∈ Λ andz ⊆ x. We say thatI satisfiesM with respect to
a databaseDB , if for every tuple of valuesv such thatv ∈ ans(ϕ,DB), and for each
ground atomX in ψ[x/v], we have that: (i) if X has the formα(s), whereα is either
A orD, thensI ∈ αI ; (ii ) if X has the formβ(s1, s2), whereβ is eitherP orUC , then
(sI1 , s

I
2 ) ∈ βI ; (iii ) if X has the formUR(s1, s2, s3), then(sI1 , s

I
2 , s

I
3 ) ∈ UI

R.
Finally, we can summarize the semantics of aDL-Lite+

A
ontology with mapping as-

sertions, denoted with〈T ,M,DB〉, whereDB is a database as defined above,T is a
DL-Lite+

A
TBox, andM a set of mapping assertions betweenDB andT . An interpreta-

tion I = (∆I , ·I) is amodelof if I is a model ofT and satisfies all mapping assertions
inM wrt DB . The notion of certain answer to queries posed to〈T ,M,DB〉 remains
the same as the one described in the previous section.

We now briefly sketch the technique for query answering over aDL-Lite+

A
ontology

with mappings. First, we split each mapping assertionϕ ; ψ into several assertions
of the formϕ ; p, one for each atomp in ψ. Then, we unify in all possible ways
the atoms in the queryq to be evaluated with the right-hand side atoms of the (split)
mappings, thus obtaining a (bigger) union of conjunctive queries containing variable
object terms. Then, we unfold each atom with the corresponding left-hand side mapping
query. Observe that, after unfolding, we obtain an SQL querythat can be evaluated over
DB , and possibly returns terms built from values extracted from DB .

Example 2.Refer to the previous example, and consider now the following query over
the TBox, asking for the age of those people that are born in Rome:

q(z)← ∃x, y. person(x),CITY-OF-BIRTH(x, y), cityName(y,Roma),age(x, z)

Let us, for simplicity, assume that no reasoning on the TBox has to be done in order to
answer the queryq, and hence let us directly evaluate such a query by exploiting the
mapping, without materializing the ABox of the KB.

We first split the mapping (left as an exercise), and then unify the atoms in the query
with the right-hand side atoms in the split mapping, thus obtaining

q(z)← person(p(n, s)),CITY-OF-BIRTH(p(n, s), ct(Roma)),
cityName(ct(Roma),Roma),age(p(n, s), z).



Then, we unfold each atom with the corresponding left-hand side of the mapping query,
and obtain the query:q(z) ← S2(n, s,Roma),S1(n, s, z), which can be simply evalu-
ated over the database to get the certain answers toq.

4 Conclusions

We argue that, for ontology-based data access, ontologies need to be expressed in a
fragment of OWL that is LOGSPACE in data complexity, and that allows for delegating
to the relational DBMS managing the data layer the part of reasoning that deals with the
data. We have proposed one such fragment,DL-Lite+

A
, which is in fact the biggest frag-

ment currently known to satisfy the above requirements. In this paper we have looked at
binary roles only, but all the results presented here can be extended to relations of arbi-
trary arity. All features introduced in this paper, have been implemented in the QuOnto
system2 [1] (originally based on a DL, calledDL-LiteF , that is a subset ofDL-Lite+

A
).
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