

Composition via Simulation

Bisimulation

- A binary relation *R* is a **bisimulation** iff:
 - $(s,t) \in R$ implies that
 - s is *final* iff t is *final*
 - for all actions a
 - if $s \rightarrow_a s'$ then $\exists t' \cdot t \rightarrow_a t'$ and $(s',t') \in R$
 - if $t \rightarrow_a t'$ then $\exists s' \cdot s \rightarrow_a s'$ and $(s',t') \in R$
- A state s₀ of transition system S is **bisimilar**, or simply **equivalent**, to a state t_0 of transition system T iff there **exists** a **bisimulation** between the initial states s_0 and t_0 .
- Notably
 - **bisimilarity** is a bisimulation
 - **bisimilarity** is the **largest** bisimulation

Note it is a co-inductive definition!

Service Integration – aa 2008/09

Giuseppe De Giacomo 2

APIENZA

Computing Bisimilarity on Finite Transition Systems

Sapienza

Algorithm ComputingBisimulation **Input:** transition system $TS_S = \langle A, S, S^0, \delta_S, F_S \rangle$ and transition system $TS_T = \langle A, T, T^0, \delta_T, F_T \rangle$ Output: the bisimilarity relation (the largest bisimulation)

Body

```
R = \emptyset
\mathsf{R}' = \mathsf{S} \times \mathsf{T} - \{(\mathsf{s},\mathsf{t}) \mid \neg(\mathsf{s} \in \mathsf{F}_{\mathsf{S}} \equiv \mathsf{t} \in \mathsf{F}_{\mathsf{T}})\}
while (R \neq R') {
                  R := R'
                  \mathsf{R}' := \mathsf{R}' - \{\{(\mathsf{s},\mathsf{t}) \mid \exists \mathsf{s}',\mathsf{a}. \mathsf{s} \rightarrow_\mathsf{a} \mathsf{s}' \land \neg \exists \mathsf{t}' . \mathsf{t} \rightarrow_\mathsf{a} \mathsf{t}' \land (\mathsf{s}',\mathsf{t}') \in \mathsf{R}' \}
                                                     {(s,t) | \exists t',a. t \rightarrow_a t' \land \neg \exists s'. s \rightarrow_a s' \land (s',t') \in R' })
}
return R'
```

Ydob

Simulation

• A binary relation *R* is a **simulation** iff:

 $(s,t) \in R$ implies that

- s is *final* implies that t is *final*
- for all actions a
 - if $s \rightarrow_a s'$ then $\exists t' \cdot t \rightarrow_a t'$ and $(s',t') \in R$
- A state s₀ of transition system S is **simulated by** a state t₀ of transition system T iff there **exists** a **simulation** between the initial states s_0 and t_0 .
- Notably
 - **simulated-by** is a simulation
 - **simulated-by** is the **largest** simulation

Note it is a co-inductive definition!

NB: A simulation is just one of the two directions of a bisimulation

Computing Simulation on Finite Transition Systems

Example of simulation

Algorithm ComputingSimulation **Input:** transition system $TS_S = \langle A, S, S^0, \delta_S, F_S \rangle$ and transition system $TS_T = \langle A, T, T^0, \delta_T, F_T \rangle$ **Output:** the **simulated-by** relation (the largest simulation)

Body

```
R = ∅
          \mathsf{R}' = \mathsf{S} \times \mathsf{T} - \{(\mathsf{s},\mathsf{t}) \mid \mathsf{s} \in \mathsf{F}_{\mathsf{S}} \land \neg(\mathsf{t} \in \mathsf{F}_{\mathsf{T}})\}
           while (R \neq R') {
                              R := R'
                              \mathsf{R}' := \mathsf{R}' - \{(\mathsf{s},\mathsf{t}) \mid \exists \mathsf{s}',\mathsf{a}. \mathsf{s} \rightarrow_\mathsf{a} \mathsf{s}' \land \neg \exists \mathsf{t}' . \mathsf{t} \rightarrow_\mathsf{a} \mathsf{t}' \land (\mathsf{s}',\mathsf{t}') \in \mathsf{R}' \}
           }
           return R'
Ydob
```


Service Integration – aa 2008/09

Giuseppe De Giacomo 6

Example of simulation

Service Integration – aa 2008/09

5

Giuseppe De Giacomo

TS2's behavior "includes" TS1's

Potential Behavior of the Whole Community

• Let TS₁, ..., TS_n be the TSs of the component services.

• The Community TS is defined as the **asynchronous product** of TS_1, \dots, TS_n , namely: $TS_c = \langle A, S_c, S_c^0, \delta_c, F_c \rangle$ where:

- A is the set of actions
- $-S_c = S_1 \times \cdots \times S_n$
- $S_c^0 = \{(s_1^0, \dots, s_n^0)\}$
- $F \subseteq F_1 \times \cdots \times F_n$
- $-\delta_c \subseteq S_c \times A \times S_c$ is defined as follows:
 - $(S_1 \boxtimes \cdots \boxtimes S_n) \rightarrow_a (S'_1 \boxtimes \cdots \boxtimes S'_n)$ iff
 - $\exists i. s_i \rightarrow_a s'_i \in \delta_i$
 - $\forall j \neq i. s'_i = s_i$ Service Integration – aa 2008/09

Giuseppe De Giacomo 7

Example of Composition

• Available Services

•Target Service

Service Integration – aa 2008/09

Giuseppe	De	Giacomo	8

SAPIENZA

Target Service

Service Integration – aa 2008/09

Example of Composition

Community TS

Service Integration – aa 2008/09

Service Integration – aa 2008/09

Giuseppe De Giacomo 9

Example of Composition

9

Example of Composition

 TS_0

Service Integration – aa 2008/09

Example of Composition

TS_c

С

а

h

С

а

b

Community TS

Target Service

Giuseppe De Giacomo

9

Sapienza

С

h

а

С

Example of Composition

Community TS

Service Integration – aa 2008/09

Giuseppe De Giacomo 9

Composition via Simulation

Thm[IJFCS08]

A composition realizing a target service TS TS_t exists if there **exists** a simulation relation between the initial state s_t^0 of TS_t and the initial state $(s_1^0, ..., s_n^0)$ of the community TS TS_r.

- Notice if we take the union of all simulation relations then we get the largest simulation relation **S**, still satisfying the above condition.
- **Corollary[IJFCS08]** A composition realizing a target service TS TS_t exists iff $(s_t^0, (s_1^0, .., s_n^0)) \in S$.
- Thm[IJFCS08] Computing the largest simulation **S** is polynomial in the size of the target service TS and the size of the community TS...
- ... hence it is **EXPTIME** in the size of the available services.

Composition exists!

Composition via Simulation

- Given the largest simulation ${\it S}$ form ${\rm TS}_{\rm t}$ to ${\rm TS}_{\rm c}$ (which include the initial states), we can build the *orchestrator generator*.
- This is an orchestrator program that can change its behavior reacting to the information acquired at run-time.
- Def: OG = < A, [1,...,n], S_r , s_r^0 , ω_r , δ_r , F_r > with
 - A : the **actions** shared by the community
 - [1,...,n]: the **identifiers** of the available services in the community
 - $S_r = S_t \times S_1 \times \cdots \times S_n$: the **states** of the orchestrator program
 - $s_r^0 = (s_{t'}^0 s_{1'}^0 \dots, s_m^0)$: the **initial state** of the orchestrator program
 - $F_r \subseteq \{ (s_t, s_1, ..., s_n) \mid s_t \in F_t : the$ **final states**of the orchestrator program
 - $\qquad \omega_r: S_r \times A_r \to [1,...,n]: the$ **service selection function**, defined as follows:

 $\omega_r(t, s_{1,...,s_{n_r}} a) = \{i | TS_t and TS_i can do a and remain in S\}$

 $i.e., \ ...= \ \{i \ | \ s_t \rightarrow_{a_i} s'_t \land \ \exists \ s_i'. \ s_i \rightarrow_{a_i} s_i' \land (s_t', \ (s_1 \ , \ ..., \ s_i', \ ..., \ s_n) \) \in \boldsymbol{S} \}$

 $\begin{array}{l} - & \delta_r \subseteq S_r \times A_r \times [1,...,n] \to S_r: \text{the state transition function, defined as follows:} \\ & \text{Let } k \in \omega_r(s_{tr} \; s_1 \; , \; ..., \; s_k \; , \; ..., \; s_n, \; a) \text{ then} \\ & (s_{tr} \; s_1 \; , \; ..., \; s_k \; , \; ..., \; s_n) \to_{a,k}(s_{tr}' \; s_1 \; , \; ..., \; s_n) \text{ where } s_k \to_{a_r} s_k' \\ \end{array}$

Service Integration – aa 2008/09

Giuseppe De Giacomo 11

• For generating OG we need only to compute *S* and then apply the template above

- For running an orchestrator from the OG we need to store and access *S* (polynomial time, exponential space) ...
- ... and compute ω_r and δ_r at each step (polynomial time and space)

Service Integration – aa 2008/09

Composition via Simulation

Giuseppe De Giacomo 12

Sapienza

Example of composition via simulation (1)

Example of composition via simulation (2)

- A Community of services over a shared alphabet A
- A (Virtual) Goal service over A

Example of composition via simulation (2)

Example of composition via simulation (2)

Example of composition via simulation (2)

Example of composition via simulation (2)

Example of composition via simulation (3)

Example of composition via simulation (4)

