

Composition via Simulation

Bisimulation

A binary relation R is a bisimulation iff:

```
(s,t) \in R implies that

- s is final iff t is final

- for all actions a

• if s \rightarrow_a s' then \exists t' . t \rightarrow_a t' and (s',t') \in R

• if t \rightarrow_a t' then \exists s' . s \rightarrow_a s' and (s',t') \in R
```

- A state s₀ of transition system S is bisimilar, or simply equivalent, to a state t₀ of transition system T iff there exists a bisimulation between the initial states s₀ and t₀.
- Notably
 - **bisimilarity** is a bisimulation
 - bisimilarity is the largest bisimulation

Note it is a co-inductive definition!

Computing Bisimilarity on Finite Transition Systems

Algorithm ComputingBisimulation

Input: transition system $TS_S = \langle A, S, S^0, \delta_S, F_S \rangle$ and transition system $TS_T = \langle A, T, T^0, \delta_T, F_T \rangle$

Output: the **bisimilarity** relation (the largest bisimulation)

```
Body
```

```
\begin{array}{l} R = \emptyset \\ R' = S \times T - \{(s,t) \mid \neg (s \in F_S \equiv t \in F_T)\} \\ \text{while } (R \neq R') \ \{ \\ R := R' \\ R' := R' - (\{(s,t) \mid \exists \, s',a. \, s \rightarrow_a \, s' \, \land \, \neg \exists \, t' \, . \, t \rightarrow_a \, t' \, \land \, (s',t') \in R' \, \} \\ & \qquad \qquad \{(s,t) \mid \exists \, t',a. \, t \rightarrow_a \, t' \, \land \, \neg \exists \, s' \, . \, s \rightarrow_a \, s' \, \land \, (s',t') \in R' \, \}) \\ \} \\ \text{return } R' \\ \textbf{Ydob} \end{array}
```

Service Integration - aa 2008/09

Giuseppe De Giacomo

2

Simulation

A binary relation R is a simulation iff:

```
(s,t) \in R implies that

- s is final implies that t is final

- for all actions a

• if s \rightarrow_a s' then \exists t' . t \rightarrow_a t' and (s',t') \in R
```

- A state s₀ of transition system S is simulated by a state t₀ of transition system T iff there exists a simulation between the initial states s₀ and t₀.
- Notably
 - **simulated-by** is a simulation
 - simulated-by is the largest simulation

Note it is a co-inductive definition!

NB: A simulation is just one of the two directions of a bisimulation

Computing Simulation on Finite Transition Systems

Algorithm ComputingSimulation

Input: transition system $TS_S = \langle A, S, S^0, \delta_S, F_S \rangle$ and transition system $TS_T = \langle A, T, T^0, \delta_T, F_T \rangle$

Output: the **simulated-by** relation (the largest simulation)

```
Body
```

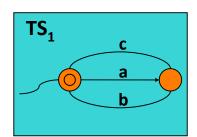
```
\begin{array}{l} R = \emptyset \\ R' = S \times T - \{(s,t) \mid s \in F_S \wedge \neg (t \in F_T)\} \\ \text{while } (R \neq R') \ \{ \\ R := R' \\ R' := R' - \{(s,t) \mid \exists \, s', a. \, s \rightarrow_a s' \, \wedge \neg \exists \, t' \, . \, t \rightarrow_a t' \wedge (s',t') \in R' \, \} \\ \text{return } R' \\ \textbf{Ydob} \end{array}
```

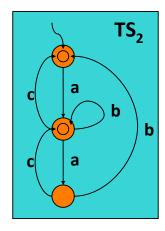
Service Integration - aa 2008/09

Giuseppe De Giacomo

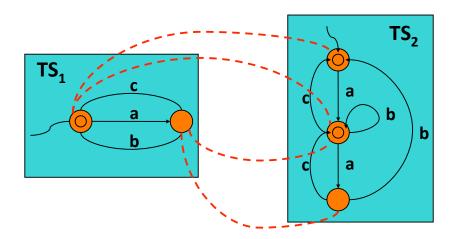
_

Example of simulation





Example of simulation



TS2's behavior "includes" TS1's

Service Integration - aa 2008/09

Giuseppe De Giacomo

6

Potential Behavior of the Whole Community

- Let TS_1 , ..., TS_n be the TS_n of the component services.
- The Community TS is defined as the asynchronous product of TS₁, ··· ,TS_n, namely:

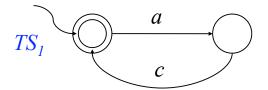
$$TS_c = \langle A, S_c, S_c^0, \delta_c, F_c \rangle$$
 where:

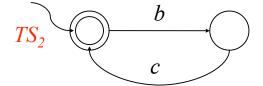
- A is the set of actions
- $S_c = S_1 \times \cdots \times S_n$
- $S_c^0 = \{(s_1^0, \dots, s_n^0)\}$
- $\quad \mathsf{F} \subseteq \mathsf{F}_1 \times \!\! \cdots \!\! \times \mathsf{F}_\mathsf{n}$
- $\delta_c \subseteq S_c \times A \times S_c$ is defined as follows:

$$(S_1 \mathbb{W} \cdots \mathbb{W} S_n) \rightarrow_a (S'_1 \mathbb{W} \cdots \mathbb{W} S'_n)$$
 iff

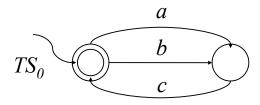
- \exists i. $s_i \rightarrow_a s'_i \in \delta_i$
- $\forall j \neq i. s'_j = s_j$

Available Services





Target Service



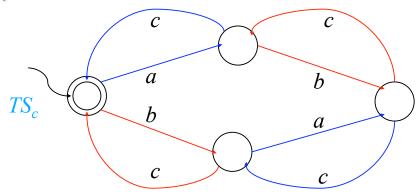
Service Integration – aa 2008/09

Giuseppe De Giacomo

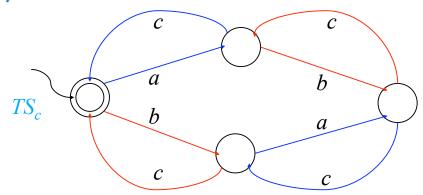
8

Example of Composition

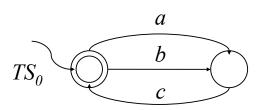
Community TS



Community TS



Target Service



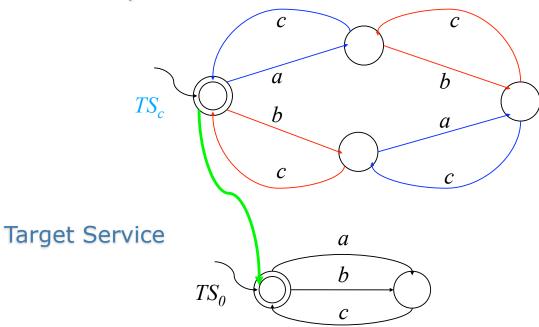
Service Integration – aa 2008/09

Giuseppe De Giacomo

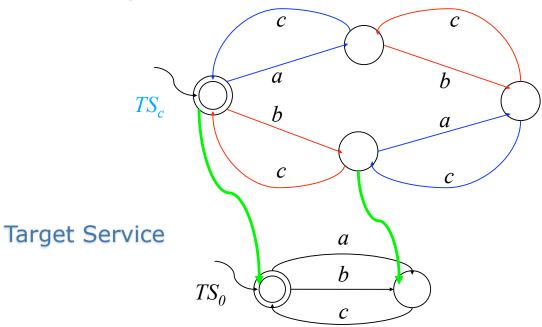
9

Example of Composition

Community TS



Community TS



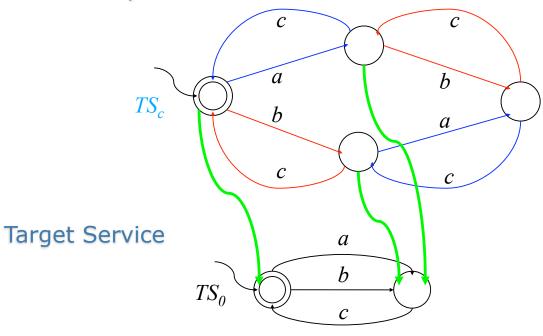
Service Integration - aa 2008/09

Giuseppe De Giacomo

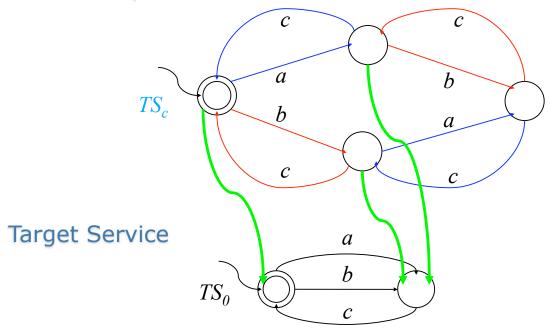
9

Example of Composition

Community TS



Community TS



Composition exists!

Service Integration - aa 2008/09

Giuseppe De Giacomo

0

Composition via Simulation

- Thm[IJFCS08]
 - A composition realizing a target service TS TS_t exists if there **exists** a simulation relation between the initial state s_t^0 of TS_t and the initial state $(\mathsf{s}_1^0, ..., \mathsf{s}_n^0)$ of the community TS TS_c .
- Notice if we take the union of all simulation relations then we get the largest simulation relation **S**, still satisfying the above condition.
- Corollary[IJFCS08] A composition realizing a target service TS TS_t exists iff $(\mathsf{s_t}^0, (\mathsf{s_1}^0, ..., \mathsf{s_n}^0)) \in \mathbf{S}$.
- Thm[IJFCS08]
 Computing the largest simulation **S** is polynomial in the size of the
 - target service TS and the size of the community TS...
- ... hence it is **EXPTIME** in the size of the available services.

Composition via Simulation

- Given the largest simulation S form TS_t to TS_c (which include the initial states), we can build the orchestrator generator.
- This is an orchestrator program that can change its behavior reacting to the information acquired at run-time.
- Def: OG = < A, [1,...,n], S_r, s_r⁰, ω_r , δ_r , F_r> with
 - A: the **actions** shared by the community
 - [1,...,n]: the **identifiers** of the available services in the community
 - $S_r = S_t \times S_1 \times \cdots \times S_n$: the **states** of the orchestrator program
 - $s_r^0 = (s_{tr}^0, s_{1r}^0, ..., s_m^0)$: the **initial state** of the orchestrator program
 - $F_r \subseteq \{ (s_t, s_1, ..., s_n) \mid s_t \in F_t : \text{the } \textbf{final states} \text{ of the orchestrator program }$
 - $\omega_r: S_r \times A_r \rightarrow [1,...,n]$: the **service selection function**, defined as follows:

 $\omega_r(t, s_1,..,s_n, a) = \{i \mid TS_t \text{ and } TS_i \text{ can do } a \text{ and remain in } S\}$

i.e., ...=
$$\{i \mid S_t \rightarrow_{a_1} S_t' \land \exists S_i'. S_i \rightarrow_{a_i} S_i' \land (S_t', (S_1, ..., S_i', ..., S_n)) \in S\}$$

 $\begin{array}{ll} - & \delta_r \subseteq S_r \times A_r \times [1,...,n] \to S_r : \text{the } \textbf{state transition function,} \ \ \text{defined as follows:} \\ & \text{Let } k \in \omega_r(s_t, \, s_1 \, , \, ..., \, s_k \, , \, ..., \, s_n, \, a) \ \text{then} \\ & (s_t, \, s_1 \, , \, ..., \, s_k \, , \, ..., \, s_n) \to_{a,k} (s_t', \, s_1 \, , \, ..., \, s_n', \, ..., \, s_n) \ \text{where} \ s_k \to_{a_*} s_k' \\ \end{array}$

Service Integration – aa 2008/09

Giuseppe De Giacomo

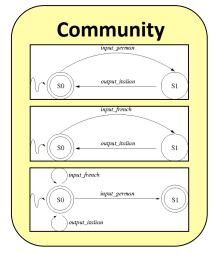
4 4

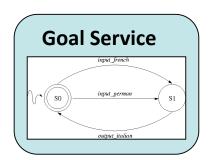
Composition via Simulation

- For generating OG we need only to compute S and then apply the template above
- For running an orchestrator from the OG we need to store and access **S** (polynomial time, exponential space) ...
- ... and compute ω_r and δ_r at each step (polynomial time and space)

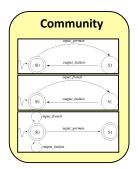
Example of composition via simulation (1)

- A Community of services over a shared alphabet A
- A (Virtual) *Goal* service over A

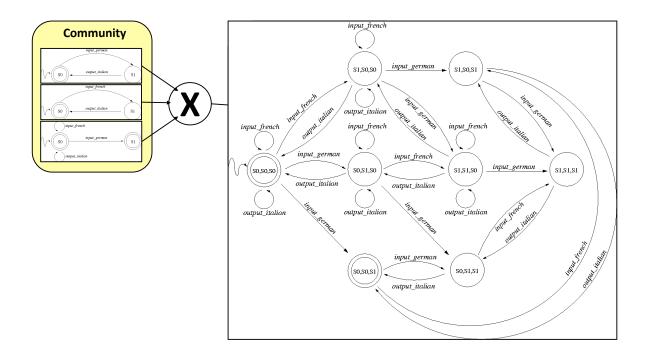




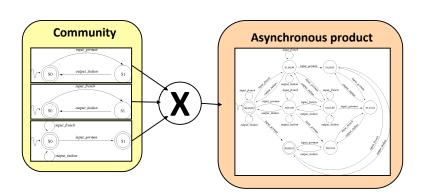
Example of composition via simulation (2)



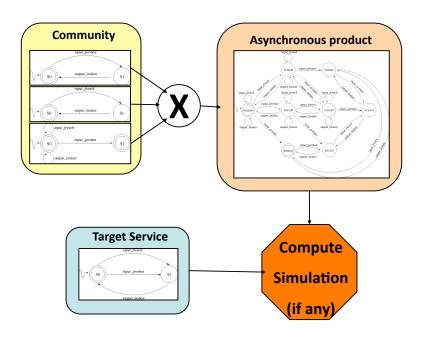
Example of composition via simulation (2)



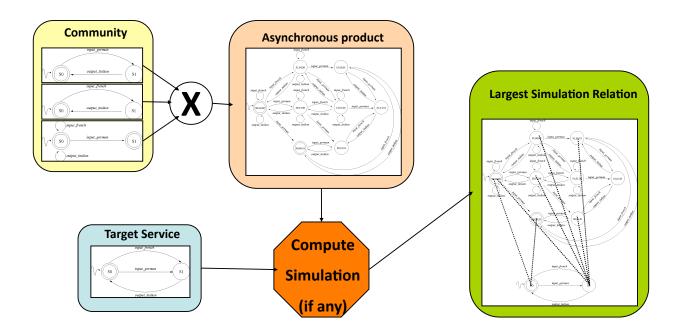
Example of composition via simulation (2)



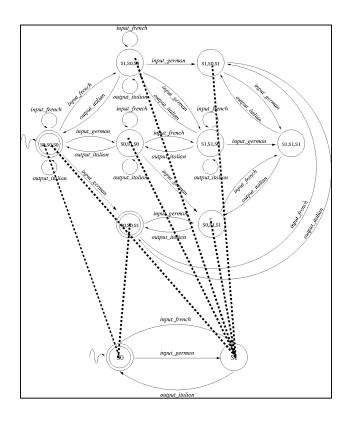
Example of composition via simulation (2)



Example of composition via simulation (2)



Example of composition via simulation (3)



Example of composition via simulation (4)

