INTRODUCTION TO AI
STRAIPS PLANNING

.. and Applications to Video-games!
Course overview

- Lecture 1: Game-inspired competitions for AI research, AI decision making for non-player characters in games
- Lecture 2: STRIPS planning, state-space search
- Lecture 3: Planning Domain Definition Language (PDDL), using an award winning planner to solve Sokoban
- Lecture 4: Planning graphs, domain independent heuristics for STRIPS planning
- Lecture 5: Employing STRIPS planning in games: SimpleFPS, iThinkUnity3D, SmartWorkersRTS
- Lecture 6: Planning beyond STRIPS
STRIPS planning

- What we have seen so far
 - The STRIPS formalism for specifying planning problems
 - Solving planning problems using state-based search
 - Progression planning
 - Simple heuristics for progression planning

- Can we take advantage of the information that action schemas hold to do better?
Planning graphs

- Action schemas provide useful information about the interaction between actions.

- E.g., action A cannot take place right after B because A cancels a precondition of B.

- There are many more (and more complex) conditions that would be valuable to identify!
Course overview

- Lecture 1: Game-inspired competitions for AI research, AI decision making for non-player characters in games
- Lecture 2: STRIPS planning, state-space search
- Lecture 3: Planning Domain Definition Language (PDDL), using an award winning planner to solve Sokoban
- Lecture 4: Planning graphs, domain independent heuristics for STRIPS planning
- Lecture 5: Employing STRIPS planning in games: SimpleFPS, iThinkUnity3D, SmartWorkersRTS
- Lecture 6: Planning beyond STRIPS
Planning graphs

- Planning graph
 - Special data structure
 - Consists of a sequence of levels
 - Stores the effects of **all applicable actions** at every level as if they were all happening **concurrently**
 - Stores some basic **mutual exclusion** constraints between actions and literals
Planning graphs

```
Planning graphs

s_0  s_1  s_2

A  B  C  A  B  C  A

On(A, Table)
On(B, Table)
On(C, Table)
Clear(A)
Clear(B)
Clear(C)

On(A, Table)
On(B, C)
On(C, Table)
Clear(A)
Clear(B)
Clear(Table)

On(A, B)
On(B, C)
On(C, Table)
Clear(A)
Clear(Table)

Move(B, Table, C)  Move(A, Table, B)

7
```
Planning graphs

On(A, Table)
On(B, Table)
On(C, Table)
Clear(A)
Clear(B)
Clear(C)
Planning graphs

On\((A, \text{Table})\)
On\((B, \text{Table})\)
On\((C, \text{Table})\)
Clear\((A)\)
Clear\((B)\)
Clear\((C)\)

Move\((B, \text{Table}, C)\)

On\((A, \text{Table})\)
On\((B, \text{Table})\)
On\((C, \text{Table})\)
Clear\((A)\)
Clear\((B)\)
Clear\((C)\)
On\((B, C)\)
¬On\((B, \text{Table})\)
¬Clear\((C)\)
Planning graphs

- A_0: On(A,Table), On(B,Table), On(C,Table), Clear(A), Clear(B), Clear(C)
- A_1: On(A,Table), On(B,Table), On(C,Table), Clear(A), Clear(B), Clear(C), On(A,C), \negOn(A,Table), \negClear(C)

Moves:
- Move(A,Table,C)
Planning graphs

On(A, Table)
On(B, Table)
On(C, Table)
Clear(A)
Clear(B)
Clear(C)

Move(B, Table, C)

Move(A, Table, C)

On(A, Table)
On(B, Table)
On(C, Table)
Clear(A)
Clear(B)
Clear(C)

On(B, C)
¬On(B, Table)
¬Clear(C)

A₀
A₁
S₀
S₁
S₂
Planning graphs

- **A**
- **B**
- **C**

- On(A, Table)
- On(B, Table)
- On(C, Table)
- Clear(A)
- Clear(B)
- Clear(C)

- **Move(A, Table, C)**
- **Move(B, Table, C)**

- **A₀**
- **A₁**

- **s₀**
- **s₁**
- **s₂**
Planning graphs

On (A, Table)
On (B, Table)
On (C, Table)
Clear (A)
Clear (B)
Clear (C)

Move (A, Table, B)
Move (C, Table, B)
Move (B, Table, C)
Move (A, Table, C)
Move (B, Table, A)
Move (C, Table, A)

A₀

S₀ —— S₁ —— S₂

On (B, C)
On (B, Table)
Clear (C)
Planning graphs

- Planning graph
 - Special data structure
 - Consists of a sequence of levels
 - Stores the effects of all applicable actions at every level as if they were all happening concurrently
 - Stores some basic mutual exclusion constraints between actions and literals

- .. Let’s see an (even) simpler example!
Planning graphs

- **Init**: Have(Cake)
- **Goal**: Have(Cake) ∧ Eaten(Cake)
- **Action**: Eat(Cake)
 - PRECONDITIONS: Have(Cake)
 - EFFECTS: ¬Have(Cake) ∧ Eaten(Cake)
- **Action**: Bake(Cake),
 - PRECONDITIONS: ¬Have(Cake)
 - EFFECTS: Have(Cake)
Planning graphs

- Planning graph
 - Consists of a sequence of levels that specify how the initial state is transformed under the effects of actions

- At each level i we specify
 - A list of literals S_i
 - A list of actions A_i
 - 4 kinds of constraints or mutual exclusion links between literals in S_i and actions in A_i
Planning graphs

- Level 0
 - S_0: the positive literals of the initial state as well as the negative literals implied by the closed world assumption
Level 0

We will see now how to specify A_0 and S_1.
Planning graphs

- Level 0
 - A_0: the **applicable actions** in the initial state
Planning graphs

- Level 0
 - S_1: the effects of actions that appear in A_0
Planning graphs

- Level 0
 - We’re not done yet!

\[
\begin{align*}
\text{Have}(C) & \quad \text{\neg Eaten}(C) \\
\text{\neg Have}(C) & \quad \text{Eaten}(C)
\end{align*}
\]

\[
\begin{align*}
\mathbf{s}_0 & \quad \text{A}_0 \quad \mathbf{s}_1 \\
\mathbf{s}_2 & \quad \text{A}_1
\end{align*}
\]
Planning graphs

- Level 0
 - We’re not done yet!
 - Also add **persistence actions** that denote “inaction”
Planning graphs

- Level 0

- A persistent action specifies that a literal does not change truth value between levels, e.g., here \neg Eaten(C)
Planning graphs

- Level 0
 - We’re not done yet!
 - Mutual exclusion links
Planning graphs

- Mutual exclusion links (mutex)
 - Inconsistent effects
 - Interference
 - Inconsistent support
 - Competing needs
Two actions have inconsistent effects when:
- One action cancels the effect of the other action
 - E.g., action E(C) and the persistent action for Have(Cake) have inconsistent effects
Two actions have inconsistent effects when:
- One action cancels the effect of the other action
- Same for action E(C) and the persistent action for \(\neg Eaten(C) \)
Two actions have an interference when:
- One effect of one action is the negation of a precondition for the other action
 - E.g., action \(E(C) \) and the persistent action for \(\text{Have}(C) \)

![Diagram showing interference between actions](image)
Two literals have inconsistent support when:

- One literal is the negation of the other literal
 - E.g., \(\neg \text{Have}(C) \) and \(\text{Have}(C) \)
Two literals have inconsistent support when:

- Every possible pair of action that have these literals as effects are marked as mutually exclusive.

![Planning graphs diagram](image-url)
Two actions have competing needs when:

A precondition of one action is mutually exclusive with a precondition of the other action

Does not arise in this domain
Planning graphs

- Level 0
 - We are (finally) done!

```
A_0
| Have(C) |
| E(C) |
| ¬ Eaten(C) |

A_1
| Have(C) |
| ¬ Have(C) |
| Eaten(C) |
| ¬ Eaten(C) |

s_0 -> s_1 -> s_2
```
What kind of information does the graph provide so far?
Planning graphs

A pair of mutually exclusive literals cannot be realized from the actions of Level 0!

E.g., the goal cannot be achieved with these actions.
Level 1

- We will specify A_1 and S_2
Planning graphs

- **Level 1**
 - A_1: the **applicable actions** in S_1 (at least those in A_0)
 - S_2: the **effects** of actions in A_1 (at least those in S_1)
Planning graphs

- **Level 1**
 - A_1: the **applicable actions** in S_1 (and more!)
 - S_2: the **effects** of actions in A_1
Planning graphs

- **Level 1**
 - A_1: the **applicable actions** in S_1 (and more!)
 - S_2: the **effects** of actions in A_1
Planning graphs

- Level 1
 - Mutual exclusive links
Level 1

- Mutual exclusive links
- Inconsistent effects between persistence actions
Planning graphs

- **Level 1**
 - Mutual exclusive links
 - Inconsistent effects between B(C), E(C) and persistence actions
Planning graphs

Level 1

- Mutual exclusive links
- Inconsistent effects between B(C), E(C) and persistence actions
Level 1

- Mutual exclusive links
- Competing needs between persistence actions!
Planning graphs

- Level 1
 - Mutual exclusive links
 - No more mutexes between actions
Planning graphs

- **Level 1**
 - Mutual exclusive links
 - There are mutexes between literals in S_2 though

![Diagram showing planning graphs with nodes and directed edges representing the relationships between literals.](image-url)
Planning graphs

- Level 1
 - Mutual exclusive links
 - Between literals $\neg\text{Have}(C)$ and $\neg\text{Eaten}(C)$ in S_2
Planning graphs

- Level 1
 - Mutual exclusive links
 - Between literals \negHave(C) and \negEaten(C) in S_2
Level 1

- Mutual exclusive links
- Between literals \negHave(C) and \negEaten(C) in S_2
Level 1

We are (finally) done!
Planning graphs

What information can we get from the graph now?
Planning graphs

What information can we get from the graph now?

- Note that literals Have(C) and Eaten(C) are not mutually exclusive in S_2 !!!
What information can we get from the graph now?

- Note that literals Have(C) and Eaten(C) can be realized in A_1 by the actions $\{B(C), \text{persistence of Eaten}(C)\}$.
Planning graphs

What information can we get from the graph now?

- In turn actions \{B(C), persistence of Eaten(C)\} require that
 \(\neg\) Have(C) and Eaten(C) hold in \(S_1\).
What information can we get from the graph now?

- Note that literals Have(C) and Eaten(C) can be realized in \(A_0 \) by the action E(C)
What information can we get from the graph now?

- In turn E(C) requires that Have(C) holds in S_0 which is true!
What information can we get from the graph now?

- So, actions \(\{E(C)\} \) and \(\{B(C), \text{ persistence of Eaten(C)}\} \) can actually achieve the goal!
Planning graphs

- Planning graph
Planning graphs

- Planning graph

 - When do we stop calculating levels?
 - When two consecutive levels are identical *

 - How do we know this will happen at some point?
 - Literals and actions increase monotonically, while mutexes decrease monotonically (why is this so?)
Planning graphs

- Planning graph
 - Special data structure

 - Easy to compute: \textit{polynomial complexity}!

 - Can be used by the \texttt{GRAPHPLAN} algorithm to \textbf{search for a solution} (following similar reasoning as in the example)

 - Can be used as a \textbf{guideline for heuristic functions} for progressive planning that are more accurate than the ones we sketched in Lecture 2
Material