Course on Automated Planning: Transformations

Hector Geffner
ICREA & Universitat Pompeu Fabra
Barcelona, Spain
AI Planning: Status

• The good news: classical planning works!
 ▶ Large problems solved very fast (non-optimally)

• Model simple but useful
 ▶ Operators not primitive; can be policies themselves
 ▶ Fast closed-loop replanning able to cope with uncertainty sometimes

• Not so good; limitations:
 ▶ Does not model Uncertainty (no probabilities)
 ▶ Does not deal with Incomplete Information (no sensing)
 ▶ Does not accommodate Preferences (simple cost structure)
 ▶ . . .
Beyond Classical Planning: Two Strategies

• **Top-down:** Develop solver for *more general class of models*; e.g., Markov Decision Processes (MDPs), Partial Observable MDPs (POMDPs), . . .

 +: generality
 -: complexity

• **Bottom-up:** Extend the scope of *current 'classical' solvers*

 +: efficiency
 -: generality

• We’ll do both, starting with **transformations** for

 ▶ compiling **soft goals** away (planning with preferences)
 ▶ compiling **uncertainty** away (conformant planning)
 ▶ compiling **sensing** away (planning with sensing)
 ▶ doing **plan recognition** (as opposed to plan generation)
Compilation of Soft Goals

- Planning with **soft goals** aimed at plans π that maximize **utility**

\[u(\pi) = \sum_{p \in do(\pi,s_0)} u(p) - \sum_{a \in \pi} c(a) \]

- Actions have **cost** $c(a)$, and soft goals **utility** $u(p)$

- Best plans achieve best **tradeoff** between **action costs** and **utilities**

- Model used in recent planning competitions; **net-benefit track** 2008 IPC

- Yet it turns that soft goals **do not** add expressive power, and can be **compiled away**
Compilation of Soft Goals (cont’d)

- For each soft goal \(p \), create **new hard goal** \(p' \) initially false, and **two new actions**:

 - \(collect(p) \) with precondition \(p \), effect \(p' \) and **cost** 0, and
 - \(forgo(p) \) with an empty precondition, effect \(p' \) and **cost** \(u(p) \)

- Plans \(\pi \) maximize \(u(\pi) \) iff minimize \(c(\pi) = \sum_{a \in \pi} c(a) \) in resulting problem

- Compilation yields better results that native soft goal planners in recent IPC (Keyder & G. 07,09)

<table>
<thead>
<tr>
<th>Domain</th>
<th>IPC6 Net-Benefit Track</th>
<th>Compiled Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gamer</td>
<td>HSP*</td>
</tr>
<tr>
<td>crewplanning(30)</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>elevators (30)</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>openstacks (30)</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>pegsol (30)</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>transport (30)</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>woodworking (30)</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>total</td>
<td>71</td>
<td>49</td>
</tr>
</tbody>
</table>
Problem: A robot must move from an **uncertain** I into G with **certainty**, one cell at a time, in a grid $n \times n$

- Problem very much like a classical planning problem except for **uncertain** I
- Plans, however, quite different: best **conformant plan must move the robot to a corner first** (localization)
Conformant Planning: Belief State Formulation

- call a set of possible states, a **belief state**
- actions then map a belief state b into a belief state $b_a = \{s' | s' \in F(a, s) \& s \in b\}$
- **conformant problem** becomes a path-finding problem in **belief space**

Problem: number of belief state is **doubly exponential** in number of variables.

- **effective representation** of belief states b
- **effective heuristic** $h(b)$ for estimating cost in belief space

Recent alternative: translate into classical planning . . .
Basic Translation: Move to the 'Knowledge Level'

Given **conformant problem** $P = \langle F, O, I, G \rangle$

- F stands for the fluents in P
- O for the operators with effects $C \rightarrow L$
- I for the initial situation (**clauses** over F-literals)
- G for the goal situation (set of F-literals)

Define **classical problem** $K_0(P) = \langle F', O', I', G' \rangle$ as

- $F' = \{ KL, K\neg L \mid L \in F \}$
- $I' = \{ KL \mid \text{clause } L \in I \}$
- $G' = \{ KL \mid L \in G \}$
- $O' = O$ but preconds L replaced by KL, and effects $C \rightarrow L$ replaced by $KC \rightarrow KL$ (**supports**) and $\neg K\neg C \rightarrow \neg K\neg L$ (**cancellation**)

$K_0(P)$ is **sound** but **incomplete**: every classical plan that solves $K_0(P)$ is a conformant plan for P, but not vice versa.
Key elements in Complete Translation $K_{T,M}(P)$

• A set T of **tags** t: consistent sets of **assumptions** (literals) about the **initial situation** I

$$I \not\models \neg t$$

• A set M of **merges** m: **valid subsets of tags** ($= \text{DNF}$)

$$I \models \bigvee_{t \in m} t$$

• New (tagged) literals KL/t meaning that L is true if t true initially
A More General Translation $K_{T,M}(P)$

Given **conformant problem** $P = \langle F, O, I, G \rangle$

- F stands for the fluents in P
- O for the operators with effects $C \rightarrow L$
- I for the initial situation (**clauses** over F-literals)
- G for the goal situation (set of F-literals)

define **classical problem** $K_{T,M}(P) = \langle F', O', I', G' \rangle$ as

- $F' = \{ KL/t , K\neg L/t \mid L \in F \text{ and } t \in T \}$
- $I' = \{ KL/t \mid \text{if } I \models t \supset L \}$
- $G' = \{ KL \mid L \in G \}$
- $O' = O$ but preconds L replaced by KL, and effects $C \rightarrow L$ replaced by $KC/t \rightarrow KL/t$ (**supports**) and $\neg K\neg C/t \rightarrow \neg K\neg L/t$ (**cancellation**), and **new merge actions**

$$\bigwedge_{t \in m, m \in M} KL/t \rightarrow KL$$

The two **parameters** T and M are the set of **tags** (assumptions) and the set of **merges** (valid sets of assumptions) . . .
Compiling Uncertainty Away: Properties

- General translation scheme $K_{T,M}(P)$ is always sound, and for suitable choice of the sets of tags and merges, it is complete.

- $K_{S0}(P)$ is complete instance of $K_{T,M}(P)$ obtained by setting T to the set of possible initial states of P.

- $K_i(P)$ is a polynomial instance of $K_{T,M}(P)$ that is complete for problems with width bounded by i.

 ▶ Merges for each L in $K_i(P)$ chosen to satisfy i clauses in I relevant to L.

- The width of most benchmarks bounded and equal 1!

- This means that such problems can be solved with a classical planner after a polynomial translation (Palacios & G. 07, 09).
Problem: Starting in one of two rightmost cells, get to \(B \); \(A \) & \(B \) observable

\[
\begin{array}{ccc}
A & & B \\
\end{array}
\]

- Contingent Planning
 - A contingent plan is a tree of possible executions, all leading to the goal
 - A contingent plan for the problem: \(\text{R(right), R, R, if } \neg B \text{ then } R \)

- POMDP planning
 - A POMDP policy is mapping of belief states to actions, leading to goal
 - A POMDP policy for problem: If \(Bel \neq B \), then \(R \) \((2^5 - 1 \text{ Bel’s}) \)

I’ll focus on different solution form: finite state controllers
Finite State Controllers: Example 1

- Starting in A, move to B and back to A; marks A and B observable.

- This finite-state controller solves the problem

- FSC is compact and general: can add noise, vary distance, etc.

- Heavily used in practice, e.g. video-games and robotics, but written by hand

- The Challenge: How to get these controllers automatically
Finite State Controllers: Example 2

- **Problem** P: find **green block** using visual-marker (circle) that can move around one cell at a time (à la Chapman and Ballard)

- **Observables**: Whether cell marked contains a green block (G), non-green block (B), or neither (C); and whether on table (T) or not (–)

- Controller on the right **solves** the problem, and not only that, it’s **compact** and **general**: it applies to **any number of blocks** and **any configuration**!

- Controller obtained by running a **classical planner** over **transformed problem** (Bonet, Palacios, G. 2009)
Some notation: Problem and Finite State Controllers

• **Target problem** P is like a classical problem with **incomplete initial situation** I and some **observable fluents**

• **Finite State Controller** C is a set of tuples $t = \langle q, o, a, q' \rangle$

 $$t = \langle q, o, a, q' \rangle,$$ depicted $q \xrightarrow{o/a} q'$, tells to do action a
 when o is observed in controller state q and then to switch to q'

• **Finite State Controller** C **solves** P if all state trajectories compatible with P and C reach the goal

 Question: how to derive FSC for solving P?
Idea: Finite State Controllers as Conformant Plans

- Consider set of possible tuples \(t = \langle q, o, a, q' \rangle \)

- Let \(P' \) be a problem that is like \(P \) but with
 1. no observable fluents
 2. new fluents \(o \) and \(q \) representing possible joint observations \(o \) and \(q \)'s
 3. actions \(b(t) \) replacing the actions \(a \) in \(P \), where for \(t = \langle q, o, a, q' \rangle \),
 \(b(t) \) is like \(a \) but \textbf{conditional on} both \(q \) and \(o \) being true, and resulting in \(q' \).

\[
\textbf{Theorem:} \text{ The finite state controller } C \text{ solves } P \text{ iff } C \text{ is the set of tuples } t \text{ in the actions } b(t) \text{ of a stationary conformant plan for } P' \\
\]

- Corollary: The finite state controller for \(P \) can be obtained with \textbf{classical planner} from further transformation of \(P' \).

- Plan \(\pi \) is \textbf{stationary} when for \(b(t) \) and \(b(t') \) in \(\pi \) for \(t = \langle q, o, a, q' \rangle \) and \(t' = \langle q, o, a', q'' \rangle \), then \(a = a' \) and \(q' = q'' \)
Intuition: Memoryless Controllers

- For simplicity, consider **memoryless** controllers where tuples are $t = \langle o, a \rangle$, meaning to do a when o observed

- In transformed problem P' the actions a in P replaced by $a(o)$ where

 $$a(o) \text{ is like } a \text{ when } o \text{ is true, else is a NO-OP}$$

Claim: If the memoryless controller $C = \{ \langle o_i, a_i \rangle \mid i = 1, n \}$ solves P in m steps, the sequence $a_1[o_1], \ldots, a_n[o_n]$ repeated m times is a conformant **plan** for P'
Example: FSC for Visual Marker Problem

- **Problem P**: find **green block** using visual-marker (circle) that can move around one cell at a time (à la Chapman or Ballard)

- **Observables**: Whether cell marked contains a green block (G), non-green block (B), or neither (C); and whether on table (T) or not (–)

- **Controller** obtained using a **classical planner** from translation that assumes 2 controller states.

- Controller is **compact** and **general**: it applies to **any number of blocks** and **any configuration**
• Agent can **move** one unit in the four directions

• Possible **targets** are A, B, C, . . .

• Starting in S, he is **observed** to move up twice

• **Where** is he going?
A plan recognition problem defined by triplet $T = \langle \mathcal{G}, \Pi, O \rangle$ where

- \mathcal{G} is the set of possible goals G,
- $\Pi(G)$ is the set of possible plans π for G, $G \subseteq \mathcal{G}$,
- O is an observation sequence a_1, \ldots, a_n where each a_i is an action.

A possible goal $G \in \mathcal{G}$ is plausible if \exists plan π in $\Pi(G)$ that satisfies O.

An action sequence π satisfies O if O is a subsequence of π.
(Classical) Plan Recognition over Action Theories

PR over **action theories** similar but with set of plans Π(𝐺) defined **implicitly**:

- A **plan recognition problem** is a triplet \(T = \langle P, G, O \rangle \) where
 - \(P = \langle F, A, I \rangle \) is **planning domain**: fluents \(F \), actions \(A \), init \(I \), **no goal**
 - \(G \) is a set of **possible goals** \(G, G \subseteq F \)
 - \(O \) is the **observation sequence** \(a_1, \ldots, a_n \), all \(a_i \) in \(A \)

If \(\Pi(G) \) stands for '**good plans**' for \(G \) in \(P \) (to be defined), then as before:

- A possible goal \(G \in G \) is **plausible** if there is a plan \(\pi \) in \(\Pi(G) \) that **satisfies** \(O \)
- An action sequence \(\pi \) **satisfies** \(O \) if \(O \) is a subsequence of \(\pi \)

Our goal: define the **good plans** and solve the problem with a **classical planner**
Compiling Observations Away

We get rid of obs. O by transforming $P = \langle F, I, A \rangle$ into $P' = \langle F', I', A \rangle$ so that

π is a plan for G in P that satisfies O iff π is a plan for $G + O$ in P'

and

π is a plan for G in P that doesn't satisfy O iff π is a plan for $G + \overline{O}$ in P'

The transformation from P into P' is actually very simple . . .
Compiling Observations Away (cont’d)

• Given \(P = \langle F, I, A \rangle \), the transformed problem is \(P' = \langle F', I', A' \rangle \):

 \(F' = F \cup \{ p_a \mid a \in O \} \),
 \(I' = I \)
 \(A' = A \)

where \(p_a \) is new fluent for the observed action \(a \) in \(A' \) with extra effect:

 \(p_a \), if \(a \) is the first observation in \(O \), and
 \(p_b \rightarrow p_a \), if \(b \) is the action that immediately precedes \(a \) in \(O \).

• The ‘goals’ \(O \) and \(O' \) in \(P' \) are \(p_a \) and \(\neg p_a \) for the last action \(a \) in \(O \)

• The plans \(\pi \) for \(G \) in \(P \) that satisfy/don’t satisfy \(O \) are the plans in \(P' \) for \(G + O/G + O' \) respectively.
Define the set $\Pi(G)$ of ‘good plans’ for G in P, as the \textbf{optimal plans} for G in P.

- Then $G \in G$ is a \textbf{plausible goal} given observations O

 iff there is an \textbf{optimal plan} π for G in P that satisfies O;
 iff there is an \textbf{optimal plan} π for G in P that is a plan for $G + O$ in P';
 iff \textbf{cost} of G in P equal to \textbf{cost} of $G + O$ in P' abbreviated

\[c_{P'}(G + O) = c_P(G) \]

- It follows that \textbf{plausibility} of G can be \textbf{computed exactly} by calling an \textbf{optimal planner} twice: one for computing $c_{P'}(G + O)$, one for computing $c_P(G)$.

- In turn, this can be \textbf{approximated} by calling \textbf{suboptimal planner} just once (Ramirez & G. 2009). We pursue a \textbf{more general} approach here . . .
Plan Recognition as Planning: A More General Formulation

- Don’t **filter** goals G as **plausible/implausible**,

- Rather **rank** them with a **probability distribution** $P(G|O)$, $G \in \mathcal{G}$

- From **Bayes Rule** $P(G|O) = \alpha P(O|G) P(G)$, where
 - α is a normalizing constant
 - $P(G)$ assumed to be **given** in problem specification
 - $P(O|G)$ defined in terms of **extra cost** to pay for not complying with the observations O:

 \[
P(O|G) = \text{function}(c(G + \overline{O}) - c(G + O))\]
Example: Navigation in a Grid Revisited

If $\Delta(G, O) \overset{\text{def}}{=} c(G + \overline{O}) - c(G + O)$:

- For $G = B$, $c(B + O) = c(B) = 4$; $c(B + \overline{O}) = 6$; thus $\Delta(B, O) = 2$
- For $G = C$ or A, $c(C + O) = c(C + \overline{O}) = c(C) = 8$; thus $\Delta(C, O) = 0$
- For all others G, $c(G + O) = 8$; $c(G + \overline{O}) = c(G) = 4$; thus $\Delta(G, O) = -4$

If $P(O|G')$ is a monotonic function of $\Delta(G, O)$, then

$$P(O|B) > P(O|C) = P(O|A) > P(G), \text{ for } G \not\in \{A, B, C\}$$
Defining the Likelihoods $P(O|G)$

- Assuming Boltzmann distribution and writing $\exp\{x\}$ for e^x, likelihoods become

$$P(O|G) \overset{\text{def}}{=} \alpha \exp\{-\beta c(G + O)\}$$

$$P(\overline{O}|G) \overset{\text{def}}{=} \alpha \exp\{-\beta c(G + \overline{O})\}$$

where α is a normalizing constant, and β is a positive constant.

- Taking ratio of two equations, it follows that

$$P(O|G)/P(\overline{O}|G) = \exp\{\beta \Delta(G, O)\}$$

and hence

$$P(O|G) = 1/(1 + \exp\{-\beta \Delta(G, O)\}) = \text{sigmoid} (\beta \Delta(G, O))$$
Defining Likelihoods $P(O|G)$ (cont’d)

$$P(O|G) = \text{sigmoid}(\beta \Delta(G, O))$$

$$\Delta(G, O) = c(G + \overline{O}) - c(G + O)$$

E.g.,

$$P(O|G) < P(\overline{O}|G) \quad \text{if} \quad c(G + \overline{O}) < c(G + O)$$

$$P(O|G) = 1 \quad \text{if} \quad c(G + O) < c(G + \overline{O}) = \infty$$
Probabilistic Plan Recognition as Planning: Summary

- A **plan recognition problem** is a tuple $T = \langle P, G, O, Prob \rangle$ where
 - P is a **planning domain** $P = \langle F, I, A \rangle$
 - G is a set of **possible goals** G, $G \subseteq F$
 - O is the **observation sequence** a_1, \ldots, a_n, $a_i \in O$
 - $Prob$ is **prior distribution** over G

- **Posterior distribution** $P(G|O)$ obtained from
 - **Bayes Rule** $P(G|O) = \alpha P(O|G) \text{Prob}(G)$ and
 - **Likelihood** $P(O|G) = \text{sigmoid}\{\beta [c(G + \overline{O}) - c(G + O)]\}$

- Distribution $P(G|O)$ **computed** exactly or approximately:
 - exactly using **optimal planner** for determining $c(G + O)$ and $c(G + \overline{O})$,
 - approximately using **suboptimal planner** for $c(G + O)$ and $c(G + \overline{O})$

- In either case, $2 \cdot |G|$ planner calls are needed.
Example: Noisy Walk

Graph on the left shows ‘noisy walk’ and possible targets; curves on the right show posterior $P(G|O)$ of each possible target G as a function of time.
Summary: Transformations

- **Classical Planning** solved as **path-finding** in state state
 - Most used techniques are **heuristic search** and **SAT**

- **Beyond classical planning**: two approaches
 - **Top-down**: solvers for richer models like MDPs and POMDPs
 - **Bottom-up**: compile non-classical features away

- We have follow second approach with **transformations** to eliminate
 - **soft goals** when planning with preferences
 - **uncertainty** in conformant planning
 - **sensing** for deriving finite-state controllers
 - **observations** for plan recognition

- Other transformations used for **LTL plan constraints**, **control knowledge**, etc.