Course on Automated Planning: Planning as Heuristic Search

Hector Geffner
ICREA & Universitat Pompeu Fabra
Barcelona, Spain
A Strips problem \(P = \langle F, O, I, G \rangle \) determines state model \(S(P) \) where

- the states \(s \in S \) are **collections of atoms** from \(F \)
- the initial state \(s_0 \) is \(I \)
- the goal states \(s \) are such that \(G \subseteq s \)
- the actions \(a \) in \(A(s) \) are ops in \(O \) s.t. \(Pre(a) \subseteq s \)
- the next state is \(s' = s - Del(a) + Add(a) \)
- action costs \(c(a, s) \) are all 1

How to solve \(S(P) \)?
Heuristic Search Planning

• Explicitly **searches** graph associated with model $S(P)$ with **heuristic** $h(s)$ that estimates cost from s to goal

• **Key idea:** Heuristic h extracted **automatically** from problem P

This is the mainstream approach in classical planning (and other forms of planning as well), enabling the solution of problems over **huge spaces**
Heuristics for Classical Planning

- Key development in planning in the 90’s, is automatic extraction of **heuristic functions** to guide search for plans

- The general idea was known: heuristics often **explained** as **optimal** cost functions of **relaxed** (simplified) problems (Minsky 61; Pearl 83)

- Most common relaxation in planning, \(P^+ \), obtained by dropping **delete-lists** from ops in \(P \). If \(c^*(P) \) is optimal cost of \(P \), then

\[
h^+(P) \overset{\text{def}}{=} c^*(P^+)
\]

- Heuristic \(h^+ \) **intractable** but easy to **approximate**; i.e.
 - computing **optimal plan** for \(P^+ \) is **intractable**, but
 - computing a non-optimal plan for \(P^+ \) (**relaxed plan**) **easy**

- State-of-the-art heuristics as in FF or LAMA still rely on \(P^+ \ldots \)
Additive Heuristic

• For all atoms p:

$$h(p; s) \overset{\text{def}}{=} \begin{cases} 0 & \text{if } p \in s, \text{ else} \\ \min_{a \in O(p)} [\text{cost}(a) + h(Pre(a); s)] & \end{cases}$$

• For sets of atoms C, assume independence:

$$h(C; s) \overset{\text{def}}{=} \sum_{r \in C} h(r; s)$$

• Resulting heuristic function $h_{add}(s)$:

$$h_{add}(s) \overset{\text{def}}{=} h(\text{Goals}; s)$$

Heuristic not admissible but informative and fast
Max Heuristic

- For all atoms p:

$$h(p; s) \overset{\text{def}}{=} \begin{cases} 0 & \text{if } p \in s, \text{ else} \\ \min_{a \in O(p)} [1 + h(Pre(a); s)] & \end{cases}$$

- For sets of atoms C, replace sum by max

$$h(C; s) \overset{\text{def}}{=} \max_{r \in C} h(r; s)$$

- Resulting heuristic function $h_{max}(s)$:

$$h_{max}(s) \overset{\text{def}}{=} h(\text{Goals}; s)$$

Heuristic admissible but not very informative . . .
Max Heuristic and (Relaxed) Planning Graph

- Build reachability graph $P_0, A_0, P_1, A_1, \ldots$

 \[
 P_0 = \{ p \in s \} \\
 A_i = \{ a \in O \mid Pre(a) \subseteq P_i \} \\
 P_{i+1} = P_i \cup \{ p \in Add(a) \mid a \in A_i \}
 \]

 - Graph implicitly **represents** max heuristic:

 \[
 h_{max}(s) = \min i \text{ such that } G \subseteq P_i
 \]
(Relaxed) Plans for P^+ can be obtained from additive or max heuristics by recursively collecting best supports backwards from goal, where a_p is best support for p in s if

$$a_p = \arg\min_{a \in O(p)} h(a_p) = \arg\min_{a \in O(p)} [1 + h(Pre(a))]$$

A plan $\pi(p; s)$ for p in delete-relaxation can then be computed backwards as

$$\pi(p; s) = \begin{cases}
\emptyset & \text{if } p \in s \\
\{a_p\} \cup \bigcup_{q \in Pre(a_p)} \pi(q; s) & \text{otherwise}
\end{cases}$$

The relaxed plan $\pi(s)$ for the goals obtained by planner FF using $h = h_{\text{max}}$.

More accurate h obtained then from relaxed plan π as

$$h(s) = \sum_{a \in \pi(s)} \text{cost}(a)$$
Variations in state-of-the-art Planners: EHC, Helpful Actions, Landmarks

- In original formulation of **planning as heuristic search**, the states \(s \) and the heuristics \(h(s) \) become **black boxes** used in **standard search algorithms**

- More recent planners like **FF** and **LAMA** go beyond this in two ways

- They exploit the structure of the heuristic and/or problem further:
 - Helpful Actions
 - Landmarks

- They use novel search algorithms
 - Enforced Hill Climbing (EHC)
 - Multi-queue Best First Search

- The result is that they can often solve **huge problems, very fast**. Not always though; try them!