Course on Automated Planning: Planning and Heuristic Search

Hector Geffner
ICREA & Universitat Pompeu Fabra
Barcelona, Spain
Models, Languages, and Solvers

- A **planner** is a **solver over a class of models**; it takes a model description, and computes the corresponding controller

 \[\text{Model} \implies \text{Planner} \implies \text{Controller} \]

- Many models, many solution forms: uncertainty, feedback, costs, . . .

- Models described in suitable **planning languages** (Strips, PDDL, PPDDL, . . .) where **states** represent interpretations over the language.
State Model for Classical Planning

- finite and discrete state space S
- an initial state $s_0 \in S$
- a set $G \subseteq S$ of goal states
- actions $A(s) \subseteq A$ applicable in each state $s \in S$
- a transition function $f(s, a)$ for $s \in S$ and $a \in A(s)$
- action costs $c(a, s) > 0$

A solution is a sequence of applicable actions a_i, $i = 0, \ldots, n$, that maps the initial state s_0 into a goal state $s \in S_G$; i.e., $s_{n+1} \in S_G$ and for $i = 0, \ldots, n$

$$s_{i+1} = f(a, s_i) \text{ and } a_i \in A(s_i)$$

Optimal solutions minimize total cost $\sum_{i=0}^{i=n} c(a_i, s_i)$
Language for Classical Planning: Strips

• A problem in Strips is a tuple \(P = \langle F, O, I, G \rangle \):

 ▶ \(F \) stands for set of all atoms (boolean vars)
 ▶ \(O \) stands for set of all operators (actions)
 ▶ \(I \subseteq F \) stands for initial situation
 ▶ \(G \subseteq F \) stands for goal situation

• Operators \(o \in O \) represented by

 ▶ the Add list \(Add(o) \subseteq F \)
 ▶ the Delete list \(Del(o) \subseteq F \)
 ▶ the Precondition list \(Pre(o) \subseteq F \)
From Problem P to State Model $S(P)$

A Strips problem $P = \langle F, O, I, G \rangle$ determines state model $S(P)$ where

- the states $s \in S$ are **collections of atoms** from F
- the initial state s_0 is I
- the goal states s are such that $G \subseteq s$
- the actions a in $A(s)$ are ops in O s.t. $Prec(a) \subseteq s$
- the next state is $s' = s - Del(a) + Add(a)$
- action costs $c(a, s)$ are all 1

- (Optimal) **Solution** of P is (optimal) **solution** of $S(P)$
- Thus P can be solved by solving $S(P)$
Solving P by solving $S(P)$

Search algorithms for planning exploit the correspondence between (classical) states model and directed graphs:

- The nodes of the graph represent the states s in the model
- The edges (s, s') capture corresponding transition in the model with same cost

In the planning as heuristic search formulation, the problem P is solved by path-finding algorithms over the graph associated with model $S(P)$
Search Algorithms for Path Finding in Directed Graphs

- **Blind search/Brute force algorithms**
 - Goal plays **passive** role in the search
 - e.g., *Depth First Search (DFS)*, *Breadth-first search (BrFS)*, *Uniform Cost (Dijkstra)*, *Iterative Deepening (ID)*

- **Informed/Heuristic Search Algorithms**
 - Goals play **active** role in the search through **heuristic function** $h(s)$ that estimates cost from s to the goal
 - e.g., *A**, *IDA**, *Hill Climbing*, *Best First*, *DFS B&B*, *LRTA**, . . .
General Search Scheme

\[
\text{Solve}(\text{Nodes})
\]

\[
\begin{align*}
\text{if Empty Nodes} & \rightarrow \text{Fail} \\
\text{else Let Node} & \Rightarrow \text{Select-Node} \; \text{Nodes} \\
& \quad \text{Let Rest} = \text{Nodes} - \text{Node} \\
& \quad \text{if Node is Goal} \rightarrow \text{Return Solution} \\
& \quad \text{else Let Children} \Rightarrow \text{Expand-Node} \; \text{Node} \\
& \quad \quad \text{Let New-Nodes} = \text{Add-Nodes} \; \text{Children} \; \text{Rest} \\
& \quad \quad \text{Solve}(\text{New-Nodes})
\end{align*}
\]

- Different algorithms obtained by suitable instantiation of
 - Select-Node \textit{Nodes}
 - Add-Nodes \textit{New-Nodes Old-Nodes}

- Nodes are data structures that contain state and bookkeeping info; initially Nodes = \{root\}

- Notation \(g(n), h(n), f(n) \): accumulated cost, heuristic and evaluation function; e.g. in A*, \(f(n) \overset{\text{def}}{=} g(n) + h(n) \)
Some instances of general search scheme

- **Depth-First Search** expands ‘deepest’ nodes n first
 - Select-Node \textit{Nodes}: Select First Node in \textit{Nodes}
 - Add-Nodes $\textit{New Old}$: Puts \textit{New} before \textit{Old}
 - Implementation: Nodes is a **Stack** (LIFO)

- **Breadth-First Search** expands ‘shallowest’ nodes n first
 - Select-Node \textit{Nodes}: Selects First Node in \textit{Nodes}
 - Add-Nodes $\textit{New Old}$: Puts \textit{New} after \textit{Old}
 - Implementation: Nodes is a **Queue** (FIFO)
Additional instances of general search scheme

- **Best First Search** expands best nodes \(n \) first; \(\min f(n) \)
 - Select-Node *Nodes*: Returns \(n \) in *Nodes* with \(\min f(n) \)
 - Add-Nodes *New Old*: Performs ordered merge
 - Implementation: *Nodes* is a **Heap**
 - Special cases
 - **Uniform cost/Dijkstra**: \(f(n) = g(n) \)
 - **A***: \(f(n) = g(n) + h(n) \)
 - **WA***: \(f(n) = g(n) + Wh(n), W \geq 1 \)
 - **Greedy Best First**: \(f(n) = h(n) \)

- **Hill Climbing** expands best node \(n \) first and **discards others**
 - Select-Node *Nodes*: Returns \(n \) in *Nodes* with \(\min h(n) \)
 - Add-Nodes *New Old*: Returns *New*; discards *Old*
Variations of general search scheme: DFS Bounding

Solve(Nodes,Bound)

if Empty Nodes -> Report-Best-Solution-or-Fail
else
 Let Node = Select-Node Nodes
 Let Rest = Nodes - Node

 if f(Node) > Bound
 Solve(Rest,Bound) ;;; PRUNE NODE n

 else if Node is Goal -> Process-Solution Node Rest
 else
 Let Children = Expand-Node Node
 Let New-Nodes = Add-Nodes Children Rest
 Solve(New-Nodes,Bound)

Select-Node & Add-Nodes as in DFS
Some instances of general bounded search scheme

- **Iterative Deepening (ID)**
 - Uses $f(n) = g(n)$
 - Calls Solve with bounds 0, 1, .. til solution found
 - Process-Solution returns Solution

- **Iterative Deepening A* (IDA*)**
 - Uses $f(n) = g(n) + h(n)$
 - Calls Solve with bounds $f(n_0), f(n_1), \ldots$ where $n_0 = \text{root}$ and n_i is cheapest node pruned in iteration $i - 1$
 - Process-Solution returns Solution

- **Branch and Bound**
 - Uses $f(n) = g(n) + h(n)$
 - Single call to Solve with high (Upper) Bound
 - Process-Solution: updates Bound to Solution Cost minus 1 & calls Solve(Rest,New-Bound)
Properties of Algorithms

- **Completeness**: whether guaranteed to find solution
- **Optimality**: whether solution guaranteed optimal
- **Time Complexity**: how time increases with size
- **Space Complexity**: how space increases with size

<table>
<thead>
<tr>
<th></th>
<th>DFS</th>
<th>BrFS</th>
<th>ID</th>
<th>A*</th>
<th>HC</th>
<th>IDA*</th>
<th>B&B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Optimal</td>
<td>No</td>
<td>Yes*</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Time</td>
<td>∞</td>
<td>b^d</td>
<td>b^d</td>
<td>b^d</td>
<td>∞</td>
<td>b^d</td>
<td>b^D</td>
</tr>
<tr>
<td>Space</td>
<td>$b \cdot d$</td>
<td>b^d</td>
<td>$b \cdot d$</td>
<td>b^d</td>
<td>b</td>
<td>$b \cdot d$</td>
<td>$b \cdot d$</td>
</tr>
</tbody>
</table>

- Parameters: d is solution depth; b is branching factor
- BrFS optimal when costs are uniform
- A*/IDA* optimal when h is admissible; $h \leq h^*$
A*: Additional Properties

- A* stores in memory all nodes visited
- Nodes either in Open (search frontier) or Closed
- When nodes expanded, children looked up in Open and Closed lists
- Duplicates prevented and no node expanded more than once

- A* is optimal in another sense: no other algorithm expands less nodes than A* with same heuristic function (this doesn't mean that A* is always fastest)
- A* expands ‘less’ nodes with more informed heuristic, h_2 more informed that h_1 if $0 < h_1 < h_2 \leq h^*$
Practical Issues: Search in Large Spaces

- Exponential-memory algorithms like A* not feasible for large problems

- **Time and memory** requirements can be lowered significantly by multiplying heuristic term $h(n)$ by a constant $W > 1$ (WA^*)

- Solutions no longer optimal but at most W times from optimal

- For large problems, only feasible optimal algorithms are **linear-Memory** algorithms such as IDA* and B&B

- Linear-memory algorithms often use **too little memory** and may visit fragments of search space many times

- It’s common to extend IDA* in practice with so-called **transposition tables**

- Optimal solutions have been reported to problems with **huge state spaces** such as 24-puzzle, Rubik’s cube, and Sokoban (Korf, Schaeffer); e.g. $|S| > 10^{25}$
Learning Real Time A* (LRTA*)

- LRTA* is a very interesting real-time search algorithm (Korf 90)
- It’s like a hill-climb or greedy search that updates the heuristic V as it moves, starting with $V = h$.

1. **Evaluate** each action a in s as $Q(a, s) = c(a, s) + V(s')$
2. **Apply** action a that minimizes $Q(a, s)$
3. **Update** $V(s)$ to $Q(a, s)$
4. **Exit** if s' is goal, else go to 1 with $s := s'$

- Two remarkable properties
 - Each trial of LRTA gets eventually to the goal if space connected
 - Repeated trials eventually get to the goal optimally, if h admissible!

- Generalizes well to stochastic actions (MDPs)
Heuristics: where they come from?

• General idea: heuristic functions obtained as **optimal cost functions** of **relaxed problems**

• Examples:

 – *Manhattan distance in N-puzzle*
 – *Euclidean Distance in Routing Finding*
 – *Spanning Tree in Traveling Salesman Problem*
 – *Shortest Path in Job Shop Scheduling*

• Yet

 – how to get and solve suitable relaxations?
 – how to get heuristics automatically?

 We'll get more into this as we get back to planning . . .