Course on Automated Planning: Intro to Planning

Hector Geffner
ICREA & Universitat Pompeu Fabra
Barcelona, Spain
Planning: Motivation

How to develop systems or ‘agents’ that can make decisions on their own?
Wumpus World PEAS description

Performance measure
- gold +1000, death -1000
- -1 per step, -10 for using the arrow

Environment
- Squares adjacent to wumpus are smelly
- Squares adjacent to pit are breezy
- Glitter iff gold is in the same square
- Shooting kills wumpus if you are facing it
- Shooting uses up the only arrow
- Grabbing picks up gold if in same square
- Releasing drops the gold in same square

Actuators
- Left turn, Right turn,
- Forward, Grab, Release, Shoot

Sensors
- Breeze, Glitter, Smell
The key problem is to select **the action to do next**. This is the so-called **control problem**. Three approaches to this problem:

- **Programming-based**: Specify control by hand
- **Learning-based**: Learn control from experience
- **Model-based**: Specify problem by hand, derive control automatically

Approaches not orthogonal though; and successes and limitations in each . . .
Settings where greater autonomy required

- Robotics
- Video-Games
- Web Service Composition
- Aerospace
- Manufacturing
Solution 1: Programming-based Approach

Control specified by programmer; e.g.,

- *don’t move into a cell if not known to be safe (no Wumpus or Pit)*
- *sense presence of Wumpus or Pits nearby if this is not known*
- *pick up gold if presence of gold detected in cell*
- ...

Advantage: domain-knowledge easy to express

Disadvantage: cannot deal with situations not anticipated by programmer
Solution 2: Learning-based Approach

- **Unsupervised** (Reinforcement Learning):
 - penalize agent each time that it ’dies’ from Wumpus or Pit
 - reward agent each time it’s able to pick up the gold, . . .

- **Supervised** (Classification)
 - learn to classify actions into good or bad from info provided by teacher

- **Evolutionary**:
 - from pool of possible controllers: try them out, select the ones that do best, and mutate and recombine for a number of iterations, keeping best

Advantage: does not require much knowledge in principle

Disadvantage: in practice though, right features needed, incomplete information is problematic, and unsupervised learning is slow . . .
Solution 3: Model-Based Approach

- specify model for problem: actions, initial situation, goals, and sensors
- let a solver compute controller automatically

Advantage: flexible, clear, and domain-independent

Disadvantage: need a model; computationally intractable

Model-based approach to intelligent behavior called Planning in AI
Basic State Model for Classical AI Planning

• finite and discrete state space S
• a known initial state $s_0 \in S$
• a set $S_G \subseteq S$ of goal states
• actions $A(s) \subseteq A$ applicable in each $s \in S$
• a deterministic transition function $s' = f(a, s)$ for $a \in A(s)$
• positive action costs $c(a, s)$

A solution is a sequence of applicable actions that maps s_0 into S_G, and it is optimal if it minimizes sum of action costs (e.g., # of steps)

Different models obtained by relaxing assumptions in **bold** . . .
Uncertainty but No Feedback: Conformant Planning

- finite and discrete state space S
- a set of possible initial state $S_0 \in S$
- a set $S_G \subseteq S$ of goal states
- actions $A(s) \subseteq A$ applicable in each $s \in S$
- a non-deterministic transition function $F(a, s) \subseteq S$ for $a \in A(s)$
- uniform action costs $c(a, s)$

A solution is still an action sequence but must achieve the goal for any possible initial state and transition

More complex than classical planning, verifying that a plan is conformant intractable in the worst case; but special case of planning with partial observability
MDPs are \textbf{fully observable}, \textbf{probabilistic} state models:

- a state space S
- initial state $s_0 \in S$
- a set $G \subseteq S$ of goal states
- actions $A(s) \subseteq A$ applicable in each state $s \in S$
- \textbf{transition probabilities} $P_a(s'|s)$ for $s \in S$ and $a \in A(s)$
- action costs $c(a, s) > 0$

- \textbf{Solutions} are \textbf{functions (policies)} mapping states into actions
- \textbf{Optimal} solutions minimize \textbf{expected cost} to goal
Partially Observable MDPs (POMDPs)

POMDPs are partially observable, probabilistic state models:

- states $s \in S$
- actions $A(s) \subseteq A$
- transition probabilities $P_a(s'|s)$ for $s \in S$ and $a \in A(s)$
- initial belief state b_0
- final belief states b_F
- sensor model given by probabilities $P_a(o|s)$, $o \in Obs$

- Belief states are probability distributions over S
- Solutions are policies that map belief states into actions
- Optimal policies minimize expected cost to go from b_0 to b_F
A planner is a solver over a class of models; it takes a model description, and computes the corresponding controller.

Many models, many solution forms: uncertainty, feedback, costs, . . .

Models described in suitable planning languages (Strips, PDDL, PPDDL, . . .) where states represent interpretations over the language.
Language for Classical Planning: Strips

- A **problem** in Strips is a tuple $P = \langle F, O, I, G \rangle$:
 - F stands for set of all **atoms** (boolean vars)
 - O stands for set of all **operators** (actions)
 - $I \subseteq F$ stands for **initial situation**
 - $G \subseteq F$ stands for **goal situation**

- Operators $o \in O$ represented by
 - the **Add** list $Add(o) \subseteq F$
 - the **Delete** list $Del(o) \subseteq F$
 - the **Precondition** list $Pre(o) \subseteq F$
A Strips problem $P = \langle F, O, I, G \rangle$ determines state model $S(P)$ where

- the states $s \in S$ are **collections of atoms** from F
- the initial state s_0 is I
- the goal states s are such that $G \subseteq s$
- the actions a in $A(s)$ are ops in O s.t. $Prec(a) \subseteq s$
- the next state is $s' = s - Del(a) + Add(a)$
- action costs $c(a, s)$ are all 1

- (Optimal) **Solution** of P is (optimal) solution of $S(P)$
- Slight language extensions often convenient (e.g., **negation** and **conditional effects**); some required for describing richer models (costs, probabilities, ...).
Example: Blocks in Strips (PDDL Syntax)

(define (domain BLOCKS)
 (:requirements :strips) ...
 (:action pick_up
 :parameters (?x)
 :precondition (and (clear ?x) (ontable ?x) (handempty))
 :effect (and (not (ontable ?x)) (not (clear ?x)) (not (handempty)) (holding ?x)))
 (:action put_down
 :parameters (?x)
 :precondition (holding ?x)
 :effect (and (not (holding ?x)) (clear ?x) (handempty) (ontable ?x)))
 (:action stack
 :parameters (?x ?y)
 :precondition (and (holding ?x) (clear ?y))
 :effect (and (not (holding ?x)) (not (clear ?y)) (clear ?x)(handempty)
 (on ?x ?y))) ...

(define (problem BLOCKS_6_1)
 (:domain BLOCKS)
 (:objects F D C E B A)
 (:init (CLEAR A) (CLEAR B) ... (ONTABLE B) ... (HANDEMTY))
 (:goal (AND (ON E F) (ON F C) (ON C B) (ON B A) (ON A D)))))

Hector Geffner, Course on Automated Planning, Rome, 7/2010 16
Example: Logistics in Strips PDDL

(define (domain logistics)
 (:requirements :strips :typing :equality)
 (:types airport - location truck airplane - vehicle vehicle packet - thing thing location city)
 (:action load
 :parameters (?x - packet ?y - vehicle)
 :vars (?z - location)
 :precondition (and (at ?x ?z) (at ?y ?z))
 :effect (and (not (at ?x ?z)) (in ?x ?y)))
 (:action unload ..)
 (:action drive
 :parameters (?x - truck ?y - location)
 :vars (?z - location ?c - city)
 :effect (and (not (at ?x ?z)) (at ?x ?y)))
 ...
)

(define (problem log3_2)
 (:domain logistics)
 (:objects packet1 packet2 - packet truck1 truck2 truck3 - truck airplane1 - airplane)
 (:init (at packet1 office1) (at packet2 office3) ...)
 (:goal (and (at packet1 office2) (at packet2 office2))))
Example: 15-Puzzle in PDDL

(define (domain tile)
 (:requirements :strips :typing :equality)
 (:types tile position)
 (:constants blank - tile)
 (:predicates (at ?t - tile ?x - position ?y - position)
 (inc ?p - position ?pp - position)
 (dec ?p - position ?pp - position))
 (:action move-up
 :precondition (and (= ?px ?bx) (dec ?by ?py) (not (= ?t blank)) ...)
 :effect (and (not (at blank ?bx ?by)) (not (at ?t ?px ?py)) (at blank ?px ?py)) (...

define (domain eight_tile) ..
 (:constants t1 t2 t3 t4 t5 t6 t7 t8 - tile p1 p2 p3 - position)
 (:timeless (inc p1 p2) (inc p2 p3) (dec p3 p2) (dec p2 p1)))

(define (situation eight_standard)
 (:domain eight_tile)
 (:init (at blank p1 p1) (at t1 p2 p1) (at t2 p3 p1) (at t3 p1 p2) ..)
 (:goal (and (at t8 p1 p1) (at t7 p2 p1) (at t6 p3 p1) ..)
Computation: how to solve Strips planning problems?

- **Key issue:** exploit two roles of **language:**
 - **specification:** concise model description
 - **computation:** reveal useful heuristic info

- **Two traditional approaches:** search vs. decomposition
 - **explicit search** of the state model $S(P)$ direct but not effective til recently
 - **near decomposition** of the planning problem thought a better idea
Computational Approaches to Classical Planning

- **Strips algorithm** (70’s): Total ordering planning backward from Goal; work always on top subgoal in stack, delay rest

- **Partial Order (POCL) Planning** (80’s): work on any subgoal, resolve threats; UCPOP 1992

- **Graphplan** (1995 – . . .): build graph containing all possible parallel plans up to certain length; then extract plan by searching the graph backward from Goal

- **SatPlan** (1996 – . . .): map planning problem given horizon into SAT problem; use state-of-the-art SAT solver

- **Heuristic Search Planning** (1996 – . . .): search state space $S(P)$ with heuristic function h extracted from problem P

- **Model Checking Planning** (1998 – . . .): search state space $S(P)$ with ‘symbolic’ BrFS where sets of states represented by formulas implemented by BDDs
State of the Art in Classical Planning

- significant progress since Graphplan (Blum & Furst 95)

- empirical methodology
 - standard PDDL language
 - planners and benchmarks available; competitions
 - focus on performance and scalability

- large problems solved (non-optimally)

- different formulations and ideas

We’ll focus on two formulations:

- (Classical) Planning as Heuristic Search, and

- (Classical) Planning as SAT