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Notes on Linear Control Systems: Module XII
Stefano Battilotti

Abstract—Transient output response design in frequency do-
main.

I. TRANSIENT PERFORMANCES

One of the most important characteristics of a control
system is the transient error response. As we have seen,
since the aim of a control system is to guarantee some
tracking performances (steady-state errors within given toler-
ances, disturbance compensation and so on), the transient error
response must be modified if necessary until it is satisfactory
according to given criteria (rise time, settling time, maximal
overshooting). If the transient error response is not satisfac-
tory, the process P(s) must be modified, for example, in a
feedback interconnection in such a way to achieve the desired
performances. In general, it is possible to modify the transient
error response by inserting in the control loop a controller
G(s) in series interconnection with the process P(s). The
transient perfomances of the closed-loop forced response can
be evaluated, for instance, on the base of the Bode plot of the
closed-loop system W(s) = G(s)P(s)

1+G(s)P(s)
. The most significant

and commonly used parameters on the Bode plots are the
following.

Definition 1.1: The resonance peakMR is the maximal value
of ∣W(jω)∣dB − ∣W(0)∣dB for ω ≥ 0. The frequency ω = ωR
at which ∣W(jω)∣dB − ∣W(0)∣dB is maximal is the resonance
frequency. The cut-off frequency ωF is the frequency at which
∣W(jω)∣dB − ∣W(0)∣dB = −3dB.
Resonance peak and cut-off frequency of the closed-loop
system W(s) can be related (through experimental relations or
look-up tables) to rise time and maximal overshooting, defined
in time domain for the closed-loop forced output response
to step inputs. On the other hand, resonance peak and cut-
off frequency of the closed-loop system can be related to
the cross-over frequency and phase margin of the open-loop
system G(s)P(s). This connection can be established on the
Nichols chart (the study of Nichols chart goes beyond the
scope of these notes and will be omitted).

We limit ourselves to study how it is possible to change
the cross-over frequency and phase margin of the open-loop
system G(s)P(s) through elementary control actions G(s)
which, through the Nichols chart, introduce corresponding
variations in the resonance peak and cut-off frequency of the
closed-loop system W(s) and, as already noticed, in rise time
and maximal overshooting of the closed-loop forced output re-
sponse to step inputs. The class of control actions we consider
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consists of series interconnections of three elementary control
actions: proportional, anticipative or attenuative actions.

An anticipative action is modeled as

G(s) =
1 + τas

1 + τa
ma
s

(1)

with τa > 0 and ma > 1, which corresponds (approximately) to
the combination of a derivative with a proportional action. The
Bode plot of the function (1) versus frequency ωN ∶= ωτa with
parameters τa > 0 and ma > 1 is given in Figure 1. Here, ωN
is the (normalized to τa) frequency scale in the Bode plot of
G(s) in (1) while ω is the frequency scale of the Bode plot
of P(s). The parameter ma represents one of the numbers
which label the curves in Figure 1, therefore by selecting ma

we select different pairs of curves (magnitude and phase) in
Figure 1. By setting τa =

ω∗N
ω∗

we establish that the frequency
ω∗ on the Bode plots of P(s) corresponds to the frequency ω∗N
on the Bode plots of G(s) in Figure 1. At the same time we
establish that there is a scale factor τa between the frequency
scale of the Bode plot of P(s) and the frequency scale of
the curves (magnitude and phase) of G(s) in Figure 1 with
label ma. This also means that we can obtain the Bode plot
of P(s)G(s) simply by summing the Bode plot of G(s) in
Figure 1 with label ma at each frequency ωN to the Bode plot
of P(s) at frequency ω = ωN

τa
. For example, if the open-loop

system is

P(s) =
1

s(1 + s)
(2)

and we select a G(s) with ma = 10 and τa = 2

G(s) =
1 + 2s

1 + 1
5
s

(3)

the Bode plot of the series interconnection

P(s)G(s) =
1

s(1 + s)

1 + 2s

1 + 1
5
s

(4)

is the sum of the magnitude and the phase curves in Figure 1
with label ma = 10 at each frequency ωN with the magnitude
and the phase of (2) at each frequency ω = ωN

2
(see Figure 2).

In particular, with respect to the Bode plot of P(s), at ω = 1
rad/sec we have a magnitude increment +6dB (which is the
value of the magnitude curve in (3) with label ma = 10 at
ωN = 2 rad/sec) and a phase increment +52○ (which is the
value of the phase curve in (3) with label ma = 10 at ωN = 2
rad/sec).

An attenuative action is modeled by

1 + τi
mi
s

1 + τis
(5)

with τi > 0 and mi > 1. The Bode plot of the function (5)
versus frequency ωN ∶= ωτi with parameters τi > 0 and mi > 1
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Figure 1. Anticipative control actions.
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Figure 2. Bode plots of P(s) = 1
s(1+s)

and the compensated P(s)G(s) = 1
s(1+s)

1+2s
1+ 1

5
s

.

Figure 3. Bode plots of P(s) = 1
s(s+1)

and P(s)G1(s) =
1+ 0.2

3
s

1+ 0.02
3

s
.

can be derived from the curves of Figure 1 simply by changing
the sign of the values of the magnitude and phase plotted in
Figure 1. All the remarks discussed for the anticipative action
can be extended to the attenuative action, by using mi and τi
(instead of ma and τa, respectively) as parameters.

With proportional, anticipative and attenuative actions, we
can distinguish four different basic situations in which we can
change the cross-over frequency and/or the phase margin of
the open-loop system:

(i) increase the phase margin while maintaining the
same cross-over frequency
(ii) increase the phase margin by decreasing the

cross-over frequency
(iii) increase the phase margin and the cross-over
frequency
(iv) increase the phase margin and decreasing the
cross-over frequency.

We will discuss each of these situations, showing how each
situation corresponds to a different choice of the parameters
ma and τa (respectively, mi and τi).
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Figure 4. Bode plots of P(s) = 10
s(s+1)

and P(s)G1(s) =
10

s(s+1)

1+ 25
2

s

1+100s
.

A. Increase the phase margin while maintaining the same
cross-over frequency

Let

P(s) ∶=
10

s(s + 1)
(6)

be the open-loop system and assume that desired values of
cross-over frequency and phase margin are ω∗t ≈ 3 rad/sec
and, respectively, m∗

f ≥ 28○. Notice that (see Figure 3) the
magnitude of (6) at ω = 3 rad/sec is ≈ 0 dB and the phase of (6)
at ω = 3 rad/sec is −162○. Therefore, to achieve a phase margin
m∗

f ≥ 28○ we must increase the phase of (6) by at least 10○ at
ω = 3 rad/sec without altering the magnitude significantly.

We increase the phase of (6) by means of an anticipative
action (1) and selecting τa and ma in such a way to gain
the required phase increment at ω = 3 rad/sec in the series
interconnection of (1) and (6). Notice (see 1) that the phase of
(1) for ma = 10 is ≈ 10○ at ωN = 0.2 rad/sec with a magnitude
of ≈ 0dB. Therefore, select ma = 10 and set ω∗N = 0.2 rad/sec
and, consequently, τa =

ω∗N
ω∗t

= 0.2
3

. With this choice of τa
we make correspond ω∗N to ω∗t and the increment of ≈ 10○

(contributed by the anticipative action) at the frequency ω∗t = 3
rad/sec in the Bode plot of P(s). Define

G1(s) ∶=
1 + τas

1 + τa
ma
s
=

1 + 0.2
3
s

1 + 0.02
3
s

(7)

The resulting series interconnection P(s)G1(s) has the
desired values of cross-over frequency ω∗t ≈ 3 rad/sec and
phase margin m∗

f ≥ 28○ (see Figure 3).

B. Increase the phase margin by decreasing the cross-over
frequency.

Let

P(s) ∶=
10

s(s + 1)
(8)

be the open-loop system and assume that desired values of the
phase margin is m∗

f ≥ 40○. Notice that (see 4) the magnitude
of (8) at ω = 1 rad/sec is ≈ 17 dB and the phase of (8) at
ω = 1 rad/sec is −135○. Therefore, to achieve a phase margin
m∗

f ≥ 45○ we can decrease the magnitude of (8) by 17 dB at
ω = 1 rad/sec without decreasing the phase significantly.

We decrease the magnitude of (8) by means of an attenuative
action (5) and selecting τi and mi in such a way to have the
required magnitude decrement at ω = 1 rad/sec in the series
interconnection of (5) and (8). Notice (see Figure 1) that the
phase of (5) for mi = 8 is ≈ −4○ at ωN = 100 rad/sec with a
magnitude of ≈ −18dB. Therefore, select mi = 8 and ω∗N = 100

rad/sec and, consequently, τi =
ω∗N
ω∗t

= 100. Define

G1(s) ∶=
1 + τi

mi
s

1 + τis
=

1 + 25
2
s

1 + 100s
(9)

The resulting series interconnection P(s)G1(s) has the de-
sired values of cross-over frequency ω∗t = 1 rad/sec and phase
margin m∗

f ≥ 45○ (see Figure 4).

C. Increase the phase margin and the cross-over frequency.

Let

P(s) ∶=
100

s2(s + 1)
(10)

be the open-loop system and assume that desired values of
cross-over frequency and phase margin are ω∗t = 10 rad/sec
and, respectively, m∗

f ≥ 60○. Notice that (see Figure 5) the
magnitude of (10) at ω = 10 rad/sec is −20 dB and the phase
of (10) at ω = 10 rad/sec is −264○. Therefore, to achieve
cross-over frequency and phase margin ω∗t = 10 rad/sec and,
respectively, m∗

f ≥ 60○ we must increase the magnitude of (10)
by 20 dB at ω = 10 rad/sec and increase the phase of (10) at
least by 144○ at ω = 10 rad/sec.
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Figure 5. Bode plots of P(s) = 100
s2(s+1)

, P(s)G1(s) =
100

s2(s+1)
(

1+0.1s
1+0.01s

)

4
and P(s)G1(s)G2(s) = 2.5119

100
s2(s+1)

(
1+0.1s
1+0.01s

)

4
.

Figure 6. Bode plots of P(s) = 100
s2

, P(s)G1(s) =
100
s2

1+40s
1+ 5

2
s

and P(s)G1(s)G2(s) = 2.5119e
−5 100

s2
1+40s
1+ 5

2
s

.

First, we increase the phase of (10) by means of an
anticipative action (1) and selecting τa and ma in such a way
to have the needed phase increment at ω = 10 rad/sec in the
series interconnection of (1) and (10). Notice (see Figure 1)
that the phase of (1) for ma = 10 is ≈ 40○ at ωN = 1 rad/sec
with a magnitude increase of ≈ 3dB. Therefore, select ma = 10

and set ω∗N = 1 rad/sec and, consequently, τa =
ω∗N
ω∗t

= 0.1.
Therefore, to obtain a phase increment of ≈ 160○ > 144○ we
take 4 anticipative actions (1)

G1(s) ∶= (
1 + τas

1 + τa
ma
s
)
4

= (
1 + 0.1s

1 + 0.01s
)
4

(11)

Next, we increment the magnitude of P(s)G1(s) at ω = 10

rad/sec by means of a gain increment. On account of the fact
that the magnitude of the series interconnection of P(s)G1(s)
is −20+12 = −8 dB at ω = 10 rad/sec and the phase is −264○+
160○ = 104○ ≥ 60○ at ω = 10, define

G2(s) ∶=K = 8dB = 2.5119 (12)

The resulting series interconnection P(s)G1(s)G2(s) has the
desired values of cross-over frequency ω∗t = 10 rad/sec and
phase margin m∗

f ≥ 60○ (see Figure 5). The resulting controller
is the series interconnection G(s) ∶=G1(s)G2(s).
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Figure 7. Bode plots of P(s) = 1
s2

, P(s)G1(s) =
1
s2
(

1+10s
1+ 10

3
s
)

2
and P(s)G1(s)G2(s) =

1
s2
(

1+10s
1+ 10

3
s
)

2 1+ 500
7

s

1+1000s

1+ 250
3

s

1+1000s
.

D. Increase the phase margin and decreasing the cross-over
frequency.

Let

P(s) ∶=
100

s2
(13)

be the open-loop system and assume that desired values of
cross-over frequency and phase margin are ω∗t = 0.1 rad/sec
and, respectively, m∗

f ≥ 60○. Notice that (see Figure 6) the
magnitude of (13) at ω = 0.1 rad/sec is 80 dB and the phase
of (13) at ω = 0.1 rad/sec is −180○. Therefore, to achieve
cross-over frequency and phase margin are ω∗t = 0.1 rad/sec
and, respectively, m∗

f ≥ 60○ we must decrease the magnitude
of (13) by 80 dB at ω = 0.1 rad/sec and increase the phase of
(13) at least by 60○ at ω = 0.1 rad/sec.

First, we increase the phase of (13) by means of an anticipa-
tive action (1) and selecting τa and ma in such a way to have
the required phase increment at ω = 0.1 rad/sec in the series
interconnection of (1) and (13). Notice (see Figure 1) that the
phase of (1) for ma = 16 is ≈ 62○ at ωN = 4 rad/sec with a
magnitude increase of ≈ 12dB. Therefore, select ma = 16 and
set ω∗N = 4 rad/sec and, consequently, τa =

ω∗N
ω∗t

= 40. Define

G1(s) ∶=
1 + τas

1 + τa
ma
s
=
1 + 40s

1 + 5
2
s

(14)

Next, the magnitude can be decreased by means of either
a gain decrement or a an attenuative action (5). However, the
gain decrement cannot be used if a reduction of the steady-
state error response is required (see module XI).

If a gain reduction is allowed, on account of the fact that the
magnitude of the series interconnection of G1(s) and (13) has
a magnitude of 80 + 12 = 92 dB at ω = 0.1 rad/sec we define

G2(s) ∶=K = −92dB = 0.000025 (15)

The resulting series interconnection P(s)G1(s)G2(s) has the
desired values of cross-over frequency ω∗t = 0.1 rad/sec and
phase margin m∗

f ≥ 60○ (see Figure 6).
If a gain reduction is not allowed, we will decrease the

magnitude of P(s)G1(s) by means of an attenuative action
(5). However, if so, when attenuative the magnitude by (5) we
have at the same a phase attenuation. Therefore, when using
the series of an anticipative action with an attenuative action, it
is necessary to increase the phase a little more to compensate
for the phase decrement due to the attenuative action. Let

P(s) ∶=
1

s2
(16)

be the open-loop system and assume that desired values of
cross-over frequency and phase margin are ω∗t = 0.1 rad/sec
and, respectively, m∗

f ≥ 30○. Notice that (see Figure 7) the
magnitude of (16) at ω = 0.1 rad/sec is 40 dB and the phase
of (16) at ω = 0.1 rad/sec is −180○. Therefore, to achieve
cross-over frequency and phase margin are ω∗t = 0.1 rad/sec
and, respectively, m∗

f ≥ 30○ we must decrease the magnitude
of (16) by 40 dB at ω = 10 rad/sec and increase the phase of
(16) at least by 30○ at ω = 10 rad/sec.

First, we increase the phase of (16) by means of an
anticipative action (1) and selecting ωN and ma in such a
way to have the required phase increment at ω = 0.1 rad/sec
in the series interconnection of (1) and (16). Notice (see 1)
that the phase of (1) for ma = 3 is ≈ 26○ at ω = 1 rad/sec with
a magnitude increase of ≈ 2.5dB. Therefore, select ma = 3

and set ω∗N = 1 rad/sec and, consequently, τa =
ω∗N
ω∗t

= 10.
In order to obtain a phase increment of ≈ 50○ (20○ more than
necessary, since these extra phase will be lost when attenuative
the magnitude) we take two anticipative actions (1)

G1(s) ∶= (
1 + τas

1 + τa
ma
s
)
2

= (
1 + 10s

1 + 10
3
s
)
2

(17)
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Figure 8. Bode plots of P(s) = 1
s

and P(s)G1(s) =
100
s

(exercize 2.1).

Figure 9. Bode plots of P(s)G1(s) =
100
s

and P(s)G1(s)G2(s) =
100
s2

(exercize 2.1).

Next, we decrement the magnitude of P(s)G1(s) at ω = 0.1
rad/sec. On account of the fact that the magnitude of the series
interconnection of P(s)G1(s) is 40 + 5 = 45 dB at ω = 0.1
rad/sec and since (see 1) the magnitude of (5) for mi = 14
(resp. mi = 12) at ω = 100 rad/sec is ≈ −23 dB (resp. ≈
−22) dB with phase ≈ −9○ (resp. ≈ −8○), in order to obtain
a magnitude decrement of ≈ 45 dB we take two attenuative
actions (5): for the first, select m′

i = 14 and set ω′N
∗

= 100

rad/sec and, consequently, τ ′i =
ω′N

∗

ω∗t
= 1000, for the second

select m′′

i = 12 and set ω′′N
∗

= 100 rad/sec and, consequently,

τ ′′i =
ω′′N

∗

ω∗t
= 1000. Define

G2(s) ∶=
1 +

τ ′i
m′i
s

1 + τ ′is

1 +
τ ′′i
m′′i
s

1 + τ ′′i s
=

1 + 500
7
s

1 + 1000s

1 + 250
3
s

1 + 1000s
(18)

The ensuing phase decrement is ≈ −17○, therefore since (17)
has been designed with an extra phase increment of 20○,
the phase after the attenuation of (18) is ≥ −150○ (which
corresponds to the desired phase margin). The resulting series
interconnection P(s)G1(s)G2(s) has the desired values of
cross-over frequency ω∗t = 0.1 rad/sec and phase margin
m∗

f ≥ 30○ (see Figure 7). The resulting controller is the series
interconnection G(s) ∶=G1(s)G2(s).
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Figure 10. Bode plots of P(s)G1(s)G2(s) =
100
s2

and P(s)G1(s)G2(s)G3(s) =
100
s2

1+40s
1+ 5

2
s

(exercize 2.1).

Figure 11. Nyquist plot of P(s)G(s) = 0.0025
s2

1+40s
1+ 5

2
s

(exercize 2.1).

II. MIXED STEADY-STATE AND TRANSIENT
PERFORMANCES REQUIREMENTS

A first class of exercizes we consider is the one which
combines steady-state (tracking error and disturbances com-
pensation) with transient performance requirements (phase
margin and crossover frequency requirements).

Exercize 2.1: Given

P(s) ∶=
1

s
(19)

find G(s) such that the closed-loop system W(s) =
G(s)P(s)

1+G(s)P(s)
is asymptotically stable with

(i) the absolute value of the steady-state error response to
v(t) ∶= t is ≤ 0.01

(ii) zero steady-state response to input disturbances d(t) ∶= 1

and the open-loop system G(s)P(s) has

(iii) crossover frequency ω∗t = 0.1 rad/sec and phase margin
m∗

f ≥ 60○.

Let e(ss,1) denote the steady-state error response to v(t) ∶= t
and y(ss,0) the steady-state output response to an input dis-
turbance d(t) ∶= 1. Since P(s) has a pole in s = 0 then the
closed-loop system P(s)

1+P(s)
is of type 1 and e(ss,1) is constant
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and non-zero. In particular,

e(ss,1) =
1

(sP)∣s=0
= 1 (20)

and therefore ∣e(ss,1)∣ = 1 > 0.01. We must reduce e(ss,1) by a
proportional control action G1(s) =K1 (see Figure 8):

e(ss,1) =
1

(sPG1)∣s=0
=

1

K1
(21)

Therefore, for the closed-loop system G1(s)P(s)
1+G1(s)P(s)

∣e(ss,1)∣ ≤ 0.01⇔ ∣K1∣ ≥ 100 (22)

Define

G1(s) ∶=K1 = 100 (23)

Despite the fact that P(s)G1(s) has a simple pole in
s = 0 and since there are no integral control action before
the entrance point of the disturbance in the control loop , the
steady-state response to input disturbances d(t) ∶= 1 tends to
infinity as time increases. We must introduce an additional
integral control action G2(s) =

1
s

before the entrance point of
the disturbance or equivalently the product G2(s)G1(s)P(s)
must have a pole in s = 0 (see Figure 9). The closed-loop
system

G2(s)G1(s)P(s)

1 +G2(s)G1(s)P(s)

has a zero steady-state response to input disturbances d(t) ∶=
1.

Since G2(s)G1(s)P(s) has now two poles in s = 0 the
closed-loop system

G2(s)G1(s)P(s)

1 +G2(s)G1(s)P(s)

is of type 2 and e(ss,1) = 0. Therefore, (22) is not any more
necessary and the gain of G2(s)G1(s)P(s) can be decreased
by subsequent series proportional control actions.

Notice that at ω = 0.1 rad/sec the magnitude of
G2(s)G1(s)P(s) is 80dB and the phase is −180○. Therefore,
in order to have ω∗t = 0.1 rad/sec and m∗

f ≥ 60○ it is necessary
to decrease the magnitude at ω = 0.1 rad/sec by 80dB and
increase the phase by 60○. First, we increase the phase
(at least) by 60○: select ma = 16, ω∗N = 4 rad/sec and,
consequently, τa =

ω∗N
ω∗t

= 40. Define

G3(s) ∶=
1 + τas

1 + τa
ma
s
=
1 + 40s

1 + 5
2
s

(24)

(see Figure 10)
Note that the magnitude of P(s)G1(s)G2(s)G3(s) at ω =

0.1 rad/sec is 80 + 12 = 92dB and the phase is −180○ + 62○ =
−118○ (the phase margin is 62○ ≥ 60○). Finally, we decrease
the magnitude by 92dB: define

G4(s) ∶= −92dB = 0.000025. (25)

The final formula for the controller is

G(s) = P(s)G1(s)G2(s)G3(s)G4(s) =
0.0025

s2
1 + 40s

1 + 5
2
s
.

The stability of the closed-loop system W(s) =
G(s)P(s)

1+G(s)P(s)
can be ascertained by means of the Nyquist criterion (Fig-
ure 11): indeed, the number of poles of G(s)P(s) in C+ is
zero and zero is the number of counterclockwise encirclements
of −1 + 0j on behalf of GP(jω).

Exercize 2.2: Given

P(s) ∶=
1

s(s + 1)
(26)

find G(s) such that for the closed-loop system W(s) =
G(s)P(s)

1+G(s)P(s)
is asymptotically stable with

(i) the absolute value of the steady-state error response to
v(t) ∶= t is ≤ 0.01
(ii) the absolute value of the steady-state response to input
disturbances d(t) ∶= t is ≤ 0.01

and the open-loop system G(s)P(s) has
(iii) crossover frequency ω∗t = 10 rad/sec and phase margin
m∗

f ≥ 60○.
Let e(ss,1) denote the steady-state error response to v(t) ∶= t

and y(ss,1) the steady-state output response to an input dis-
turbance d(t) ∶= t. Since P(s) has a pole in s = 0 then the
closed-loop system P(s)

1+P(s)
is of type 1 and e(ss,1) is constant

and non-zero. In particular,

e(ss,1) =
1

(sP)∣s=0
= 1 (27)

and therefore ∣e(ss,1)∣ = 1 > 0.01. We must reduce ∣e(ss,1)∣ by
a proportional control action G1(s) =K1 (see Figure 12):

e(ss,1) =
1

(sPG1)∣s=0
=

1

K1
(28)

Therefore, for the closed-loop system G1(s)P(s)
1+G1(s)P(s)

∣e(ss,1)∣ ≤ 0.01⇔ ∣K1∣ ≥ 100 (29)

Define

G1(s) ∶=K1 = 100 (30)

Despite the fact that P(s)G1(s) has a simple pole in
s = 0 and since there are no integral control action before
the entrance point of the disturbance in the control loop, the
steady-state response to input disturbances d(t) ∶= t tends to
infinity as time increases. We must introduce an additional
integral control action G2(s) =

1
s

before the entrance point of
the disturbance or equivalently the product G2(s)G1(s)P(s)
must have a pole in s = 0 (see Figure 13).

The closed-loop system

G2(s)G1(s)P(s)

1 +G2(s)G1(s)P(s)

has a constant and non-zero steady-state response to input
disturbances d(t) ∶= t. Since

y(ss,1) =
1

s

P(s)

1 +P(s)G1(s)G2(s)
∣
s=0

=
1

K1
(31)

for the closed-loop system G1(s)G2(s)P(s)
1+G1(s)G2(s)P(s)

∣y(ss,1)∣ ≤ 0.01⇔ ∣K1∣ ≥ 100 (32)
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Figure 12. Bode plots of P(s) = 1
s(s+1)

and P(s)G1(s) =
100

s(s+1)
(exercize 2.2).

Figure 13. Bode plots of P(s)G1(s) =
100

s(s+1)
and P(s)G1(s)G2(s) =

100
s2(s+1)

(exercize 2.2).

Therefore, we do not need to reduce ∣y(ss,1)∣.
Since G2(s)G1(s)P(s) has now two poles in s = 0 the

closed-loop system

G2(s)G1(s)P(s)

1 +G2(s)G1(s)P(s)

is of type 2 and e(ss,1) = 0. Therefore, (29) is not any more
necessary. However, the gain of G2(s)G1(s)P(s) cannot be
decreased by subsequent series proportional control actions for
the active constraint (32).

Notice that at ω = 10 rad/sec the magnitude of
G2(s)G1(s)P(s) is −20dB and the phase is −264○. There-
fore, in order to have ω∗t = 10 rad/sec and m∗

f ≥ 60○ it is

necessary to increase the magnitude at ω = 10 rad/sec by 20dB
and increase the phase by 144○.

First, we increase the phase (at least) by 144○: select ma =

10, ω∗N = 1 rad/sec and, consequently, τa =
ω∗N
ω∗t

= 0.1. Define

G3(s) ∶= (
1 + τas

1 + τa
ma
s
)
4

= (
1 + 0.1s

1 + 0.01s
)
4

(33)

(see Figure 14)
Note that the magnitude of P(s)G1(s)G2(s)G3(s) at ω =

10 rad/sec is −20+12 = −8dB and the phase is −264○+160○ =
−104○ (the phase margin is 76○ ≥ 60○). Finally, we increase
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Figure 14. Bode plots of P(s)G1(s)G2(s) =
100

s(s+1)
and P(s)G1(s)G2(s)G3(s) =

100
s(s+1)

(
1+0.1s
1+0.01s

)

4
(exercize 2.2).

Figure 15. Bode plots of P(s)G1(s)G2(s)G3(s) =
100

s(s+1)
(

1+0.1s
1+0.01s

)

4
and P(s)G1(s)G2(s)G3(s)G4(s) = 2.5119

100
s(s+1)

(
1+0.1s
1+0.01s

)

4
(exercize 2.2).

the magnitude by 8dB: define

G4(s) ∶= 8dB = 2.5119 (34)

(see Figure 15). The final controller G(s) is
G1(s)G2(s)G3(s)G4(s).

The stability of the closed-loop system W(s) = G(s)P(s)
1+G(s)P(s)

can be ascertained by means of the Nyquist criterion (Fig-
ure 16): indeed, the number of poles of G(s)P(s) in C+ is
zero and zero is the number of counterclockwise encirclements
of −1 + 0j on behalf of GP(jω).

Exercize 2.3: Consider the feedback loop of Figure 17 with

P1(s) ∶=
1

s(s + 2)
, P1(s) ∶=

s − 2

(s + 1)2
(35)

Design the controller G(s) such that such that the closed-loop
system is asymptotically stable with
(i) the absolute value of the steady-state error response to
v(t) ∶= t is ≤ 0.1,
(ii) the steady-state output response to constant disturbances
d(t) is zero

and the open-loop system G(s)P(s) has
(iii) crossover frequency ω∗t ≥ 0.5 rad/sec and phase margin
m∗

f ≥ 45○.
First of all,it is convenient to compute the transfer function

P(s) from u to y (setting d = 0). We obtain (notice, before
P2(s), the parallel interconnection of the proportional system
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Figure 16. Nyquist plot of P(s)G1(s)G2(s)G3(s)G4(s) = 2.5119
100

s(s+1)
(

1+0.1s
1+0.01s

)

4
(exercize 2.2).

Figure 17. Feedback loop of exercize 2.3.

1 with P1(s))

P(s) = (1 +P1(s))P2(s)

=
(s + 1)2(s − 2)

s(s + 2)(s + 1)2
=

s − 2

s(s + 2)
(36)

Notice that the zero-pole cancelation of (s + 1)2 is not
preventing the closed-loop system from being asymptotically
stable. Therefore, the I/O transfer function W(s) (from v to
y) is

W(s) =
G(s)P(s)

1 +G(s)P(s)
(37)

Also, in view of the requirement (ii) and since the way
the disturbance affects the feedback loop is not a canonical
one (i.e. additive in either the output y or the input u), it
is convenient to compute the closed-loop transfer function
Wd(s) from d to y (setting v = 0). We obtain

Wd(s) =
P2(s)

1 +G(s)P1(s)P2(s)
(38)

Since P1(s) has a pole at s = 0, then Wd(s) has a zero at
s = 0 which is the condition for which (ii) is satisfied.

Also, since P(s) has a pole at s = 0, the closed-loop system
is of type 1 and

e(ss,1) =
We(s)

s
∣
s=0

(39)
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Figure 18. Nyquist plot of P(s)G(s) = −10 s−2
s(s+2)

1+ 200
16

s

1+200s
(exercize 2.3).

Figure 19. Bode plots of P(s) = 1−s
s2

(exercize 3.1).

where

We(s) = 1 −W(s) =
1

1 +G(s)P(s)
(40)

Therefore,

e(ss,1) =
1

s(1 +G(s)P(s))
∣
s=0

=
1

G(0)(sP)∣s=0
= −

1

G(0)

The requirement (i) gives the condition

∣e(ss,1)∣ ≤ 0.1⇔ ∣G(0)∣ ≥ 10. (41)

We give G(s) the structure

G(s) =KG1(s)

where G1(s) will be designed to satisfy (iii). Notice that at
this point, in view of the constraint (41), both the minimal
choices K = 10 or K = −10 are potentially correct. However,
by inspection of the root locus of P(s) it is possible to see
that only the negative locus is stabilizable (with a proportional
action). Therefore, this leads us to the mandatory choice
K = −10. We stress the fact that the correct sign of the
proportional action to be introduced, before the introduction of
anticipative/attenuative actions, can be in general ascertained
from inspection of the root locus, in particular by discovering
which locus is stabilizable. The sign of the stabilizable locus
points out the correct sign of the proportional action to be
introduced.
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Figure 20. Bode plots of P(s) = 1−s
s2

and P(s)G1(s) =
1−s
s2
(
1+20s
1+5s

)

2
(exercize 3.1).

Figure 21. Bode plots of P(s)G1(s) =
1−s
s2
(
1+20s
1+5s

)

2
and P(s)G1(s)G2(s) = 0.0025

1−s
s2
(
1+20s
1+5s

)

2
(exercize 3.1).

We proceed by designing G1(s). It is easy to see from the
Bode plots of KP(s) that ω(t) = 10 rad/sec and mf ≈ −67

○.
At the least admissible value of the new crossover frequency,
i.e. ω∗t = 0.5 rad/sec, we have

∣KP(jω∗t )∣ ≈ 26dB, Arg{KP(jω∗t )} = −118
○.

Since the value of the phase at ω∗t = 0.5 rad/sec largely
guarantees a phase margin m∗

f ≥ 45○, we can reduce the
magnitude at ω = 0.5 rad/sec in so that ω∗t = 0.5 rad/sec
becomes the new crossover frequency. It is not possible doing
this using a proportional attenuative action in view of the

constraint (41). For this reason we use an attenuative action

G1(s) =
1 + τi

mi
s

1 + τis
.

Inspection of the plot of Figure 1 reveals that for a mi = 16 we
have a maximum attenuation of the 24 dB at the normalized
frequency ωN = 100 rad/sec. In order to let this attenuation
correspond to the frequency ω∗t = 0.5 rad/sec in the Bode plots
of KP(s), we set

ω∗t τi = ω
∗

N = 100⇒ τi = 200.

Notice that since. ∣KP(j0.5)∣ ≈ 26dB the new crossover
frequency will be actually slightly larger than 0.5. The phase
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Figure 22. Nyquist plot of P(s)G(s) = 0.0025 1−s
s2
(
1+20s
1+5s

)

2
: large scale (exercize 3.1).

Figure 23. Nyquist plot of P(s)G(s) = 0.0025 1−s
s2
(
1+20s
1+5s

)

2
: small scale (exercize 3.1).

at the crossover frequency ω∗t = 0.5 becomes

Arg{KP(jω∗t )} ≈ −118
○
− 8○ = −126○ (42)

which still guarantees the requirement m∗

f ≥ 45○.

The asymptotic stability of the closed-loop system W(s) =
P(s)G(s)

1+P(s)G(s)
is verified by the Nyquist criterion on P(s)G(s):

the number of counterclockwise tours around −1+0j on behalf
of P(jω)G(jω) is 0 and the number of poles in C+ of
P(s)G(s) is also 0 (see Nyquist plot in Figure 18).

III. MIXED STEADY-STATE AND TRANSIENT
PERFORMANCES REQUIREMENTS WITH CONTROLLER

CONSTRAINTS

A second class of exercizes we are going to illustrate is the
one which combines steady-state and transient performance
requirements, on one hand, and controller constraints, on
the other. The latter requirements are usually formulated on
the controller G(jω) in terms of dimension (complexity) or
magnitude upper bound (control energy).

Exercize 3.1: Given

P(s) ∶=
1 − s

s2
(43)
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Figure 24. Feedback loop of exercize 3.2.

find G(s) such that
(i) 20log10∣G(jω)∣ ≤ −30 dB for all ω > 0

and for the closed-loop system W(s) =
G(s)P(s)

1+G(s)P(s)
is

asymptotically stable with
(ii) zero steady-state response to output disturbances d(t) ∶= t

and the open-loop system G(s)P(s) is such that
(iii) m∗

f ≥ 60○.
Since P(s) has two poles in s = 0 then the closed-loop

system has a zero steady-state response to output disturbances
d(t) ∶= t.

There is no requirement on ω∗t , which means that we can
change the crossover frequency as we want. On the other hand,
since it is required that 20log10 ∣G(jω)∣ ≤ −30 dB, we must
have a magnitude attenuation of ∣P(jω)∣ of at least 30dB.
Noticing that for all ω ≤ 0.3 rad/sec the magnitude ∣P(jω)∣
is ≥ 30dB and for all ω ≥ 0.3 rad/sec the magnitude ∣P(jω)∣
is ≤ 30dB, we conclude that a crossover frequency ω○t of at
most 0.3 rad/sec is admissible.

Notice that at ω = 0.1 rad/sec the magnitude of P(jω)
is 40dB and the phase is −186○. Therefore, in order to have
ω∗t = 0.1 rad/sec and m∗

f ≥ 60○ it is necessary to decrease the
magnitude at ω = 0.1 rad/sec by 40dB and increase the phase
by at least 66○.

First, we increase the phase (at least) by 66○: select ma = 4,
ω∗N = 2 rad/sec and, consequently, τa =

ω∗N
ω∗t

= 20. Define

G1(s) ∶= (
1 + τas

1 + τa
ma
s
)
2

= (
1 + 20s

1 + 5s
)
2

(44)

(see Figure 14)
Note that the magnitude of P(s)G1(s) at ω = 0.1 rad/sec

is ≈ 40 + 12 = 52dB and the phase is ≈ −186○ + 64○ = −112○

(the phase margin is ≈ 68○ ≥ 60○). Finally, we decrease the
magnitude by 52dB: define

G2(s) ∶= −52dB = 0.0025 (45)

(see Figure 21). The final controller G(s) is G1(s)G2(s).
Let G(s) ∶=G1(s)G2(s). The stability of the closed-loop

system W(s) =
G(s)P(s)

1+G(s)P(s)
can be ascertianed by means

of the Nyquist criterion (Figure 16): indeed, the number of

poles of G(s)P(s) in C+ is zero and zero is the number
of counterclockwise encirclements of −1 + 0j on behalf of
GP(jω).

Exercize 3.2: Consider the feedback loop of Figure 24 with

P(s) ∶=
1

s3
(46)

with G(s) having the following structure

G(s) ∶=K(
1 + τ1s

1 + τ2s
)
2

(47)

Determine K,τ1, τ2 ∈ R such that such that the closed-loop
system W(s) = G(s)P(s)

1+G(s)P(s)
is asymptotically stable with

(i) the absolute value of the steady-state output response to
d(t) ∶= sin(ωt) is ≤ 0.11 for all values of ω ∈ [0,0.1) rad/sec,
(ii) ∣G(jω)∣dB ≤ 0,

and the open-loop system G(s)P(s) has
(iii) phase margin as large as possible.

The structure of G(s) consists of a proportional action
and two (equal) anticipative control actions. The phase of
P(jω) is equal to −270○ for all ω. Therefore, in order to
obtain an asymptotically stable closed-loop system it will be
necessary an intensive anticipative control action so that to
obtain a positive phase margin. We can rewrite G(s) as a
double anticipative plus proportional action

G(s) ∶=K(
1 + τas

1 + τa
ma
s
)
2

(48)

with τa > 0 and ma > 1. We will choose τa > 0 and ma > 1
and L on the base of simple considerations, with the aim of
obtaining the largest phase margin as possible.

First, we consider the requirement (i). Since the steady-state
output response to d(t) ∶= sin(ωt) is

∣Wd(jω)∣ sin(t +Arg{Wd(jω)})

where Wd(s) is the closed-loop transfer function from d to
y, the requirement (i) can be formulated as

∣Wd(jω)∣ = ∣
1

1 +G(jω)P(jω)
∣ ≤ 0.11 (49)
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for all values of ω ∈ [0,0.1) rad/sec. Equivalently,

∣1 +G(jω)P(jω)∣ ≥
100

11
(50)

for all values of ω ∈ [0,0.1) rad/sec. Since for all ω

∣1 +G(jω)P(jω)∣ ≥ ∣G(jω)P(jω)∣ − 1 (51)

for (50) it is sufficient that

∣G(jω)P(jω)∣ ≥
100

11
+ 1 ≈ 10 = 20dB (52)

for all values of ω ∈ [0,0.1) rad/sec. This condition can be
directly carried over to the Bode diagram by saying that the
magnitude plot of G(jω)P(jω) must not go beyond the value
20dB for all values of ω ∈ [0,0.1) rad/sec.

The condition on ∣G(jω)P(jω)∣ implies an upper bound
on the maximal phase increment we can obtain with an antic-
ipative action. Moreover, an anticipative action introduces an
increase of the magnitude which is large to the same extent of
the phase increase. In order to satisfy (iii) the value of K must
be sufficiently small for compensating the large maginitude
increase. However, the lower bound (52) on ∣G(jω)P(jω)∣
implies that K cannot be arbitrarily small. Inspection of the
Bode plot of P(s) leads to the conclusion that K ≥ −40 dB
is the admissible range of choices for the gain K. Indeed,
since ∣P(j0.1)∣ = 60 dB and the anticipative structure of (48),
for K ≥ −40 dB we have ∣P(jω)G(jω)∣ ≥ 60 dB for all
ω ∈ [0,0.1) rad/sec.

Choose K = −40 dB = 0.01. As to the choice of τa,ma, on
account of requirement (ii), the choice of Kimplies that each
anticipative action

1 + τas

1 + τa
ma
s

in G(s) should introduce a magnitude increase of at most 20
dB. From the plots of Figure 1 we see that this correspond
to the choice of ma = 10. In order to have the largest phase
margin as possible, we choose the normalized frequency ω∗N =

3.2 rad/sec which corresponds to a phase increase of ≈ 54○ on
the anticipative function corresponding to ma = 10. Since the
corresponding magnitude increase for each anticipative action
is ≈ 10 dB it is sufficient to let the phase increase amount
correspond to the frequency ω∗t such that ∣KP(jω∗t )∣ = −20
dB. By doing this ω∗t is the new crossover frequency and we
obtain a phase margin of

≈ −90○ + 54○ × 2 = 18○.

From inspection of the magnitude Bode plot of KP(jω(t))
we obtain ω∗t = 0.5 rad/sec. Therefore,

τa =
ω∗N
ω∗t

=
3.2

0.5

The resulting controller G(s) is

G(s) ∶= 0.01(
1 + 3.2

0.5
s

1 + 3.2
5
s
)
2

(53)

The above procedure does not give the largest phase margin as
possible but it is conceived in such a way to give results close

to the optimal one, which is well enough for our purposes.
For instance, it would be possible to choose

G(s) ∶= 0.0059(
1 + 4.2

0.5
s

1 + 4.2
6.5
s
)
2

(54)

obtaining a crossover frequency of approx 0.42rad/sec and a
phase margin of approx 28○. This is achieved by choosing
ma = 13 and a normalized frequency ω∗N = 4.2 rad/sec, letting
the phase increase amount correspond to the same frequency
ω∗t = 0.5 rad/sec. The value of K is computed by satisfying
the requirements (52) and (ii).

Exercize 3.3: Given the feedback system in Figure 25 with

P1(s) =
2.1s + 0.1

s − 1
, P2(s) =

1

2.1s + 0.1

design a one-dimensional controller G1(s) and two-
dimensional controller G2(s) such that the closed-loop
system (from d1,d2,v to y) is asymptotically stable with
(ii) steady-state error response to constant inputs v(t) equal to
zero,
(iii) steady-state output response to constant disturbances d1(t)
and d2(t) and steady-state output response to ramp distur-
bances d1(t) = t all equal to zero

and the open-loop system (from e to y) has the largest
as possible phase margin. We determine the disturbance-to-
output, input-to-output and input-to-error transfer functions.
To this aim, first the (open-loop) output response is given in
Laplace domain by

y(s) =We,y(s)e(s) +Wd2,y(s)d2(s) +Wd1,y(s)d1(s)

with (open loop) transfer function (from e to y)

We,y(s) =G2(s)P2(s)Wm,y(s),

(open loop) transfer function (from m to y)

Wm,y(s) =
G1(s)P1(s)

1 +G1(s)P1(s)
,

and (open loop) transfer function (from d1 and, respectively,
d2 to y)

Wd1,y(s) =
P1(s)

1 +G1(s)P1(s)
, Wd2,y(s) = 1.

Therefore, the closed-loop input-to-output and input-to-error
transfer functions are

W(s) =
G2(s)P2(s)Wm,y(s)

1 +G2(s)P2(s)Wm,y(s)

=
G2(s)P2(s)G1(s)P1(s)

1 +G1(s)P1(s)(1 +G2(s)P2(s))
,

We(s) = 1 −W(s)

=
1 +G1(s)P1(s)

1 +G1(s)P1(s)(1 +G2(s)P2(s))
, (55)
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Figure 25. Feedback system of exercize 3.3).

Figure 26. Bode plots of L(s)

and the disturbance-to-output transfer functions are

Wd1(s) =
Wd1,y(s)

1 +G2(s)P2(s)Wm,y(s)

=
P1(s)

1 +G1(s)P1(s)(1 +G2(s)P2(s))

Wd2(s) =
Wd2,y(s)

1 +G2(s)P2(s)Wm,y(s)

=
1 +G1(s)P1(s)

1 +G1(s)P1(s)(1 +G2(s)P2(s))
. (56)

From inspection of the above transfer functions, in order to
meet requirements (ii) and (iii) we assume for G1(s) and

G2(s) the following structure

G1(s) =
1

s
, G2(s) =

1

s
G′

2(s) (57)

with one dimensional G′

2(s) (recall that G1(s) is required to
be one dimensional and G2(s) two-dimensional). The open-
loop system (from e to y) is represented by

G2(s)P2(s)Wm,y(s)

=
G′

2(s)

s

1

2.1s + 0.1

2.1s + 0.1

s2 + 1.1s0.1

=
G′

2(s)

s

10

s(s + 1)(1 + 10s)
=G′

2(s)L(s). (58)
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Figure 27. Bode plots of L(s) 1+4000s
1+ 4000

16
s

From the Bode plot of L(s) (Figure 26) we see that we have
to increase the phase (to maximize the phase margin) using
an anticipative+proportional action

G′

2(s) =K
1 + τas

1 + τa
ma
s
.

In order to maximize the phase margin, we choose ma = 16
with ωN = 4 rad/sec (maximum phase value) at ω∗t = 0.0001
rad/sec (where the Bode plot of the phase of L(s) is higher:
actually, any ω∗t ≤ 0.0001 is good as well). We obtain τa =

4/0.0001 = 4000. Therefore, the anticipative action is

1 + 4000s

1 + 4000
16

s
.

For obtaining ω∗t at 0.0001 rad/sec we see from the Bode
plots of L(s) 1+τas

1+ τa
ma

s
(Figure 27) that we need a proportional

attenuation K ≈ −152dB = 2.511e−8.
The controller G2(s) is given finally by

G2(s) =
2.511e−8

s

1 + 4000s

1 + 4000
16

s
.

The Bode plot of G2(s)L(s) shows that a crossover frequency
ω∗t = 10−3 rad/sec with a phase margin m∗

φ ≈ 150○, while the
Nyquist plot (Figure 28) shows that the closed-loop system
is asymptotically stable (we have 0 counterclockwise tours
around the point −1 + 0j).
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Figure 28. Nyquist plot of L(s)G2(s)


