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Notes on Linear Control Systems: Module XI
Stefano Battilotti

Abstract—Steady-state performances. Tracking. Disturbance
compensation.

I. TRACKING AND DISTURBANCE COMPENSATION IN
FREQUENCY DOMAIN

A control system is the interconnection of a certain number
components or systems in such a way to guarantee some de-
sired performances, in particular the capability of the output to
reproduce some given behaviours. Feedback interconnections
are flexible control schemes which allow to meet multiple
requirements. An error signal is obtained from comparing at
each time the output response with its desired value and then a
control signal is generated to improve the performances of the
process and to force it to reproduce desired behaviours. The
capability of the output to follow (within some tolerances) a
given input (tracking) must be guaranteed also in the presence
of disturbances or noise introduced in the control-loop by
actuators and sensors. Therefore, an important property of a
control system is the complete or partial elimination of the
effects of disturbances. Many systems are not able to follow
given behaviours due to disturbances which deteriorate their
performances.

II. STEADY-STATE PERFORMANCES

An important requirement for a control system is, besides
stability, the capability of its output to follow or track (within
a given error) a given reference input (tracking). For example,
an electrical drive is required to work in steady-state regime
with a prescribed angular velocity (possibly within a given
error tolerance). If the output yptq of system is required to
asymptotically track a given input vptq, the tracking error
eptq :“ vptq ´ yptq must tend to zero as t Ñ 8. We
want to give some necessary and sufficient conditions for
asymptotically driving to zero the tracking error of a system
Wpsq (i.e. its steady-state error is zero). The situation for
which the steady-state tracking error response is constant and
non-zero is associated to the notion of type.

Definition 2.1: A system Wpsq is said to be of type k if its
steady-state error essptq is constant and non-zero for an input
vptq :“ tk

k! .
The (tracking) error transfer function is defined as

Wepsq :“
Lreptqspsq

Lrvptqspsq
(1)
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where eptq denotes the forced (tracking) error response with
input vptq. We have

Wepsq :“
Lreptqspsq

Lrvptqspsq
“

Lrvptqspsq ´ Lryptqspsq

Lrvptqspsq

“ 1´
Lryptqspsq

Lrvptqspsq
“ 1´Wpsq (2)

As we have seen in module V, the steady-state tracking error
response e

pkq
ss ptq to an input vptq :“ tk

k! is

epkqss ptq “
k
ÿ

j“0

dj

dsj
We

ˇ

ˇ

ˇ

s“0

tk´j

pk ´ jq!j!
(3)

Notice that epkqss ptq is constant and non-zero if and only if

dj

dsj
We

ˇ

ˇ

ˇ

s“0
“ 0, j “ 0, 1, . . . , k ´ 1 (4)

dk

dsk
We

ˇ

ˇ

ˇ

s“0
‰ 0 (5)

If we consider the Laurent expansion of Wepsq around s “ 0
(we assume that Wpsq and, therefore, Wepsq has all poles in
C´)

Wepsq “
`8
ÿ

i“0

di

dsi
We

ˇ

ˇ

ˇ

s“0

si

i!
, (6)

on account of (5) a system is of type k if and only if

Wepsq “
`8
ÿ

i“0

di

dsi
We

ˇ

ˇ

ˇ

s“0

si

i!
“

`8
ÿ

i“k

di

dsi
We

ˇ

ˇ

ˇ

s“0

si

i!

“ sk
´ 1

k!

dk

dsk
We

ˇ

ˇ

ˇ

s“0
`

`8
ÿ

i“k`1

di

dsi´k
We

ˇ

ˇ

ˇ

s“0

si´k

i!

¯

“ skĂWepsq (7)

with dk

dsk
We

ˇ

ˇ

ˇ

s“0
‰ 0, hence ĂWep0q ‰ 0, on account (4).

Therefore, We has k zeroes in s “ 0 or, equivalently, a zero
s “ 0 with multiplicity k.

Proposition 2.1: A system is of type k if and only if the error
transfer function We has a zero s “ 0 with multiplicity k.

As established above, if Wpsq is of type k then the steady-
state error is constant and non-zero. Denote by e

pkq
ss this

constant and non-zero number. From (3)-(5) we get

epkqss ptq “ epkqss “
1

k!

dk

dsk
We

ˇ

ˇ

ˇ

s“0
(8)

Also, since (8) is exactly the coefficient of sk in the Laurent
expansion (7) ,

epkqss ptq “ epkqss “
1

sk
Wepsq

ˇ

ˇ

ˇ

s“0
(9)

which is an equivalent formula for computing the steady-state
error epkqss ptq for a type-k system.
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What is the value of the steady-state error e
phq
ss ptq, h ě 0,

with an input vptq :“ th

h! if Wpsq is of type 0 ď k ă h (or
k ą h)? If Wpsq is of type 0 ď k ă h then (see (4)-(5))

dj

dsj
We

ˇ

ˇ

ˇ

s“0
“ 0, j “ 0, 1, . . . , k ´ 1

dk

dsk
We

ˇ

ˇ

ˇ

s“0
‰ 0 (10)

while the steady-state error ephqss ptq is (see (3))

epss,hqptq “
h
ÿ

j“0

dj

dsj
We

ˇ

ˇ

ˇ

s“0

th´j

ph´ jq!j!

“

h
ÿ

j“k

dj

dsj
We

ˇ

ˇ

ˇ

s“0

th´j

ph´ jq!j!
(11)

which goes (in norm) to infinity as t Ñ `8 since
dk

dsk
We

ˇ

ˇ

ˇ

s“0
‰ 0. On the other hand, if Wpsq is of type k ą h

dj

dsj
We

ˇ

ˇ

ˇ

s“0
“ 0, j “ 0, 1, . . . , k ´ 1

dk

dsk
We

ˇ

ˇ

ˇ

s“0
‰ 0 (12)

and the steady-state error ephqss ptq is

ephqss ptq “
h
ÿ

j“0

dj

dsj
We

ˇ

ˇ

ˇ

s“0

th´j

ph´ jq!j!
“ 0 (13)

Proposition 2.2: The system Wpsq is of type k if and only
Wepsq has a zero s “ 0 with multiplicity k. Moreover, the
steady-state error ephqss ptq of Wpsq to an input vptq :“ th

h! with
h ą k tends to infinity as tÑ `8 and the steady-state error to
an input vptq :“ th

h! is ephqss ptq “ 0 if h ă k.
If W (s) is the result of the feedback interconnection of

GpsqPpsq with unitary feedback, where Ppsq is the controlled
process and Gpsq is the controller, we have

Wpsq “
PpsqGpsq

1`PpsqGpsq
.

and
Wepsq “ 1´Wpsq “

1

1`PpsqGpsq
.

Hence, We has a zero s “ 0 with multiplicity k if and only
if PpsqGpsq has a pole s “ 0 with multiplicity k. From
Proposition 2.1 and (11) and (13) we conclude that

Proposition 2.3: The feedback interconnection Wpsq of
PpsqGpsq with unitary feedback is of type k if and only
PpsqGpsq has a pole s “ 0 with multiplicity k. Moreover, the
steady-state error ephqss ptq of Wpsq to an input vptq :“ th

h! with
h ą k tends to infinity as tÑ `8 and the steady-state error to
an input vptq :“ th

h! is ephqss ptq “ 0 if h ă k.
Therefore, if the controlled process Ppsq has a number of
poles h ă k in s “ 0 and we aim at a feedback system Wpsq
of type k (i.e. a constant and non-zero steady-state error with
an input vptq :“ tk

k! ), it is necessary to introduce the additional
k ´ h poles in s “ 0 through the controller Gpsq, i.e.

Gpsq “
1

sk´h
(14)

so that PpsqGpsq has the required number of poles in s “ 0.
Since 1

s represents an integral control action (
ş

y) and since
the transfer function of a series interconnection of S1 and S2

is the product of the transfer functions of S1 and S2, this is
equivalent to apply a series of k ´ h integral control actions
directly to Ppsq. On the other hand, if the controlled process
Ppsq has a number of poles h ă k in s “ 0 and we aim at
a feedback system Wpsq of type ą k (i.e. a zero steady-state
error with an input vptq :“ tk

k! ), it is necessary to introduce at
least k ´ h ` 1 poles in s “ 0 through the controller Gpsq,
i.e.

Gpsq “
1

sk´h`l
, l ě 1. (15)

We can relate the situation enlighted by proposition 2.3 with
the number of poles at s “ 0 of GpsqPpsq.

Proposition 2.4: The feedback interconnection of GpsqPpsq
with unitary feedback i) has a constant and non-zero steady-
state error ephqss ptq to an input vptq :“ th

h! if and only GpsqPpsq
has a pole in s “ 0 with multiplicity h, ii) has steady-state error
e
phq
ss ptq “ 0 to an input vptq :“ th

h! if and only if GpsqPpsq has
a pole in s “ 0 with multiplicity k ą h and iii) the steady-state
error ephqss ptq to an input vptq :“ th

h! tends to infinity as tÑ `8

if and only if GpsqPpsq has a pole s “ 0 with multiplicity
k ă h.
Notice that the Laplace transform of vptq :“ tk

k! is 1
sk`1 . In

order to have e
pkq
ss ptq “ 0, from proposition 2.3 it follows

that Ppsq should have a pole s “ 0 with multiplicity k ` 1
or, equivalently, GpsqPpsq must contain a factor 1

sk`1 which
is exactly the Laplace transform of vptq :“ tk

k! . It should be
also noticed that increasing the number of poles in s “ 0 of
GpsqPpsq the closed-loop system Wpsq become unstable, as
it may be seen from the Nyquist plot, since for each pole at s “
0 in Gpsq we have a clockwise half rotation of GpjωqPpjωq
around ´1` 0j with ω varying from ´8 to `8.

A. Steady-state error attenuation

Under this regard, instead of having e
pkq
ss ptq “ 0 with

k ` 1 integral actions in GpsqPpsq, it is however possible
to require only k integral actions in GpsqPpsq and reduce
the non-zero steady-state error ephqss within a given tolerance
M P p0, 1q simply by increasing the value of pskPGq|s“0, i.e.
the generalized gain of GpsqPpsq, using a proportional action
in Gpsq. To illustrate this point, assume that PpsqGpsq has no
zeroes at s “ 0 (otherwise, we have a zero-pole cancellation
at s “ 0 with the integral actions provided in PpsqGpsq for
guaranteeing the tracking performances, resulting in internal
instability). If k “ 0 we have using (9)

ep0qss ptq “ ep0qss “Wepsq|s“0

“
1

1`GpsqPpsq

ˇ

ˇ

ˇ

s“0
“

1

1` pGPqp0q
(16)
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Therefore, since |Pp0q| ă `8 (when k “ 0, PpsqGpsq has
no poles in s “ 0), for each given tolerance M P p0, 1q

|ep0qss | ďM ô

ˇ

ˇ

ˇ

1

1` pGPqp0q

ˇ

ˇ

ˇ
ďM

ô

!

Gp0q ě ´
1

Pp0q
`

1

|Pp0q|M

)

ď

!

Gp0q ď ´
1

Pp0q
´

1

|Pp0q|M

)

(17)

which means that |Gp0q| must be selected sufficiently large.
More simply, taking into account the inequality |a ` b| ě
|a| ´ |b| for all a, b P R, it is possible to characterize the
inequality |ep0qss | ďM with a smaller but simpler set of values
of Gp0q as

|ep0qss | ďM ð |Gp0q| ě
1

|Pp0q|

´

1`
1

M

¯

. (18)

Notice that, unlike (17) in which the arrows are bidirectional,
the values of |Gp0q| ě 1

|Pp0q|

´

1 ` 1
M

¯

in (18) imply |ep0qss |

but the converse is false in general. However, for simplicity,
we consider the set of values of Gp0q in (18) to guarantee the
attenuation condition |ep0qss | ďM .

On the other hand, using (9), for k ą 0

epkqss ptq “ epkqss “
1

sk
Wepsq

ˇ

ˇ

ˇ

s“0
“

1

sk
1

1`GpsqPpsq

ˇ

ˇ

ˇ

s“0

“
1

sk ` skGpsqPpsq

ˇ

ˇ

ˇ

s“0
“

1

pskGPq|s“0
(19)

Therefore, for each given tolerance M P p0, 1q

|epkqss | ďM ô

ˇ

ˇ

ˇ

1

pskGPq|s“0

ˇ

ˇ

ˇ
ďM

ô |pskGPq|s“0| ě
1

M
(20)

which means that pskGPq|s“0 must be selected sufficiently
large (through the proportional action Gp0q “ K). Notice that
in this case Ppsq may contain some poles at s “ 0 so that
Pp0q may be not finite.

Since the control system may assume different forms from
a standard feedback interconnection with unitary feedback, for
the design of the controller Gpsq it is better to use the results of
Proposition 2.2 which are independent of the internal structure
of the control system.

B. The internal model principle

It is possible to consider inputs to be tracked different
from polynomials tk

k! , as for instance sinusoidal or exponential
inputs. Let Wpsq be a given (asymptotically stable) system
and Wepsq “ 1 ´ Wpsq its error transfer function. The
following result is a consequence of the formula in Laplace
domain for the forced error response epsq to an input vpsq,
taking into account that the poles of Wpsq and, therefore, of
Wepsq are in C´.

Theorem 2.1: (Internal model principle) A system Wpsq is
such that essptq “ 0 with input vptq if Wpsq is asymptoti-
cally stable and Wepsq has among its zeroes all the poles of
Lrvptqspsq.

Notice that when vptq “ tk

k! we recover the results of the
previous section. In particular, Wepsq must contain (at least)
a factor sk`1 or, equivalently, a zero s “ 0 with multiplicity
(at least) k ` 1 or, equivalently, Wpsq must be of type (at
least) k ` 1.

Let us consider a feedback system Wpsq with unitary
feedback and GpsqPpsq on the direct path, Ppsq the controlled
process and Gpsq the controller, i.e. Wpsq “ GpsqPpsq

1`GpsqPpsq and
Wepsq “

1
1`GpsqPpsq .

Theorem 2.2: (Internal model principle for feedback sys-
tems). The feedback system Wpsq is such that essptq “ 0 with
input vptq if Wpsq is asymptotically stable and GpsqPpsq has
among its poles all the poles of Lrvptqspsq.

Notice that when vptq “ tk

k! we recover the results of the
previous section. In particular, GpsqPpsqmust contain (at least
a factor) 1

sk`1 or, equivalently, a pole s “ 0 with multiplicity
(at least) k ` 1 (compare with Proposition 2.4).

We will show the principle for feedback systems in the
particular case

vptq “ α cospωtq ` β sinpωtq.

We have

Lrvptqspsq “
αs` βω

s2 ` ω

The feedback system has error transfer function

Wepsq “ 1´Wpsq “
1

1`GpsqPpsq

Let assume for GpsqPpsq a form

GpsqPpsq “ P1psq
1

s2 ` ω

i.e. GpsqPpsq has among its poles all the poles of Lrvptqspsq,
and for P1psq a form

P1psq “
npsq

dpsq

We also assume that Wpsq is asymptotically stable. Since

Wpsq “
GpsqPpsq

1`GpsqPpsq
“

npsq

npsq ` dpsqps2 ` ωq
,

the polynomial npsq`dpsqps2`ωq is Hurwitz. It follows that

Wepsq “
1

1`GpsqPpsq
“

dpsqps2 ` ωq

npsq ` dpsqps2 ` ωq

Therefore,

Lreptqspsq “WepsqLrvptqspsq

“
dpsqpαs` βωq

npsq ` dpsqps2 ` ωq
(21)

Since the polynomial npsq`dpsqps2`ωq is Hurwitz and using
the residuals theorem (module III)

eptq “ L´1r
dpsqpαs` βωq

npsq ` dpsqps2 ` ωq
sptq Ñ 0 (22)

as tÑ `8, i.e. essptq “ 0.
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III. DISTURBANCE REJECTION AND ATTENUATION

The capability of the output to follow or track (with a certain
steady-state error) a given input (tracking) must be retained
also in the presence of disturbances or noise introduced in
the control-loop by actuators and sensors. If we consider the
disturbance d as an input for the system we can inherit all the
conclusions of the previous section as long as we replace e
with y and v with d. Let Wpsq be a given system and Wd

be the disturbance-to-output transfer function

Wdpsq :“
Lryptqspsq

Lrdptqspsq
(23)

Here, yptq is the forced output response to a disturbance dptq
(i.e. zeroing all the other inputs as well as vptq). By following
the conclusions of proposition 2.2 we have the following
result.

Proposition 3.1: A system Wpsq has a constant and non-
zero steady-state output response y

pkq
ss to a disturbance dptq :“

tk

k! if and only if Wdpsq has a zero in s “ 0 with multiplicity k.
The value of this constant non-zero steady-state output response
is

ypkqss :“
1

sk
Wdpsq

ˇ

ˇ

ˇ

s“0
“

1

k!

dk

dks
Wd

ˇ

ˇ

ˇ

s“0
. (24)

Moreover, if Wdpsq has a zero in s “ 0 with multiplicity k the
steady-state output response y

phq
ss ptq to a disturbance dptq :“

th

h! tends to infinity as t Ñ `8 if h ą k and y
phq
ss ptq “ 0 if

h ă k.
Note that the conditions for zeroing the steady-state output

response to a disturbance dptq :“ tk

k! and the steady-state error
response to an input vptq :“ tk

k! are the same. Since the output
response of the closed–loop system with disturbance d and
input v is the superposition of the input-to-output response
contributed by v (with d “ 0) and the disturbance-to-output
response contributed by d (with v “ 0), it follows that if the
steady-state error response to an input vptq :“ tk

k! is zero in the
absence of disturbances it remains zero even in the presence
of a disturbance dptq :“ tk

k! .
In general, the disturbance may affect the system in different

ways, depending on its physical source. We consider only
the cases for which the disturbance adds up to the output of
Ppsq (additive output disturbances) or to the input of Ppsq
(additive input disturbances). The additive output disturbances
correspond to disturbances introduced in the control loop by
measurement devices (sensors), while additive input distur-
bances correspond to disturbances introduced in the control
loop by actuating devices (actuators). Moreover, we will
consider a feedback system Wpsq “ GpsqPpsq

1`GpsqPpsq .

A. Output disturbances

For additive output disturbances we assume y “ y1`d (see
Fig 1 where Gpsq “ 1) where y is the output of the feedback
system Wpsq and y1 is the output of GpsqPpsq. We compute

P
v u y' y+

-

d

+

+

Figure 1. Output disturbances.

Wdpsq “
Lryptqspsq
Lrdptqspsq by setting v “ 0. Since in the feedback

interconnection u “ ´y when v “ 0, we have

Wdpsq :“
Lryptqspsq

Lrdptqspsq

“
Lry1ptqspsq ` Lrdptqspsq

Lrdptqspsq

“
GpsqPpsqLruptqspsq

Lrdptqspsq
` 1 “ ´

GpsqPpsqLryptqspsq

Lrdptqspsq
` 1

“ ´GpsqPpsqWdpsq ` 1

Therefore,

Wdpsq “
1

1`Ppsq
(25)

Since in this case Wdpsq “Wepsq, from proposition 2.4
Proposition 3.2: The feedback interconnection of PpsqGpsq

with unitary feedback and additive output disturbance dptq
i) has a constant and non-zero steady-state output response
y
phq
ss ptq to a disturbance dptq :“ th

h! if and only PpsqGpsq
has a pole in s “ 0 with multiplicity h, ii) has zero steady-
state output response yphqss ptq to a disturbance dptq :“ th

h! if and
only if PpsqGpsq has a pole in s “ 0 with multiplicity k ą h

and iii) the steady-state output response yphqss ptq to a disturbance
dptq :“ th

h! tends to infinity as tÑ `8 if and only if PpsqGpsq
has a pole s “ 0 with multiplicity k ă h.
Therefore, if the open-loop process Ppsq has a number of poles
h ă k in s “ 0 and we aim at a constant and non-zero steady-
state output response y

pkq
ss ptq it is necessary to introduce the

additional k ´ h poles in s “ 0 in Gpsq, i.e.

Gpsq “
1

sk´h
(26)

On the other hand, if the open-loop process Ppsq has a number
of poles h ă k in s “ 0 and we aim at a steady-state output



5

response y
pkq
ss ptq “ 0 it is necessary to introduce (at least)

additional k ´ h` 1 poles at s “ 0 in Gpsq, i.e.

Gpsq “
1

sk´h`l
, l ě 1. (27)

B. Output disturbance attenuation

Let ypkqss ptq be the steady-state output response to a distur-
bance dptq “ tk

k! and y
pkq
ss denote its constant and non-zero

value. We see how to reduce y
pkq
ss within a given tolerance

M P p0, 1q by means of suitable control actions. We assume
that GP does not have zeroes at s “ 0 (see section II-A).
Since in this case Wdpsq “ Wepsq and taking into account
(24), for each given tolerance M P p0, 1q and if k “ 0

|yp0qss ptq| “ |y
p0q
ss | ďM ô |

1

1`Pp0qGp0q
| ď

“M ô

!

Gp0q ě ´
1

Pp0q
`

1

|Pp0q|M

)

ď

!

Gp0q ď ´
1

Pp0q
´

1

|Pp0q|M

)

(28)

which once again means that |Gp0q| must be selected suffi-
ciently large. Next, taking into account (24), for each given
tolerance M P p0, 1q and for k ą 0

|ypkqss ptq| “ |y
pkq
ss | ďM ô |

1

pskGPq|s“0
| ďM

ô |pskGPq|s“0| ě
1

M
(29)

which means that the generalized gain of GP must be selected
sufficiently large in absolute value (through the proportional
action in Gpsq).

C. Input disturbances

For additive input disturbances we assume u1psq “

Gpsqpvpsq ´ ypsqq ` dpsq (see Fig. 2) where u1 is the
input of Ppsq and y is the output of Ppsq. We compute
Wdpsq “

Lryptqspsq
Lrdptqspsq by setting v “ 0. Since in the feedback

interconnection u1psq “ ´Gpsqypsq ` dpsq when v “ 0, we
have

Wdpsq :“
Lryptqspsq

Lrdptqspsq
“

Ppsqu1psq

Lrdptqspsq

“
Ppsqp´GpsqLryptqspsq ` Lrdptqspsqq

Lrdptqspsq

“ ´
PpsqGpsqLryptqspsq

Lrdptqspsq
`Ppsq

“ ´PpsqGpsqWdpsq `Ppsq

Therefore,

Wdpsq “
Ppsq

1`GpsqPpsq
(30)

Notice that, if Ppsq has no zeroes at s “ 0, Wdpsq has a zero
at s “ 0 with multiplicity k if and only if Gpsq has k poles
at s “ 0, independently of the fact that Ppsq may have or not
some poles at s “ 0.

P
v u u' y+

-

d

+

+
G

Figure 2. Control action at the entrance point of the disturbance.

Proposition 3.3: Assume that Ppsq has no zeroes in s “ 0.
The feedback interconnection of GpsqPpsq with unitary feed-
back and additive input disturbance dptq i) has a constant and
non-zero steady-state output response y

pkq
ss ptq to a disturbance

dptq :“ tk

k! if and only Gpsq has a pole s “ 0 with multiplicity
k, ii) has a steady-state output response y

phq
ss ptq “ 0 to a

disturbance dptq :“ th

h! if and only if Gpsq has a pole s “ 0
with multiplicity k ą h and iii) has a steady-state output
response y

phq
ss ptq “ 0 to a disturbance dptq :“ th

h! which tends
to infinity as tÑ `8 if and only if Gpsq has a pole s “ 0 with
multiplicity k ă h.
We can also use the internal model principle to state the
following result for disturbances different from polynomial
disturbances dptq “ tk

k! . Let us consider a system Wpsq
with output yptq, disturbance dptq and disturbance-to-output
transfer function Wdpsq.

Theorem 3.1: The system Wpsq is such that yssptq “ 0
with input dptq if Wpsq is asymptotically stable and Wdpsq
has among its zeroes all the poles of Lrdptqspsq.
In using this result, we have to design the controller Gpsq
inside the control loop in such a way that Wdpsq has the
claimed properties, i.e. all the poles of Lrvptqspsq among its
zeroes. Moreover, if dptq “ tk

k! and for feedback systems
Wpsq we recover the results of propositions 3.3.

D. Input disturbance attenuation

Let see how to reduce a non-zero constant steady-state
output response y

pkq
ss ptq to a disturbance dptq “ tk

k! . We still
assume that GP has no zeroes at s “ 0. We relate its constant
and non-zero value y

pkq
ss with pskGPq|s“0, the generalized

gain of GpsqPpsq. For each given tolerance M P p0, 1q and
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if k “ 0

|yp0qss ptq| “ |y
p0q
ss | ďM ô

ˇ

ˇ

ˇ

P

1`GP

ˇ

ˇ

ˇ

s“0
ďM

ô

!

Gp0q ě ´
1

Pp0q
`

1

M

)

ď

!

Gp0q ď ´
1

Pp0q
´

1

M

)

(31)

which means that |Gp0q| must be selected sufficiently large.
Next, for each given tolerance M P p0, 1q and k ą 0

|ypkqss ptq| “ |y
pkq
ss | ďM ô

ˇ

ˇ

ˇ

1

sk
P

1`GP

ˇ

ˇ

ˇ

s“0
ďM.

ô

ˇ

ˇ

ˇ

1

sk
P

GP

ˇ

ˇ

ˇ

s“0
ďM ô |pskGq|s“0| ě

1

M
(32)

which means that |pskGq|s“0| must be selected sufficiently
large (through a proportional action K in Gpsq).

Since the way disturbances may affect the feedback systems
may be various inside the loop and not always be recognizable
as the cases III-A and III-C and the control system may
assume different forms from a standard feedback form, for the
design of the controller Gpsq it is better to use the results of
Proposition 3.1 which are independent of the way disturbances
affect the feedback system and from the internal structure of
the control system.

Exercize 3.1: With reference to the feedback system in
Figure 3-a with

Ppsq “
s´ 2

s3 ´ 2s2 ´ 2

design the controller Gpsq in such a way that the (i) the steady-
state error response to sinusoidal inputs vptq “ sinptq is zero
(ii) the steady-state output response to constant disturbances
d2ptq is zero and (iii) the steady-state output response to
disturbances d1ptq “ t is in absolute value less than 0.1.

Notice that the disturbances d1ptq and d2ptq enter the loop
according to a paradigm which is not covered by the analogue
cases studied in Figures 1 and 2. In general, it is convenient to
write for the closed-loop system the Laplace transform of the
output as a function of the Laplace transforms of the inputs
and disturbances so as to identify each closed-loop transfer
function (input to output and disturbance to output) and apply
the results we have discussed above to each single transfer
function. First we write the Laplace transform of the output
yptq as a function of the Laplace transforms of the input mptq
and disturbances d1ptq and d2ptq (see Figure 3-b). To do this,
we determine:
- the disturbance d2 to output y (open loop) transfer function
Wd2,ypsq (setting m “ 0 and d2 “ 0):

Wd2,ypsq “
1

1`Ppsq
(33)

- the disturbance d1 to output y (open loop) transfer function
Wd1,ypsq is (setting m “ 0 and d1 “ 0):

Wd1,ypsq “
Ppsq

1`Ppsq
(34)

- the input m to output y (open loop) transfer function
Wm,ypsq is (setting d1 “ 0 and d2 “ 0):

Wm,ypsq “
Ppsq

1`Ppsq
(35)

Therefore, as in Figure 3-b we obtain the equivalent diagram
block from the inputs ,d1,d2 to the output y

ypsq “Wm,ypsqmpsq `Wd1,ypsqd1psq `Wd2,ypsqd2psq (36)

Next, in the feedback system from m to y we replace the
relation (36) so as to obtain Figure 3-c.

Now, we can easily determine
- the input v to output y closed-loop transfer function Wpsq
(setting d1 “ 0 and d2 “ 0):

Wpsq “
GpsqWm,ypsq

1`GpsqWm,ypsq

“
GpsqPpsq

1`Ppsq `GpsqPpsq
(37)

- the disturbance d2 to output y closed-loop transfer function
Wd2psq (setting v “ 0 and d1 “ 0):

Wd2psq “
Wd2,ypsq

1`GpsqWm,ypsq

“
1

1`Ppsq `GpsqPpsq
(38)

- the disturbance d1 to output y closed-loop transfer function
Wd1psq is (setting v “ 0 and d2 “ 0)

Wd1psq “
Wd1,ypsq

1`GpsqWm,ypsq

“
Ppsq

1`Ppsq `GpsqPpsq
(39)

Therefore, the output of the closed-loop system is

ypsq “Wpsqvpsq `Wd1
psqd1psq `Wd2

psqd2psq (40)

Next, to meet the requirements (i)-(iii) we analyse each
transfer function Wpsq, Wd2psq and Wd1psq.

Let us begin with (i). In order to have that a steady-state
error response to sinusoidal inputs vptq “ sinptq equal to the
error transfer function Wepsq “ 1´Wpsq must have among
its zeroes all the poles of the Laplace transform of vptq “
sinptq (by the internal model principle, restated version). Since

Lrsinptqspsq “
1

s2 ` 1

and

Wepsq “
1`Ppsq

1`Ppsq `GpsqPpsq
(41)

we assume for Gpsq a structure

Gpsq “ G1psq
1

s2 ` 1
(42)

As to point (ii), in order to have a steady-state output response
to constant disturbances d2ptq equal to zero the transfer
function Wd2

psq must have a zero at s “ 0. Since

Wd2psq “
1

1`Ppsq `GpsqPpsq
(43)
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Figure 3. Exercize 3.1.

this clearly implies that G1psq must have a pole at s “ 0. For
this reason we assume for Gpsq a structure

G1psq “ G2psq
1

s
(44)

We proceed with (iii). In order to have that the steady-state
output response to disturbances d1ptq “ t is in absolute value
less than 0.1, the transfer function Wd1

psq must have a zero
at s “ 0 (this guarantees that the steady-state output response
is finite). Moreover, in order to guarantee that the absolute
value of the steady-state output response is less than 0.1 we

must have

|yp1qss ptq| “
ˇ

ˇ

ˇ

Wd1
psq

s

ˇ

ˇ

ˇ

s“0
ă 0.1 (45)

We assume for G2psq a structure

G2psq “ G3psqK (46)

Taking into account (46)
ˇ

ˇ

ˇ

Ppsq

sp1`Ppsq `GpsqPpsqq

ˇ

ˇ

ˇ

s“0
“

ˇ

ˇ

ˇ

Ppsq

sPpsqp1`Gpsqq

ˇ

ˇ

ˇ

s“0

“

ˇ

ˇ

ˇ

1

sGpsq

ˇ

ˇ

ˇ

s“0
“

ˇ

ˇ

ˇ

1

G3p0qK

ˇ

ˇ

ˇ

s“0
ă 0.1 (47)
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Therefore, |G3p0qK| ą 10. We can pick K “ 15 with
|G3p0q| ě 1. The controller

Gpsq “ G3psq
15

sps2 ` 1q
(48)

meets the requirements (i)-(iii) as long as |G3p0q| ě 1. The
remaining part G3psq of the controller Gpsq, with |G3p0q| ě
1, will be designed to stabilize the closed-loop system (for
instance, using root locus based techniques: see module X).
�

Exercize 3.2: With reference to the feedback system in
Figure 4-a where

P1psq “
1

s´ 1
, P2psq “

s` 4

s´ 2

(i) design the controller G1psq in such a way the forced output
response yptq to any disturbance dptq is 0,
(ii) design the controller G2psq in such a way the feedback
system is asymptotically stable and the absolute value of the
steady-state error to input vptq “ t is ď 1.

Before going to the solution of our problem, it is convenient
to transform the control scheme in Figure 4-a in such a way
to easily determine the closed-loop transfer function Wdpsq
from d to y and, respectively, the closed-loop transfer function
Wpsq from v to y. To this aim, first consider in Figure 4-a
the signal flow from the inputs dptq and mptq to the output
yptq and write ypsq “ Lryptqspsq as function of mpsq “
Lrmptqspsq and dpsq “ Lrdptqspsq as in Figure 4-b:

ypsq “Wd,ypsqdpsq `Wm,ypsqmpsq

where Wd,ypsq is the open loop transfer function from d to y
and, respectively, Wm,ypsq is the open loop transfer function
from m to y. For determining Wd,ypsq we set m “ 0 and for
determining Wm,ypsq we set d “ 0. We have (in particular,
notice that Wd,ypsq is the parallel interconnection of 1 and
´G1psqP2psq)

Wd,ypsq “ 1´G1psqP2psq, Wm,ypsq “ P2psq.

Next, replace the block diagram of Figure 4-b in the feedback
loop of Figure 4-a so to obtain the equivalent feedback loop
of Figure 4-c. From this we can easily determine the transfer
function Wdpsq from d to y (by setting v “ 0) and,
respectively, the transfer function Wpsq from v to y (by
setting d “ 0):

Wdpsq “Wd,ypsq
1

1`G2psqP1psqWm,ypsq

“
1´G1psqP2psq

1`G2psqP1psqP2psq
,

Wpsq “
G2psqP1psqWm,ypsq

1`G2psqP1psqWm,ypsq

“
G2psqP1psqP2psq

1`G2psqP1psqP2psq
. (49)

From this we also obtain the error transfer function

Wepsq “ 1´Wpsq “
1

1`G2psqP1psqP2psq
. (50)

(i) For guaranteeing that yptq ” 0 for all disturbances dptq,
one has to define G1psq in such a way that Wdpsq ” 0. This
is achieved by setting G1psqP2psq “ 1 that is

G1psq “
s´ 2

s` 4
.

(ii) For guaranteeing that the steady-state error e
p1q
ss ptq in

response to ramp references vptq “ t satisfies |ep1qss ptq| ď 1,
the transfer function Wepsq must have one zero at s “ 0 and
moreover

ˇ

ˇ

ˇ

We

s

ˇ

ˇ

ˇ

s“0
ď 1

From the formula of Wepsq in (50) we see that G2psq should
introduce one pole at s “ 0 (one integral action) for obtaining
a closed-loop type-1 system and a proportional action to
reduce |ep1qss ptq| within the given tolerance. For this reason
we assume a structure for G2psq as

G2psq “
KG2

s
G1

2psq

Therefore, from condition (51) we get

|KG2G
1
2p0q|s“0 ě

1

|P1p0qP2p0q|
“

1

2
(51)

We choose KG2 “
1
2 and keep track in the sequel of the

additional condition

|G1
2p0q| ě 1. (52)

For stabilizing the closed-loop system (i.e. all poles of Wpsq
with negative real part) by choosing the remain part G1

2psq of
the controller G2, we notice from Figure 4-c that the transfer
function on the direct path (from v to y) of the feedback loop
is

G2psqP1psqP2psq “ G1
2psq

P1psqP2psq

2s
(53)

therefore, G1
2psq must stabilize the closed-loop of P1psq “

P1psqP2psq
2s . Since P1psq is minimum-phase and its relative

degree is 2 we can assume for G1
2psq the following structure

G1
2psq “ KG12

s´ z1

s´ p1
(54)

with z1, p1 ă 0, i.e. a zero-pole action to move the asymptotes
center inside C´ and a proportional action to move the poles
inside C´ with high gain. Moreover, remind the constraint
(52) which reads out here as

|KG12
| ě

|p1|

|z1|
(55)

We will choose z1 ă p1 ă 0 to move the asymptotes center
inside C´:

p1 ` 3` 4´ z1

2
ă 0 ùñ ´p1 ` z1 ą 7. (56)

Set z1 “ ´4 and p1 “ ´21. We finally choose KG12
by

applying the Routh criterion on the closed-loop denominator

NUMp1`G2psqP1psqP2psqq

“ s4 ` 18s3 ` pKG12
´ 61qs2

`p8KG12
` 42qs` 16KG12

(57)
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Figure 4. Exercize 3.2.
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and at the same time satisfying the constraint (55). The Routh
table of the above polynomial is

rp4q 1 KG12
´ 61 16KG12

rp3q 9 4KG12
` 21

rp2q
5KG12

´570

9 16KG12

rp1q
20K2

G12
´2319KG12

´11970

5KG12
´570

rp0q KG12

We obtain KG12
ą 241.8 for having no sign variations in

the first column of the Routh table. Taking into account the
additional constraint (55)

KG12
ą max

!

241.8,
|p1|

|z1|

)

“ max
!

241.8,
21

4

)

“ 241.8 (58)

Set KG12
“ 250. The controller is finally

G2psq “ 125
s` 4

sps` 21q
. (59)


