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Notes on Linear Control Systems: Module X
Stefano Battilotti

Abstract—Root locus. Stabilization and pole placement in
frequency domain.

I. POLES ASSIGNMENT: THE ROOT LOCUS

The Nyquist criterion together with the methods based on
the stability margins are useful for a qualitative evaluation of
the stability properties of a feedback system. On the other hand
a more accurate design requires a deeper knowledge of the
poles of the closed-loop system and how these poles influence
the critical design parameters. To this aim, the root locus is a
description of how the poles of the closed-loop system vary
in terms of a proportional control action K.

As we know, the transfer function of a feedback intercon-
nection of a given process P(s) with unitary feedback and
proportional control action K is

W(s) =
KP(s)

1 +KP(s)
(1)

The zeroes of 1 + KP(s) (or, equivalently, the roots of
NUM(1 + KP(s))) are the poles of the feedback system
W(s). The root locus of P(s) is the locus of the zeroes of
1 +KP(s) parametrized by K ∈ R, i.e. the set of points

(s,K) = (s(K),K) ∈ C ×R (2)

such that

1 +KP(s) = 0 (3)

or, equivalently,

NUM(1 +KP(s)) = 0 (4)

The locus of P(s) corresponding to positive values of K ∈ R+

is called positive root locus of P(s) and the locus correspond-
ing to negative values of K ∈ R− is called negative root locus.

In order to establish few basic rules for drawing the root
locus of P(s), we assume that P(s) is strictly proper and has
the following zero-pole form

P(s) =
∏
m
i=1(s − zi)
∏
n
i=1(s − pi)

(5)

where m < n, z1, . . . , zm are the poles and p1, . . . , pn the
poles, respectively, of P(s). In general a strictly proper
function P(s) can be always re-written as

P(s) =H
∏
m
i=1(s − zi)
∏
n
i=1(s − pi)

=HP′
(s) (6)
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with H ∈ R and P′(s) in zero-pole form. In this case
it is necessary to change K as K ′ = KH so that, since
1 +KP(s) = 1 +K ′P′(s), what we actually represent is the
locus of the zeroes of 1 +K ′P′(s) parametrized by K ′ ∈ R.
The corresponding values of K ∈ R are obtained from K ′ ∈ R
by inversion of the re-parametrization K ′ =KH as K = H

K′
.

Notice that the root locus of P(s) is given equivalently by
the set of points

(s,K) = (s(K),K) ∈ C ×R (7)

such that

P(s) = −
1

K
(8)

Accrodingly, the positive root locus of P(s) is equivalently
represented by the set of points (s,K) = (s(K),K) ∈ C×R+

such that

∣P(s)∣ =
1

K
Arg{P(s)} = (2h + 1)π, h ∈ Z, (9)

while positive root locus of P(s) is equivalently represented
by the set of points (s,K) = (s(K),K) ∈ C ×R− such that

∣P(s)∣ =
1

∣K ∣

Arg{P(s)} = 2hπ, h ∈ Z. (10)

From the computational point of view, the second equations in
(9) and, respectively, (10) (the module root locus equations)
are instrumental to plot the curve of the locus in C while the
first equations in (9) and (10), respectively, (the phase root lo-
cus equations) are instrumental to associate the corresponding
values of K to each point of the curve.

II. ROOT LOCUS PROPERTIES

In this section we want to describe some key properties and
technical rules which help drawing the root locus.

(P1) The positive (resp. negative) locus has as many curves
as the number of poles of P(s). ForK increasing from 0 to +∞
(resp. from −∞ to 0) each curve of the positive (resp. negative)
locus starts (resp. ends) for K = 0 from (resp. in) the poles of
P(s) and tends to (resp. comes from) either one of them zeroes
of P(s) or the point at infinity.
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Technical explanation. As a consequence of the mag-
nitude condition in (9) (resp. (10)) if K → 0± then
s → pi for at least one i since lims→pi ∣P(s)∣ = +∞.
It follows that the ponts (s,K) = (pi,0), i = 1, . . . , n,
are points of the locus. Moreover, as a consequence of
(9) (resp. (10)) if K → ±∞ then either s → zi for at
least one i or ∣s∣ → +∞ since lims→zi ∣P(s)∣ = 0 and
lim∣s∣→∞ ∣P(s)∣ = 0. For K increasing from 0 to +∞

(resp. from −∞ to 0) each curve of the root locus runs
from a pole of P(s) (resp. either one of the m zeroes
of P(s) or the point at infinity) to either one of the
m zeroes of P(s) or the point at infinity (resp. a pole
of P(s)).

(P2) The positive (resp. negative) locus is symmetric with
respect to the real axis.

This follows from the fact P(s∗) = P∗(s) for all s ∈ C.
(P3) A point of the real axis is a point of the positive (resp.

negative) locus if it leaves to his left an odd (resp. even) number
of poles/zeroes.

Technical explanation. A point of the real axis is
a point of the positive (resp. negative) locus must
satisfies the phase condition in (9) (resp. (10)). Notice
that

Arg{P(s)} =
m

∑
i=1

Arg{s − zi} −
n

∑
i=1

Arg{s − pi} (11)

A term s− zi (resp. s− pi) is a vector on the complex
plane which starts from zi (resp. pi) and points into
s. If s is a point of the real axis, any term s − zi
(resp. s − pi) for real zi (resp. real pi) contributes
2hπ, h ∈ Z, to the phase of P(s) if zi (resp. pi)
lies on the right of s and (2h + 1)π, h ∈ Z, if zi
(resp. pi) lies on the left of s (the right/left of a point
is meant to be the left/right of an external observer).
On the other hand any term (s − zi)(s − z

∗
i ) (resp.

(s − pi)(s − p
∗
i )) for complex conjugate zi, z∗i (resp.

pi, p
∗
i ) contributes 2hπ, h ∈ Z, to the phase of P(s).

Therefore, for any point s of the real axis, if an odd
(resp. even) number of poles/zeroes lie on its left these
poles/zeroes contibute (2h + 1)π, h ∈ Z (resp. 2hπ, )
to the phase of P(s) and s is a point of the positive
(resp. negative) locus.

(P4) A point with multiplicity µ of the positive (resp.
negative) locus corresponds to the intersection point of µ curves
of the positive (resp. negative) locus. This point is regular if
µ = 1 and singular if µ > 1. Any singular point (s,K) (with
multiplicity µ > 2) is solution of the root locus equation (3) and
its derivative:

1 +KP(s) = 0,
B

Bs
(1 +KP(s)) = 0 (12)

(the last equation referred to as singular points equation). There
are at most n +m − 1 singular points.

Technical explanation. This follows from the fact that
a zero of 1+KP(s) with multiplicity µ is also a zero
of the first µ − 1 derivatives of 1 +KP(s). Equations
(12) are equivalent to

NUM(1 +KP(s)) = 0,
B

Bs
NUM(1 +KP(s)) = 0 (13)

From the zero-pole form of P(s), it turn out that
equations (12) (or (13)) are equivalent to

1 +K
∏
m
i=1(s − zi)
∏
n
i=1(s − pi)

= 0,

m

∑
i=1

1

s − zi
−

n

∑
i=1

1

s − pi
= 0. (14)

Moreover, if we want to determine also the multiplicity
of a singular point, for the set of singular points with
given multiplicity µ we have to find the set of points
s solving the following equations:

Br

Bsr
(1 +KP(s)) = 0, r = 0,1, . . . , µ − 1,

Bµ

Bsµ
(1 +KP(s)) ≠ 0, (15)

or, equivalently,

Br

Bsr
NUM(1 +KP(s)) = 0, r = 0,1, . . . , µ − 1,

Bµ

Bsµ
NUM(1 +KP(s)) ≠ 0. (16)

(P5) If (s,K) is a singular point of the positive (resp.
negative) locus with multiplicity µ the directions along which
the µ curves approach the point (s,K) and intersect each other
at that point form a star, with center in the point (s,K) and radii
splitting the angle 360○ into µ equal angles: the sign (positive
or negative) of the locus is such that incoming curves alternate
with outcoming curves.

Technical explanation. Let (s○,K○) be a point of the
positive locus with multiplicity µ (the argument is the
same for the negative locus). Since (s○,K○) is a point
of the locus

P(s○) +
1

K○ = 0 (17)

On the other hand for any point (s,K) of the locus

P(s) +
1

K
= 0 (18)

or what is the same

P(s) +
1

K○ = ε (19)

with ε ∶= 1
K○

− 1
K

.
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Since (s○,K○) has multiplicity µ and on account of
(17), locally around s○

P(s) +
1

K○ = (s − s○)µf(s) (20)

for some polynomial f(s). Therefore, locally around
(s○,K○) (i.e. for K ∈ (−K + K○,K + K○) with
sufficiently small K > 0) a point (s,K) of the positive
locus is such that

(s − s○)µf(s○) ≈ ε (21)

or equivalently

(s − s○)µ ≈
ε

f(s○)
(22)

Note that, since f(s○) = ρ○e−jθ
○

for some θ○ ∈ R and
ρ○ > 0, the above equation has the form (s − s○)µ =

Hejθ
○

, with

H ∶=
ε

ρ○
=

1
K○

− 1
K

ρ○

varying from H
−

to H
+

where

H
±
∶=

1
K○

− 1

±K+K○
ρ○

Notice H
+
> 0 and H

−
< 0 and that values of H ∈

(H
−
,0) corresponds to values of K ∈ (−K +K○,K○)

while values of H ∈ (0,H
+
) correspond to values

of K ∈ (K○,K + K○). Therefore, the curves which
correspond to values of K ∈ flow out of the point
s○ and the curves which correspond to values of
K ∈ (−K +K○,K○)(K○,K +K○) flow into the point
s○. Property (iv) follows from the next lemma.
Lemma 2.1: The root locus (s,H) of

(s − s○)µ =Hejθ
○

(23)

with s○ ∈ C and θ○ ∈ R, describes on the complex plane
a star centered at s○ with consecutive radii forming
angles of π

µ
. In particular, the radii of the positive (resp.

negative) locus form with the real axis an angle

θ =
θ○ + 2hπ

µ
, h = 0,1, . . . , µ − 1 (24)

(resp. θ =
θ○ + (2h + 1)π

µ
, h = 0,1, . . . , µ − 1 ) (25)

Remark 2.1: Notice that the poles of P(s) with multiplicity
µ > 1 are singular points of the locus with the same multiplic-
ity µ and are obtained from the singular points equation by
setting K = 0 and solving in s. As such these points behave
according to (P4) and (P5) . For this reason and since each
curve of the positive (resp. negative) locus exits from a pole for
incresing k > 0 (resp. enters into a pole for increasing k < 0),
when a pole of P(s) is a singular point with multiplicity µ
it is the intersection point of µ alternating curves from the
positive and negative locus: µ flowing into the point (negative
locus) and µ flowing out the point (positive locus).

On the other hand, the zeroes of P(s) with multiplicity
µ > 1 are not singular points of the locus, since these point
cannot be obtained as solutions of the singular points equation
(they are limit points of the locus for K → ±∞). However, the
locus around these points behaves according to the same rule
(P4) and (P5) , i.e. the zeroes of P(s) with multiplicity is
µ > 1 behave as singular points with multiplicity is µ. ◁

(P6) m curves of the positive (resp. negative) locus approach
the points z1, . . . , zm asK →∞ (resp. asK → −∞) while n−m
curves tend to the point at infinity along asymptotes which form
a star with radii inclined w.r.t. the real positive axis by the angle
(positive counterclockwise)

θ =
(2h + 1)π

n −m
, h = 0,1, . . . , n −m − 1 (26)

(resp. θ =
2hπ

n −m
, h = 0,1, . . . , n −m − 1 ) (27)

and centered at the point (the asymptotes center)

s0 ∶=
∑
n
i=1 pi −∑

m
i=1 zi

n −m
(28)

The number n − m is also referred to as zero-pole excess or
relative degree of P .

Technical explanation. Note that for all s
n

∏
i=1

(s − pi) = (s − s0)
n−m

[
m

∏
i=1

(s − zi) + n0(s)] (29)

where n0(s) is some (m−2)-degree polynomial. Since

∣
n0(s)

∏
n
i=1(s − pi)

∣→ 0 as ∣s∣→ +∞

then for ∣s∣ >> 1 and, therefore, for K >> 1 the root
locus of

1 +KP(s) = 1 +K
∏
m
i=1(s − zi)
∏
n
i=1(s − pi)

= 1 +K[
1

(s − s0)n−m
−

n0(s)

∏
n
i=1(s − pi)

]

is approximately the same as the root locus of

1 +
K

(s − s0)n−m

or, equivalently, the root locus of

(s − s0)
n−m

+K (30)

By lemma 2.1 with H ∶=K and θ○ = −π the root locus
of (30) describes on the complex plane a star centered
at s0 with consecutive radii forming angles of π

n−m .

(P7) The values of K for which the root locus crosses
the imaginary axis are (among) the values of K for which the
Routh table generated by NUM(1 + KP(s)) is not regular.
Furthermore, the number NV of sign variations in the first
column of the Routh table corresponding to the values of K
in some open interval I ⊂ R is equal to the number of curves
K ∈ I → s(K) ∈ C+ (i.e. the curves of the root locus in C+

corresponding to the values of K ∈ I).
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Figure 1. Root locus of 1 +Kp(s) with of P (s) = 1
s(s+1)(s+2)

.

Exercize 2.1: Plot the root locus of

P(s) ∶=
1

s(s + 1)(s + 2)
(31)

We denote the zeroes of P(s) on the complex plane by circles
and the poles of P(s) by crosses. The poles of P(s) are
p1 ∶= 0, p2 ∶= −1 and p3 ∶= −2 (n = 3) . P(s) has no zeroes
(m = 0) . The root locus is shown in Figure 1.

The positive (resp. negative) locus has as many curves as
the number of poles of P(s), i.e. 3 curves. Each curve of the
positive (resp. negative) locus starts (resp. ends) for K = 0
from (resp. in) the poles of P(s) and tends to the point at
infinity (rule P1): the direction of the curves is the one for
which K varies from −∞ to +∞. Moreover, the positive (resp.
negative) locus is symmetric with respect to the real axis (rule
P2).

Notice that the points of the real axis are points of the
positive (resp. negative) locus if they leave to their left an odd
(resp. even) number of poles/zeroes (rule P3).

Each curve of the positive (resp. negative) locus approaches
the point at infinity along directions (asymptotes) which form
a star with 3 radii inclined to the real positive axis by
60○,180○,300○ (resp. 0○,60○,240○) and centered at the point

s0 ∶=
∑
n
i=1 pi −∑

m
i=1 zi

n −m
=

(−2 − 1)

3
= −1 (32)

(rule P5).
The singular points (with any multiplicity µ ≥ 2) are

determined by the equations (rule P4)

Br

Bsr
[1 +KP(s)] = 0, r = 0,1 (33)

which are also equivalent to

1 +K
∏
m
i=1(s − zi)
∏
n
i=1(s − pi)

= 0,

m

∑
i=1

1

s − zi
−

n

∑
i=1

1

s − pi
= 0 (34)

i.e.

s(s + 1)(s + 2) +K = 0,

3s2 + 6s + 2 = 0 (35)

which have solutions

s = −0.422, K = 0.385

s = −1.578, K = −0.910 (36)

(see Figure 1). In each one of these two points 2 curves inter-
sect each other with alternating incoming/outcoming directions
(rule P4). Moreover, the singular points (36) have multiplicity
µ = 2 since at these points

B2

Bs2
[1 +KP(s)] ≠ 0.

The Routh table generated by the numerator of 1 +KP(s),
i.e. the polynomial

w(s) ∶= NUM(1 +KP(s))

= s(s + 1)(s + 2) +K = s3 + 3s2 + 2s +K, (37)

is

r(3)

r(2)

r(1)

r(0)

1 2
3 K

6 −K
K

(38)

We can discuss the number of sign variations NV (p) and
permanencies NP (p) in the first column of the Routh table
as follows. By rule P7 the sign variations NV (p) for a certain
interval I of K establish the number of curves s(K) of the
root locus which lie in C+ for K ∈ I. The latter on the other
hand corresponds to the number of closed-loop poles in C+ .
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0 6

r(3)

r(2)

r(1)

r(0)

Therefore, we have

● for K = 0 and K = 6 the table is not regular
● for K < 0 the table is regular and NV (w) = 1 and
NP (w) = 2

● for K ∈ (0,6) the table is regular and NV (w) = 0 and
NP (w) = 3

● for K > 6 the table is regular and NV (w) = 2 and
NP (w) = 1

We conclude by virtue of the Routh criterion that (see the root
locus in Figure 1)

● for K = 6 the curves of the positive root locus intersect
the imaginary axis: the intersection points are obtained
from the roots of

NUM(1 + 6P(s)) = s(s + 1)(s + 2) + 6 = 0 (39)

i.e. the root locus equation for K = 6. The roots are
s = ±j

√
2 and s = −3 and, clearly, s = ±j

√
2 are the

crossing points on the imaginary axis we look for (s = −3
is a point of the positive locus but not a crossing point
on the imaginary axis).

● for K < 0 only one (entire) curve of the negative root
locus lies in C+

● for K ∈ (0,6) there is no curve of the positive root locus
lying in C+

● for K > 6 two curves of the positive root locus lie in C+.

◻

Exercize 2.2: Plot the root locus of

P(s) ∶=
s + 1

s2(s + 3)
(40)

We denote the zeroes of P(s) on the complex plane by circles
and the poles of P(s) by crosses. The poles of P(s) are
p1 ∶= 0 (with multiplicity 2) and p2 ∶= −3 (n = 3). The zeroes
of P(s) are z1 ∶= −1 (m = 1). The root locus is shown in
Figure 2.

Notice that the positive (resp. negative) locus has as many
curves as the number of poles of P(s), i.e. 3 curves. Each
curve of the positive (resp. negative) locus starts (resp. ends)
for K = 0 from (resp. in) the poles of P(s) and tends to the
point at infinity (rule P1): the direction of the curves is the
one for which K varies from −∞ to +∞. The positive (resp.
negative) locus is symmetric with respect to the real axis (rule
P2).

Notice that the points of the real axis are points of the
positive (resp. negative) locus if they leave to their left an odd
(resp. even) number of poles/zeroes (rule P3).

Two curves of the positive (resp. negative) locus approaches
the point at infinity along directions which form a star with

2 radii inclined to the real positive axis by 90○,270○ (resp.
0○,180○) and centered at the point

s0 ∶=
∑
n
i=1 pi −∑

m
i=1 zi

n −m
=
−3 − (−1)

2
= −1 (41)

(property P5).
The singular points (with any multiplicity µ ≥ 2) are

determined by the equations (rule P4)

Br

Bsr
[1 +KP(s)] = 0, r = 0,1, (42)

equivalent to

1 +K
∏
m
i=1(s − zi)
∏
n
i=1(s − pi)

= 0,

m

∑
i=1

1

s − zi
−

n

∑
i=1

1

s − pi
= 0 (43)

i.e.

s2(s + 3) +K(s + 1) = 0,

3s2 + 6s +K = 0 (44)

which have solutions

s = 0, K = 0

s =
−3 + j

√
3

2
, K = j3

√
3

s =
−3 − j

√
3

2
, K = −j3

√
3 (45)

The last two solutions must be discarded since they correspond
to a complex value of the parameter K. In the point s = 0
(which is the pole of the open-loop system P(s)) 2 curves
intersect each other with alternating incoming/outcoming di-
rections (rule P4: see Figure 2). The intersecting curves
alternate from the positive and negative locus. Notice that
when a singular points coincide with some open-loop pole,
we know its multiplicity directly from the multiplicity as a
pole of P(s). Notice also that indeed s = 0 is a singular with
multiplicity µ = 2 since for s = 0 we have B

2

Bs2
[1+KP(s)] ≠ 0.

The Routh table generated by the numerator of 1+KP(s),
i.e. the polynomial

w(s) ∶= NUM(1 +KP(s))

= s2(s + 3) +K(s + 1) = s3 + 3s2 +Ks +K, (46)

is

r(3)

r(2)

r(1)

r(0)

1 K
3 K

2K
K

(47)

We can discuss the number of variations and permanencies in
the first column of the Routh table as follows.

0

r(3)

r(2)

r(1)

r(0)
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Therefore, we have
● for K = 0 the table is not regular
● for K < 0 the table is regular and NV (w) = 1 and
NP (w) = 2

● for K > 0 the table is regular and NV (w) = 0 and
NP (w) = 3

We conclude by virtue of the Routh criterion that (see Fig-
ure 2)

● for K < 0 only one (entire) curve of the negative root
locus lies in C+

● for K > 0 all the curves of the positive root locus lie in
C−

Moreover, there are no intersections with the imaginary axis.
◻

Exercize 2.3: Plot the root locus of 1 +KP(s) with

P(s) ∶=
(s − 1)2

s2(s2 + 1)
(48)

We denote the zeroes of P(s) on the complex plane by circles
and the poles of P(s) by crosses. The poles of P(s) are
p1 ∶= 0 (with multiplicity 2), p2 ∶= +j and p3 ∶= −j (n = 4).
The zeroes of P(s) are z1 ∶= 1 (with multiplicity 2: m = 2).
The root locus is shown in Figure 3.

Notice that the positive (resp. negative) locus has as many
curves as the number of poles of P(s), i.e. 3 curves. Each
curve of the positive (resp. negative) locus starts (resp. ends)
for K = 0 from (resp. in) the poles of P(s) and tends to the
point at infinity (rule P1): the direction of the curves is the
one for which K varies from −∞ to +∞. The positive (resp.
negative) locus is symmetric with respect to the real axis (rule
P2).

Notice that the points of the real axis are points of the
positive (resp. negative) locus if they leave to their left an odd
(resp. even) number of poles/zeroes (rule P3).

Two curves of the positive (resp. negative) locus approach
the point at infinity along directions which form a star with
2 radii inclined to the real positive axis by 90○,270○ (resp.
0○,180○) and centered at the point

s0 ∶=
∑
n
i=1 pi −∑

m
i=1 zi

n −m
=

(j − j) − (1 + 1)

2
= −1 (49)

(rule (P5)).
The singular points are determined by the equations (rule

(P4))

Br

Bsr
[1 +KP(s)] = 0, r = 0,1 (50)

or, equivalently,

1 +K
∏
m
i=1(s − zi)
∏
n
i=1(s − pi)

= 0,

m

∑
i=1

1

s − zi
−

n

∑
i=1

1

s − pi
= 0 (51)

i.e.

s2(s2 + 1) +K(s − 1)2 = 0,

2s3 + s +K(s − 1) = 0 (52)

which have real solutions

s = 0, K = 0

s ≈ 2.2, K ≈ −17.97 (53)

(the other two solutions must be discarded since they corre-
spond to a complex value of the parameter K). In the point s =
0 (which is the pole of the open-loop system P(s)) 2 curves
intersect each other with alternating incoming/outcoming di-
rections (rule P4). Also, note that the intersecting curves in
s = 0 alternates from the positive and negative locus. A similar
situation happens at the point s ≈ 2.2.

The Routh table generated by the numerator of 1+KP(s),
i.e.

NUM(1 +KP(s)) = s2(s2 + 1) +K(s − 1)2

is not regular for all K (see Figure 3). This also means that
for no values of K (positive or negative) the closed-loop poles
are all in C−. ◻

Exercize 2.4: Plot the root locus of

P(s) ∶=
s(s2 + 2s + 2)

(s + 1)2(s + 2)2
(54)

The relative degree n −m of P is 1 and we have at most
m −m + 1 = 6 singular points. We have three possible (and
equally plausible) root locuses for P(s) (Figure 4). Including
the poles of P(s) at s = −1 and s = −2 (which are singular
points with multiplicity 2 corresponding to k = 0), in Figure
a) we have 4 singular points, in Figure b) we have 6 singular
points and in Figure c) we have 4 singular points. However,
the root locus of P(s) solved with Matlab shows that the
exact one is the second plot in Figure 4. As a matter of fact,
excluding the poles of P(s) at s = −1 and s = −2, the singular
points are solutions of the equation

γ(s) = s4 + s3 − 2s − 4 = 0 (55)

i.e. s1,± = ±
√

2 and s2,± = −0.5 ± j1.32. While the singular
points s1,± were predicted from the analysis of the root
locus on the real axis, the other two points were actually
unpredictable from a simple qualitative analysis of the locus.

The analysis of the root locus shows the existence of an
interval (K1,+∞), with K1 < 0, such that the closed-loop
system is asymptotically stable for K ∈ (K1,+∞). As a matter
of fact, by the Routh table of NUM(1 +KP(s)) we obtain

r(4)

r(3)

r(2)

r(1)

r(0)

1 13 + 2K 4
6 +K 2(6 +K)

11 + 2K 4
18+4K
11+2K

4

(56)

By discussing the sign variations, we obtain that K1 = −4.5.
◻

III. STABILIZATION AND POLE PLACEMENT

The root locus gives important information about the po-
sitions of the closed-loop system poles. Moreover, the Routh
criterion gives a method for determining the values of K for
which the closed-loop system poles have negative real part,
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Figure 2. Root locus of 1 +KP(s) with of P(s) = s+1
s2(s+3)

.

Figure 3. Root locus of 1 +KP(s) with of P(s) = (s−1)2

s2(s2+1)
.

i.e. the closed-loop system is asymptotically stable. However,
if such values of K do not exist we must think of more
general control action (than proportional) in order to stabilize
the closed-loop system. The key idea comes from the root locus.
Indeed, assume that the zeroes of P(s) are in C− and let n and
m be the number of poles and, respectively, zeroes of P(s). As
well-known, m curves of the positive root locus of 1 +KP(s)
tend to the zeroes as K → +∞. This means that for K >> 1 the
points of the locus which lie on these m curves have negative
real part. We also know that n −m curves of the positive root
locus of 1 +KP(s) tend to the point at infinity as K → +∞

along certain directions. If the relative degree n −m = 1, the
closed-loop system is asymptotically stable for all K >> 1.
Moreover, if n − m = 2 these asymptotes are vertical (form
with the positive real axis 90○ and 270○, respectively). If, in
addition, the asymptotes center s0 is negative, then for K >> 1
also the points of the locus which lie on these n − m curves

have negative real part. Summing up, if the zeroes of P(s) have
negative real part, n−m = 2 and s0 < 0 the closed-loop system is
asymptotically stable for allK >> 1. This suggest the following
approach to the stabilization of P(s), as long as its zeroes have
negative real part (a process P(s) with all zeroes in C− is called
minimum phase):

A. Stabilization of minimum phase P(s)

(Relative degree of P(s) = 1). Apply a proportional control
action to P(s)

G(s) ∶=K (57)

By means of the Routh criterion on

NUM(1 +KP(s))

find K > 0 such that the roots of NUM(1 +KP(s)G(s)) lie
in C−. The stabilizing controller is G(s).



8

Figure 4. Root locus of 1 +KP(s) with of P(s) = s(s2+2s+2)

(s+1)2(s+2)2
.
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(Relative degree of P(s) = 2). Assume that the root locus of
P(s) has an asymptote center s0 ≥ 0. Apply the following
control action to P(s)

G1(s) ∶=
s − z′

s − p′
(58)

with p′ < z′ < 0. The asymptotes center s′0 of the root locus of
P(s)G1(s) is

s′0 ∶=
∑
n
i=1 pi + p

′ − (∑
m
i=1 zi + z

′)
n −m

= s0 +
p′ − z′

n −m
(59)

where p1, . . . , pn and z1, . . . , zm are the poles and zeroes of
P(s). Therefore, select p′ and z′ in such a way that s′0 < 0. If
P(s) has an asymptote center s0 < 0, it is possible to set in
alternative G1(s) = 1, by reducing by one dimension the final
controller.

Finally, apply a proportional control action to P(s)

G2(s) ∶=K (60)

By means of the Routh criterion applied on

NUM(1 +KP(s)G1(s))

find K such that the roots of NUM(1 +KP(s)G1(s)) lie in
C−. The stabilizing controller is G(s) =G1(s)G2(s).
(Relative degree of P(s) > 2). In this case, apply the following
control action to P(s)

G1(s) ∶=
n−m−2
∏
i=1

(s − z′i) (61)

with z′1, . . . , z
′
n−m−2 < 0. In other words, let us add to P(s) n−

m− 2 negative zeroes so that the relative degree of P(s)G1(s)
is 2. The control action (123) is not physically realizable as
such. At this point if the root locus of 1 + KP(s)G1(s) has
the asymptotes center s0 ≥ 0, then apply the following control
action to P(s)G1(s)

G2(s) ∶=
s − z′

s − p′
(62)

with p′ < z′ < 0 selected in such a way to place the asymptotes
center s′0 of the root locus of 1 +KP(s)G1(s)G2(s) on the
negative real axis (i.e. s′0 < 0). If P(s)G1(s) has an asymptote
center s0 < 0, it is possible to set in alternative G2(s) = 1, by
reducing by one dimension the final controller. Next, apply a
proportional control action to P(s)

G3(s) ∶=K (63)

By means of the Routh criterion applied on

NUM(1 +KP(s)G1(s)G2(s))

find K such that that the roots of NUM(1 +

KP(s)G1(s)G2(s)) lie in C−. Finally, apply to
P(s)G1(s)G2(s)G3(s) the control action

G4(s) ∶=
1

(1 + sT )n−m−2 , (64)

which makes the overall control action G(s) =

G1(s)G2(s)G3(s)G4(s) physically realizable, and by
means of the Routh criterion find T > 0 such that the roots

of NUM(1 + P(s)G1(s)G2(s)G3(s)G4(s)) lie in C−. The
stabilizing controller is G(s) =G1(s)G2(s)G3(s)G4(s).

Exercize 3.1: Plot the root locus of 1 +KP(s) with

P(s) ∶=
1

s2
(65)

and find, if possible, a controller G(s) such that the feedback
interconnection with unitary feedback of P(s)G(s) is asymp-
totically stable.

Let us plot the root locus of P(s). We denote the zeroes of
P(s) on the complex plane by circles and the poles of P(s)
by crosses. The poles of P(s) are p1 ∶= 0 (with multiplicity
2). P(s) has no zeroes (m = 0). The root locus is shown in
Figure 5.

Two curves of the positive (resp. negative) locus approaches
the point at infinity along directions which form a star with
2 radii inclined to the real positive axis by 90○,270○ (resp.
0○,180○) and centered at the point

s0 ∶=
∑
n
i=1 pi −∑

m
i=1 zi

n −m
=

0

2
= 0 (66)

(rule P5).
The singular points are determined by the equations (rule

(P4))

Br

Bsr
[1 +KP(s)] = 0, r = 0,1 (67)

In particular, the singular points (s,K) with multiplicity 2
satisfy the equations

1 +K
∏
m
i=1(s − zi)
∏
n
i=1(s − pi)

= 0,

m

∑
i=1

1

s − zi
−

n

∑
i=1

1

s − pi
= 0 (68)

i.e.

s2 +K = 0,

s = 0 (69)

which have the unique solution

s = 0, K = 0

In the point s = 0 (which is the pole of the open-loop
system P(s)) 4 curves (two curves of the positive locus and
two curves of the negative locus) intersect each other with
alternating directions (rule P4).

The numerator of 1 +KP(s), i.e. the polynomial

p(s) ∶= s2 +K (70)

has roots ±j
√
K for K > 0 and ±

√
∣K ∣ for K < 0 (see

Figure 5). Therefore, for no value of K the root locus lies
in C− , i.e. the feedback interconnection of P(s) is not
stabilizable with proportional control action.

Since P(s) has no zeroes, n −m = 2 and the root locus of
1 +KP(s) has s0 = 0 (see case n −m = 2 above), we apply
the following control action to P(s)

G1(s) ∶=
s − z′

s − p′
(71)
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Figure 5. Root locus of 1 +KP(s) with of P(s) = 1
s2

.

with p′ < z′ < 0 selected in such a way that the asymptotes
center s′0 of the root locus of P(s)G1(s)

s′0 ∶= s0 +
p′ − z′

n −m
(72)

is negative. For example, p′ = −10 and z′ = −1. The positive
root locus of 1 +P(s)G1(s) is shown in Figure 6.

Finally, by means of the Routh criterion find G2(s) = K
such that the roots of NUM(1+KP(s)G1(s)) lie in C− . We
apply the Routh criterion to NUM(1 +KP(s)G1(s)), i.e.

p(s) ∶= NUM(1 +KP(s)G1(s))

= s2(s + 10) +K(s + 1) = s3 + 10s2 +Ks +K (73)

The Routh table is

r(3)

r(2)

r(1)

r(0)

1 K
10 K
9K
K

(74)

Clearly, any K > 0 is such that the number of variations in
the first column of the Routh table is zero. Any controller

G(s) ∶=G1(s)G2(s) =K
s + 1

s + 10
(75)

with K > 0 stabilizes the feedback interconnection of
G(s)P(s) with unitary feedback. ◻

Exercize 3.2: Plot the root locus of 1 +KP(s) with

P(s) ∶=
1

sn
(76)

n > 2, and find, if possible, a controller G(s) such that the
feedback interconnection with unitary feedback of P(s)G(s)
is asymptotically stable.

Let us plot the root locus. We denote the zeroes of P(s)
on the complex plane by circles and the poles of P(s) by
crosses. The poles of P(s) are p1 ∶= 0 (with multiplicity n).
P(s) has no zeroes (m = 0).

In this example, n curves of the positive (resp. negative)
locus approaches the point at infinity along directions which
form a star with n radii inclined to the real positive axis by

θ =
θ○ + 2hπ

n
, h = 0,1, . . . , n − 1 (77)

(resp. θ =
θ○ + (2h + 1)π

n
, h = 0,1, . . . , n − 1) (78)

and center at the point

s0 ∶=
∑
n
i=1 pi −∑

m
i=1 zi

n
=

0

n
= 0 (79)

(rule (P5)).
In the point s = 0 (which is the pole of the open-loop system

P(s)) 2n curves (n curves of the positive locus and n curves
of the negative locus) intersect each other with alternating
directions (rule (P4)).

The numerator of 1 +KP(s), i.e. the polynomial

p(s) ∶= sn +K (80)

has no roots in C− . Therefore, the feedback interconnection
of P(s) is not stabilizable with proportional control action.

Since P(s) has no zeroes and n − m = n > 2 (see case
n −m > 2 above), we apply to P(s) the following control
action

G1(s) ∶=
n−2
∏
i=1

(s − z′i) (81)

with z′1, . . . , z
′
n−2 < 0. For example, z′1 = z

′
2 = ⋅ ⋅ ⋅ = z

′
n−2 = −1.

Secondly, apply to P(s)G1(s) the following control action

G2(s) ∶=
s − z′

s − p′
(82)

with p′ < z′ < 0 selected in such a way that the asymptotes
center s′0 of the root locus of P(s)G1(s)G2(s)

s′0 ∶=
p′ − z′ −∑n−2i=1 z

′
i

2
=
p′ − z′ + n − 2

2
(83)
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Figure 6. The positive root locus of 1 +KP(s) with P(s) = s+1
s2(s+10)

.

Figure 7. Root locus of 1 +KP(s) with P(s) = s+1
(s+2)(s−1)(s+3)2

.

is negative. For example, p′ = −n − 1 and z′ = −1. Finally, by
means of the Routh criterion find G3(s) = K such that the
roots of NUM(1+KP(s)G1(s)G2(s)) lie in C− . We apply
the Routh criterion to NUM(1 +KP(s)G1(s)G2(s)), i.e.

p(s) ∶= NUM(1 +KP(s)G1(s)G2(s))

= sn(s + n + 1) +K(s + 1)n−1 (84)

For example, for n = 3 the Routh table is

r(4)

r(3)

r(2)

r(1)

r(0)

1 K K
4 2K
K 2K

2K2−8K
K

2K

(85)

Clearly, any K > 4 is such that the number of variations in the
first column of the Routh table is zero. Set G3(s) =K = 5. Fi-

nally, apply to P(s)G1(s)G2(s)G3(s) the following control
action

G4(s) ∶=
1

(1 + sT )n−2
(86)

which makes physically realizable the overall control
action G1(s)G2(s)G3(s)G4(s) and by means of the
Routh criterion find T > 0 such that the roots of
NUM(1 + P(s)G1(s)G2(s)G3(s)G4(s)) lie in C− . We
apply the Routh criterion to the numerator of NUM(1 +

P(s)G1(s)G2(s)G3(s)G4(s)), i.e.

p(s) ∶= sn(s + n + 1)(1 + sT )
n−2

+K(s + 1)n−1 (87)

For example, for n = 3 the Routh table is:
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r(5)

r(4)

r(3)

r(2)

r(1)

r(0)

T 4 10
1 + 4T 5 5
4 + 11T 10 + 35T

10 + 75T + 140T 2 5(4 + 11T )

(10 + 75T + 140T 2)(10 + 35T ) − 5(4 + 11T )2

5(4 + 11T )

(88)

Clearly, any T ∈ (0,0.1) is such that the number of
variations in the first column of the Routh table is zero.

The controller

G(s) ∶=G1(s)G2(s)G3(s)G4(s) =
5

s + n + 1

(s + 1)n

(1 + 0.01s)n−1

stabilizes the feedback interconnection of G(s)P(s) with
unitary feedback. ◻

Exercize 3.3: Plot the root locus of 1 +KP(s) with

P(s) ∶=
s + 1

(s + 2)(s − 1)(s + 3)2
(89)

and find, if possible, a controller G(s) such that the feedback
interconnection with unitary feedback of P(s)G(s) is asymp-
totically stable.

Let us plot the root locus. The poles of P(s) are p1 ∶= −3
(with multiplicity 2), p2 ∶= −2 and p3 ∶= 1 (n = 4). The zeroes
of P(s) are z1 ∶= −1 (m = 1). The root locus is shown in
Figure 7.

Three curves of the positive (resp. negative) locus ap-
proaches the point at infinity along directions which form a star
with 3 radii inclined to the real positive axis by 60○,180○,320○

(resp. 0○,120○,240○) and centered at the point

s0 ∶=
∑
n
i=1 pi −∑

m
i=1 zi

n −m
=

(−2 + 1 − 3 − 3) − (−1)

3
= −2 (90)

(rule (P5)).
At the point s = −3 (which is the pole of the open-loop

system P(s)) 4 curves (2 of the positive locus and 2 of the
negative locus) intersect each other with alternating directions
(property (IV)). A similar situation takes place at a singular
point located between −3 and −2 (see Figure 7).

The numerator of 1 +KP(s), i.e. the polynomial

p(s) ∶= NUM(1 +KP(s))

(s + 2)(s − 1)(s + 3)2 +K(s + 1) (91)

From the Routh table it turns out that for no value of K the
root locus lies s in C− , i.e. the feedback interconnection of
P(s) is not stabilizable with proportional control action.

Since P(s) has a negative zero and its relative degree n −
m = 3 > 2, we apply the following control action to P(s)

G1(s) ∶= s + 3 (92)

Notice that the zero s = −3 of G1(s) cancels out the pole
s = −3 of P(s). This cancellation makes the convergent
mode corresponding to the pole s = −3 unobservable from the

output/unexcitable from the input: however, this not change
the stability of the closed-loop system. Notice also that the
asymptotes center s′0 of the root locus of P(s)G1(s)

s′0 ∶=
(−2 + 1 − 3) − (−1)

2
= −

3

2
(93)

is negative. In other words, it is not necessary to change
the asymptotes center. Finally, by means of the Routh cri-
terion find G2(s) = K such that the roots of NUM(1 +

KP(s)G1(s)) lie in C− . We apply the Routh criterion to
the numerator of NUM(1 +KP(s)G1(s)), i.e.

p(s) ∶= NUM(1 +KP(s)G1(s))

= (s + 2)(s − 1)(s + 3) +K(s + 1)

= s3 + 4s2 + (K + 1)s +K − 6 (94)

The Routh table is

r(3)

r(2)

r(1)

r(0)

1 1 +K
4 K − 6

3K + 10
K − 6

(95)

Clearly, any K > 6 is such that the number of variations in the
first column of the Routh table is zero. Set G2(s) = K = 8.
Finally, introduce the control action

G3(s) ∶=
1

1 + sT
(96)

which makes physically realizable the control action (92)
and by means of the Routh criterion find T > 0 such
that the roots of NUM(1 + P(s)G1(s)G2(s)G3(s)) lies
in C−. We apply the Routh criterion to the numerator of
NUM(1 +P(s)G1(s)G2(s)G3(s)), i.e.

p(s) ∶= NUM(1 +P(s)G1(s)G2(s)G3(s))

= (s + 2)(s − 1)(s + 3)(1 + sT ) +K(s + 1) (97)

The Routh table is

r(4)

r(3)

r(2)

r(1)

r(0)

T 4 + T 2
1 + 4T 9 − 6T

10T 2+8T+4
1+4T 2

−60T 3+74T 2+64T+36
10T 2+8T+4

2

(98)

Clearly, any T ∈ (0,0.1) is such that the number of variations
in the first column of the Routh table is zero. The controller

G(s) ∶=G1(s)G2(s)G3(s) = 8
s + 3

1 + 0.01T
(99)
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stabilizes the feedback interconnection of G(s)P(s) with
unitary feedback. ◻

Exercize 3.4: Let

P1(s) ∶=
1

s(s − 2)
, P2(s) ∶=

s − 2

s + 3
(100)

Find controllers G1(s) and G2(s) such that the dimension of
G(s) = G1(s)G2(s) is 1 and the feedback system in Figure
8 is asymptotically stable. Plot the root locus of the transfer
function F(s) on the direct path of the feedback system in
Figure 8.

Notice that we have one internal feedback loop and one
external feedback loop. Moreover, the dimension of G(s)
is exactly the number of its poles. We will design a one-
dimensional G1(s) for stabilizing the internal feedback loop
and a one-dimensional G2(s) for stabilizing the external
feedback loop. For stabilizing the internal feedback loop,
notice that P1(s) has all zeroes in C−. Moreover, its relative
degree is 2 and the asymptote center is in s0 = 1. Therefore,
a zero-pole control action

G1(s) ∶=KG1

s − z

s − p
(101)

with z, p < 0, will move the asymptote center in R− and
increasing the gain KG1 we will stabilize the internal loop with
P1(s). By selecting z = 3 and p = 7 we place the asymptote
center in

s′0 ∶= s0 +
−7 + 3

2
= −1 (102)

To determine the value of KG1 which stabilizes the in-
ternal feedback loop, we will apply the Routh criterion to
the denominator of the internal loop I/O transfer function
W1(s) =

P1(s)G1(s)
1+P1(s)G1(s) :

NUM(1 +P1(s)G1(s))

= s3 + 5s2 + (KG1 − 14)s + 3KG1 (103)

Constructing the associated Routh table and discussing the
sign variations in the elements of its first column we obtain that
W1(s) is asymptotically stable for KG1 > 35. For instance,
choose KG1 = 72. With this choice

W1(s) =
P1(s)G1(s)

1 +P1(s)G1(s)

= 72
s + 3

(s + 4)(s + 0.5 + j7.33)(s + 0.5 − j7.33)
(104)

Since the dimension of G1(s) is 1 and it is required that the
dimension of G1(s)G2(s) be 1, we necessarily have that

G2(s) =KG2 (105)

(i.e. a proportional controller). The controller G2(s) will
stabilize the external feedback loop around the process

F1(s) ∶=
1

s
W1(s)

= 72
s − 2

s(s + 4)(s + 0.5 + j7.33)(s + 0.5 − j7.33)
(106)

From the analysis of the root locus of F1(s) (recall that for
the locus of F1(s) it is necessary to re-parametrize KG2 as

K ′
G2

= 72KG2 ) it can be seen that for small negative values
of K ′

G2
the closed-loop poles are all in C−. This conclusion is

also accounted for by noticing that F1(s) has one pole at s = 0,
all the other poles in C− and one zero in C+. We will apply
the Routh criterion to the denominator of the external loop
I/O transfer function W2(s) ∶=

F1(s)G2(s)
1+F1(s)G2(s) (it is important

to notice that for the Routh table can be constructed using
either K ′

G2
or KG2 with the obvious changes):

NUM(1 +F1(s)G2(s))

= s4 + 5s3 + 58s2 + (216 +K ′
G2

)s − 2K ′
G2

(107)

Constructing the associated Routh table and discussing the
sign variations in the elements of its first column we obtain
that W2(s) is asymptotically stable for K ′

G2
∈ (−180.54,0).

Therefore, getting back to the original parametrization, W2(s)
is asymptotically stable for KG2

∈ (−180.54/72,0).
The transfer function on the direct path of the feedback

system 8 is

F(s) = F1(s)G2(s) (108)

The root locus of F(s) is drawn in Figure 9. ◻

Exercize 3.5: Let

P(s) ∶=
1

(s + 9)(s2 + a2)
, G(s) ∶=K. (109)

Find the values of a ∈ R for which, choosing properly the
parameter K, the feedback interconnection in Figure 10 has all
real negative poles.

The root locus of P(s) gives useful information on the
solution of the problem. The relative degree of P(s) is n−m =

3 and the locus has at most n+m−1 = 2 singular points. The
asymptote center is in

s0 =
−9

3
= −3

The singular points equation is

3s2 + 18s + a2 = 0

with solutions

s± =
−9 ±

√
81 − 3a2

3

These solutions are real if and only if

81 − 3a2 > 0⇔ a2 ≥ 27

In particular, for a2 ∈ [0,27] the position of the first singular
point s+ varies between 0 (for a = 0) and −3 (for a2 = 27),
while the second point s− varies between −6 (for a = 0) and −3
(fro a2 = 27). In any case, these two point are in the negative
locus.

If on the other hand the solutions s± are complex conjugate
(which is for a2 > 27) they are not points of the locus, since
as it can be easily checked these points do not satisfy the root
locus equation.

Consequently, the positive locus is as drawn in Figures 11-a
for a2 > 27 and Figures 11-b for a2 < 27. In the second case
there exist values of K for which the closed-loop system has
three negative real poles, while in the first case we always
have one real pole and two complex conjugate poles.
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Figure 8. The feedback loop of exercize 3.4.

Next, set for instance a2 = 24 for which we obtain s+ = −2
and s− = −4. The transfer function F(s) ∶=G(s)P(s) is

F(s) =K
1

(s + 9)(s2 + 24)

For finding the interval of values of K for which the closed-
loop poles are all real negative, it is sufficient to compute the
values of K corresponding to the origin of C and to the points
s+ and s−. Let denote these values with, respectively, K0, K1

and K2. We conclude from the root locus in Figure 12 that
the three closed-loop poles are all real negative for

K ∈ [max{K2,K0},K1]

For determining K0, K1 and K2 we replace in the root locus
equation

(s2 + 24)(s + 9) +K = 0

the corresponding values of s. One finds

K0 = −216, K1 = −196, K2 = −200.

Therefore, for a2 = 24 the admissible values of K are inside
the interval [−200,−196].

Notice that if a2 = 27 the two singular points coincide in
s± = −3. Consequently, the latter is a triple root of the locus.
In the point (s,K) = (−3,0) flow in and out (alternatively)
six arcs of the negative locus (Figure 12). The unique value
of K satisfying the problem is K = −216 and indeed the root
locus equation is (s + 3)3 = 0 for K = −216. ◻

Exercize 3.6: Consider the feedback interconnection in Fig-
ure 13 with

P(s) ∶=
s + 2

s2 + 1
, G1(s) ∶=

1

s
. (110)

(i) Draw the root locus of P(s)G1(s) and design a controller
G(s) = G1(s)G2(s) with minimal dimension such that the
closed-loop system is asymptotically stable.
(ii) Is it possible, mantaining the same structure for G(s), to
arrange all closed-loop poles with the same negative real part
−α < 0? If yes determine α.
(iii) Design a strictly proper controller G(s) = G1(s)G2(s)
such that the closed-loop system is asymptotically stable.

(i) For a minimal dimensional controller G(s) =

G1(s)G2(s) it is convenient first to see if we can take

a proportional controller G2(s) = KG2 . Let draw the root
locus of G1(s)P(s). The relative degree of G1(s)P(s) is
n−m = 2 and the singular points are at most n+m−1 = 3. By
examination of the flow directions of the curves, we discover
a real singular point in the negative locus. The asymptote
center is in s0 = 1. The root locus is drawn in Figure 14.
The inspection of the locus, confirmed by the Routh table
associated to the denominator of the I/O closed-loop transfer
function

NUM(1 +KG2G1(s)P(s)) = s(s2 + 1) +KG2(s + 2),

reveals that it is not possible to stabilize the closed-loop system
with a proportional controller G2(s) =KG2 .

In order to keep the dimension of G(s) =G1(s)G2(s) as
small as possible, since G1(s)P(s) has all zeroes in C−, we
explore the possibility of stabilizing the closed-loop system
with

G2(s) =K(s − z)

with z < 0. Since the relative degree of G1(s)G2(s)P(s) is
1 and its zeroes are all in C−, the closed-loop system will be
asymptotically stable for a sufficiently large value of K. For
this reason, for the denominator of the closed-loop I/O transfer
function

NUM(1 +G1(s)G2(s)P(s))

= s3 +Ks2 + (K(−z + 2) + 1)s − 2Kz (111)

we construct the Routh table:

r(3)

r(2)

r(1)

r(0)

1 K(−z + 2)
K −2Kz

K(z + 2) + 1 + 2z
−2Kz

(112)

We obtain that the closed-loop system is asymptotically stable
for K > 2z+1

z−2 . For instance, if z = −5 we obtain K > 9/7. We
choose

G2(s) = 2(s + 5) (113)

(ii) For obtaining three closed-loop poles with the same
real part −α < 0 and with the same structure of G(s) =
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Figure 9. The root locus of exercize 3.4.
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Figure 10. The feedback loop of exercize 3.5.

G1(s)G2(s) =
K(s−z)

s
, the denominator of the closed-loop

I/O transfer function

NUM(1 +G(s)P(s))

= s3 +Ks2 + (K(−z + 2) + 1)s − 2Kz (114)

must coincide with

(s+α)(s+α+jβ)(s+α−jβ) = s3 = 3αs2+(3α2
+β2

)s+αβ2
+α3

for some α,β > 0. By a comparison method we obtain the
equations in the unknowns K,α,β:

K = 3α

K(−z + 2) + 1 = 3α2
+ β2

−2Kz = αβ2
+ α3 (115)

One obtains two solutions for α

α± =
3(−z + 2) ±

√
9z2 + 12z + 44

4
(116)

and

β2
= −6z − α2 (117)

Since 9z2 + 12z + 44 > 0 for all z < 0, α± are both real,
moreover, α+ > 0 while α− may be either positive or negative.
If both α± are positive we choose the one for which β2 =

−6z − α2 > 0, i.e. α−, otherwise we must take α+. Finally,
we set K = 3α. For instance, if z = −5 we have α− = 1.63
and K = 4.90, correspondingly we have the three closed-loop
poles p1 = −1.63, p2,± = −1.63 ± .j5.22, which all have the
same real part.
(iii) The most direct way of finding a solution is to consider
the controller G(s) of (i) and add one negative pole s = − 1

T
with T << 1:

G′
(s) =G1(s)G2(s)

1

1 + sT
= 2

s + 5

s(1 + sT )

As a matter of fact, for a system such that its closed-loop is
asymptotically stable by adding a pole 1

1+sT with T > 0 the
resulting closed-loop system remains asymptotically stable if
T << 1. The value of T can be determined with the Routh
table. For this reason, we will construct the Routh table of

NUM(1 +G′
(s)P(s))

= 2(s + 2)(s + 5) + s(s2 + 1)(1 + sT )

= Ts4 + s3 + (T + 2)s ∗ 2 + 15s + 20 (118)

We obtain

r(4)

r(3)

r(2)

r(1)

r(0)

T T + 2 20
1 15

1 − 7T 10
1−21T
1−7T
10

(119)

For excluding sign variations in the first column, we choose
for instance T = 1/25. ◻

B. Pole placement for minimum phase P(s).

When the closed-loop poles are required to lie in certain sub-
regions of C− as for instance S(α) ∶= {s ∈ C− ∶ Re(s) < −α}
and P(s) is minimum phase, we have to modify the procedure
of stabilization for minimum phase P(s) given at the beginning
of this section, in particular
- cancel all the zeroes of P(s) which are not S(α) and
replacing them with zeroes in S(α),
- move the asymptote center of P(s) inside the portion of the
real axis contained in S(α).
(Relative degree of P(s) = 1). Using

G1(s) ∶=
∏
r
i=1(s − z

′
ji
)

∏
r
i=1(s − zji)

(120)

cancel all the zeroes zj1 , . . . , zjr of P(s) which are not in S(α)
and replace them with zeroes z′j1 , . . . , z

′
jr

in S(α). Apply a
proportional control action to P(s)G1(s)

G2(s) ∶=K (121)

By means of the Routh criterion on

NUM(1 +KP(s)G1(s))∣s−α

find K such that the roots of NUM(1 +KP(s)G1(s)) lie in
S(α).
(Relative degree of P(s) = 2). Using G1(s) as in (120), cancel
all the zeroes zj1 , . . . , zjr of P(s) which are not S(α) and
replace them with zeroes z′j1 , . . . , z

′
jr

in S(α). Assume that the
root locus of P(s)G1(s) has the asymptotes center s0 ∉S(α).
Apply the following control action to P(s)

G2(s) ∶=
s − z′

s − p′
(122)
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Figure 11. Root locus with a2 > 27 and a2 < 27 for exercize 3.5.
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Figure 12. Root locus with a2 = 27 for exercize 3.5.

Figure 13. The feedback loop of exercize 3.8.

with p′ < z′ and z′ ∈ S(α). Select p′ and z′ in such a way that
the asymptotes center s′0 of the root locus of G1(s)G2(s)P(s)
is in S(α). If the root locus of P(s)G1(s) has the asymptotes
center s0 ∈ S(α) we can take in alternative G2(s) = 1 so that
to reduce by one the dimension of the overall controller G(s).
Finally, by means of the Routh criterion, applied on

NUM(1 +KG1(s)G2(s)P(s))∣s−α,

find K such that the roots of NUM(1 +KG1(s)G2(s)P(s))
lie in S(α).
(Relative degree of P(s) > 2). Using G1(s) as in (120),
cancel all the zeroes zj1 , . . . , zjr of P(s) which are not S(α)
and replace them with zeroes z′j1 , . . . , z

′
jr

in S(α). Apply the
following control action to P(s)

G2(s) ∶=
n−m−2
∏
i=1

(s − z′i) (123)

with z′1, . . . , z
′
n−m−2 ∈ S(α), so that the relative degree of

P(s)G1(s)G2(s) is 2.
If the root locus of 1 +KP(s)G1(s)G2(s) has the asymp-

totes center s0 ∉ S(α), apply the following control action to
P(s)

G3(s) ∶=
s − z′

s − p′
(124)

with p′ < z′ and z′ ∈ S(α). Select p′ and z′ in such
a way that the asymptotes center s′0 of the root locus of
G1(s)G2(s)G3(s)P(s) is in S(α). If s′0 ∈S(α) we can take
in alternative G2(s) = 1 so that to reduce by one the dimension
of the overall controller G(s). Next, take

G4(s) ∶=K (125)
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Figure 14. The root locus of exercize 3.8.

Figure 15. The root locus of exercize 3.9.
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and by means of the Routh criterion, applied on

NUM(1 +KG1(s)G2(s)G3(s)P(s))∣s−α,

find K > 0 such that the roots of NUM(1 +

KG1(s)G2(s)G3(s)P(s)) lie in S(α). Finally, apply
to G1(s)G2(s)G3(s)G4(s)P(s) the control action

G5(s) ∶=
1

(1 + sT )n−m−2 (126)

which makes physically realizable the overall control action
G1(s)G2(s)G3(s)G4(s)G5(s) and by means of the Routh
criterion, applied on

NUM(1 +G1(s)G2(s)G3(s)G4(s)G5(s)P(s))∣s−α,

find T > 0 such that the roots of NUM(1 +

G1(s)G2(s)G3(s)G4(s)G5(s)P(s)) lie in in S(α).
Exercize 3.7: Let

P1(s) ∶=
1

s(s2 + 1)
(127)

and

P2 ∶ 9xt = Axt +But, yt = Cxt,

A = (
0 2
−1 −3

) , B = (
1
−1

) , C = (−1 −2) (128)

Find a minimal dimensional controller G(s) such that the
feedback interconnection in Figure 16 is asymptotically stable
with poles in S(−0.3).

Since the controller G(s) must have minimal dimension, we
check first if we can simply select a proportional controller
G(s) = KG for stabilizing the feedback interconnection in
Figure 16. For this reason, we draw the root locus of P(s) =
P1(s)P2(s). First of all, we compute P2(s):

P2(s) = C(sI −A)
−1B =

1

s + 2
(129)

We have

P(s) =
1

s(s2 + 1)(s + 2)
(130)

The relative degree is n−m = 4 and the root locus has at most
n +m − 1 = 3 singular points. The asymptote center is in

s0 =
−2

4
= −0.5

The singular points equation is

4s3 + 6s2 + 2s + 2 = 0

with solutions

s1 ≈ −1.4, s2,± ≈ −0.05 ± j0.59

While s1 is a point of the positive locus, we should check if
s2,± are points of the locus, i.e. if they are roots of the root
locus equation

NUM(1 +KGP1(s)P2(s)) = s(s + 2)(s2 + 1) +KG

Replacing the points s2,± in the above equation, we see that
these points cannot satisfy the equation and therefore s2,± are
not points of the locus.

The analysis of the root locus of P1(s)P2(s) shows that
there are no values of KG for which the the closed-loop
systems is asymptotically stable. However, the asymptote
center is in R− and, in particular, more negative than the point
−0.3. Since the relative degree of P1(s)P2(s) is n −m = 4,
this suggests to reduce it to 2 without moving the asymptote
center. By doing this we guarantee also the minimality of the
dimension of the controller G(s). Since the P1(s)P2(s) has
no zeroes, this procedure will be sufficient to guarantee for
sufficiently large values of the gain KG the asymptotic stability
of the closed-loop system with poles in S(−0.3) (as required
by the exercize).

For reducing the the relative degree of P1(s)P2(s) to 2 we
introduce a first controller

G1(s) = (s − z)2

with parameter z < 0. By choosing z = −0.5 the asymptote
center is not changing at all. At this point we will use the
Routh criterion for choosing K for which the closed-loop
poles are in S(−0.3). To this aim, we will apply the Routh
criterion to NUM(1 + KG1(s)P1(s)P2(s)) translated by
−0.3:

NUM(1 +KG1(s)P1(s)P2(s))∣s−0.3
= s4 + 0.8s3 + (K − 0.26)s2 + (0.4K + 1.832)s

+(0.04K − 0.5559) (131)

From the Routh table we obtain that for K > 13.90 we have
no sign variations in the first column. Therefore, we select
G2(s) = K = 15. Finally, we realize the controller G1(s) =
(s + 0.5)2 with

G3(s) =
1

(1 + sT )2

where T > 0 is obtained from the Routh table for NUM(1 +
G1(s)G2(s)G3(s)P1(s)P2(s) translated by −0.3 with pa-
rameter T :

NUM(1 +G1(s)G2(s)G3(s)P1(s)P2(s))∣s−0.3 (132)

in particular, the value T > 0 for which we have no sign
variations in the first column of the associated Routh table.

C. Non minimum phase and asymptotically stable systems

If P(s) is not minimum phase, we do not have a general
procedure for assigning the closed-loop poles in S(α) or in
particular subregions of C−. The situation for which P(s) has
all poles in C− (i.e. it is asymptotically stable) makes exception.

If P(s) has all poles in C− and not all zeroes in C− (i.e. it is
non minimum phase), then using

G1(s) ∶=
∏
n
i=1(s − pji)
∏
r
i=1(s − p′ji)

(133)

cancel all the poles p1, . . . , pn of P(s) which are not S(α)
and replace them with poles p′1, . . . , p

′
n in S(α). Apply a

proportional control action to P(s)G1(s)

G2(s) ∶=K (134)
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Figure 16. The feedback loop of exercize 3.7.

By means of the Routh criterion on

NUM(1 +KP(s)G1(s))∣s−α

find K > 0 (sufficiently small) such that the roots of NUM(1 +
KP(s)G1(s)) are in S(α).

Exercize 3.8: Consider the feedback interconnection in Fig-
ure 13 with

P(s) ∶=
s + 1

s2 + 1
, G1(s) ∶=

1

s
. (135)

Design a controller G(s) = G1(s)G2(s) such that the closed-
loop system is asymptotically stable with poles in S(2).

First of all, since G1(s)P(s) is minimum phase, we cancel
the zero at s = −1 and place another zero at s = −3 for instance.
To this aim, we use a controller

G1(s) =
s + 3

s + 1

The relative degree of G1(s)G2(s)P(s) is 2 and its asymp-
totes center is s0 =

−1−(−3−1)
2

= 3/2. We move the asymptotes
center inside S(2) with a zero-pole control action

G2(s) =
s − z

s − p

where z, p < 0. Since under this control action the new
asymptotes center becomes

s′0 =
−1 + p − (−3 − 1 + z)

2
=

3 + p − z

2

if we choose z = −1 and p = z−9 = −10 the asymptotes center
s′0 will be positioned in −2 ∈S(3).

Finally, we apply a proportional action G3(s) = K. The
closed-loop system will be asymptotically stable with all poles
in S(2) for a sufficiently large value of K. For this reason,
for the denominator of the closed-loop I/O transfer function
translated by s − 2

NUM(1 +G1(s)G2(s)G3(s)P(s))∣s−2
= (s − 2)4 + 10(s − 2)3 + (s − 2)2(K + 1)

+(s − 2)(3k + 10) + 2k (136)

we construct the Routh table and determine the values of K
for which there are no sign variations in the first column of
the table (do this for homework!). ◻

D. Direct pole assignment I

With a controlled process

P(s) =
b0 + b1s + ⋅ ⋅ ⋅ + bn−1sn−1

a0 + a1s + ⋅ ⋅ ⋅ + an−1sn−1 + sn
(137)

we may ask if it possible to place the closed-loop poles into spe-
cific locations with an r-dimensional parametrized controller

G(s) =
c0 + c1s + ⋅ ⋅ ⋅ + crs

r

d0 + d1s + ⋅ ⋅ ⋅ + dr−1sr−1 + sr
(138)

where c0, . . . , cr, d0, . . . , dr−1 ∈ R are the parameters to be
determined. Let’s say that

p∗1, . . . , p
∗
n+r ∈ C

−

are the poles to be assigned to the closed-loop system so that

p∗(s) = Πn
j=1(s − p

∗
j )

will be the denominator of the closed-loop system. Comparing
the denominator of the closed-loop system

NUM(1 +P(s)G(s))

with the target polynomial

p∗(s) = Πn
j=1(s − p

∗
j )

and equating the coefficients of the corresponding powers of
s, we obtain a certain number of equations in the unknowns
c0, . . . , cr, d0, . . . , dr−1 ∈ R for which we are not guaranteed in
general that a solution exists. If minimal dimension is required
for G(s), it is convenient to proceed by steps, increasing the
dimension of G(s) by one at each step until a solution is found.

Exercize 3.9: Consider the feedback interconnection in Fig-
ure 13 with

P(s) ∶=
s − 1

s(s − 2)
, G1(s) ∶=

1

s
. (139)

Design a controller G(s) = G1(s)G2(s) with minimal di-
mension such that the closed-loop system is asymptotically
stable with all real equal poles. By drawing the root locus of
G(s)P(s), check the stability of the closed-loop system and
the position of the closed-loop poles.

For a minimal dimensional controller G(s) =G1(s)G2(s)
it is convenient first to see if we can take a proportional
controller G2(s) =KG2 for stabilizing the closed-loop system.
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This can be qualitatively checked by inspection of the root
locus of G1(s)P(s) and confirmed by the Routh table of the
closed-loop denominator

NUM(1 +KG2G1(s)P(s)) = s(s − 2) +KG2(s − 1)

We conclude that it is not possible to stabilize (no matter
where the closed-loop poles are) the closed-loop system with
a proportional controller G2(s) =KG2 .

It is also possible to see that not even

G2(s) =K(s + z) (140)

is able to stabilize the closed-loop system (no matter where
the closed-loop poles are). Indeed,

NUM(1+G2(s)G1(s)P(s)) = s3+(K−2)s2+K(z−1)−Kz

and there are no values of K and z for which the coefficients
of the above polynomial have the same sign (i.e. the necessary
condition for the polynomial being Hurwitz is violated).

Since G1(s)P(s) has a positive zero, although the relative
degree of G1(s)P(s) is 2 it is not possible to design the
controller G2(s) in such a way to move the asymptote center
in the negative real axis and finally increase the gain to
stabilize the closed-loop.

Since G(s) =G1(s)G2(s) must have minimal dimension,
we try a parametric controller

G2(s) =
as2 + bs + c

s + d

The denominator of the closed-loop I/O transfer function is

NUM(1 +G1(s)G2(s)P(s))

= s2(s + d)(s − 2) + (as2 + bs + c)(s − 1)

= s4 + (a + d − 2)s3 + (b − a − 2d)s2 + (c − b)s − c

We make the above polynomial be equal to

(s + 1)4 = s4 + 4s3 + 6s2 + 4s + 1

By doing this, we guarantee that the closed-loop poles are all
real and equal to −1, as required by the exercize. We obtain

a + d − 2 = 4

b − a − 2d = 6

c − b = 4

−c = 1 (141)

which gives a = 23, b = −5, c = −1 and d = −17. Therefore,

G2(s) =
23(s + 0.1264)(s − 0.3438)

s(s − 17)
(142)

The root locus is drawn in Figure 15. As it can be seen for
K = 1 the closed-loop system is asymptotically stable with
three equal negative poles. ◻

Exercize 3.10: Given

P(s) =
(s + 1)2

(s − 1)(s − 2)(s − 4)

(i) design a first controller G(s) such that the closed-loop
system is asymptotically stable with all real poles in s = −1,

(iii) draw the root locus of PG(s) using the Routh criterion to
determine the exact picture on the imaginary axis.

For stabilizing the closed-loop system we should need at
least one zero-pole action for moving the asymptotes center
in the negative real axis. Therefore, G(s) should introduce
at least one zero-pole action. Also, note that because P(s)
has two zeros at −1, it might be convenient to cancel them
under feedback in such a way to simplify the process to be
stabilized. Since we have to place the closed-loop at the exact
location s = −1, we rather adopt a direct design method by
using a parametric structure for the controller G(s). Thus, we
assume G(s) of the form

G(s) =
as3 + bs2 + cs + d

(s + 1)2(es + f)

where the term

1

(s + 1)2

cancels the two zeros of P(s) at −1 and the term

as3 + bs2 + cs + d

es + f

introduces one proportional action (i.e. one parameter), three
zeroes (i.e. three parameters) and one pole (i.e. one parameter):
the motivation behind this is that the pole es+f increases the
overall number of poles by one (i.e. the closed-loop poles are
4) and, as a consequence, for changing all the closed-loop
poles (in our case, they should be placed at s = −1) we need
at least four parameters which are given by the proportional
action and the three zeroes as3 + bs2 + cs + d. Also, notice
that the structure of G(s) also includes the zero-pole action
needed for stabilization.

We have

P(s)G(s) =
as3 + bs2 + cs + d

(s − 1)(s − 2)(s − 4)(es + f)
. (143)

Denoting by p(s) the denominator of the closed-loop I/O
transfer function W (s) = P(s)G(s)

1+P(s)G(s)

p(s) = NUM(1 +P(s)G(s))

= (s − 1)(s − 2)(s − 4)(es + f) + as3 + bs2 + cs + d

one now proceeds by seeking for a, b, c, d, e, f ∈ R such that

p(s) = (s + 1)4

that is

es4 + (a − 7e + f)s3 + (b + 14e − 7f)s2

+(c − 8e + 14f)s + d − 8f

= s4 + 4s3 + 6s2 + 4s + 1 (144)

Thus, by equating the terms with the same powers of s one
gets

a = 11, b = −8, c = 12, d = 1, e = 1 and f = 0
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Figure 17. Root locus of G(s)P(s) = 11s3−8s2+12s+1
s(s−1)(s−2)(s−4)

.

and thus

G(s) =
11s3 − 8s2 + 12s + 1

s(s + 1)2

G(s)P(s) =
11s3 − 8s2 + 12s + 1

s(s − 1)(s − 2)(s − 4)

= 11
(s + 0.07875)(s2 − 0.806s + 1.154)

s(s − 1)(s − 2)(s − 4)
. (145)

Next, we draw the root locus of G(s)P(s). The relative
degree of G(s)P(s) is 4 − 3 = 1 and the asymptotes center

s0 ≈ 1 + 2 + 4 − 0.8060 + 0.07875 = 6.2728.

with one horizontal asymptote for each locus (negative real
axis for positive locus, positive real axis for negative locus).
The singular points equations are

s4 + (11K − 7)s3 + (14 − 8K)s2 + (12K − 8)s +K

4s3 + 3(11K − 7)s2 + 2(14 − 8K)s + 12K − 8

It results that the positive locus has a singular point with
multiplicity µ = 4 at the point s = −1 corresponding to
k = 1 (i.e. the four closed-loop poles obtained with G(s)
above). Also, the positive locus has two further singular points
(both with multiplicity µ = 2) at (s, k) ≈ (0.188,0.345) and
(s, k) ≈ (2.92,0.023); the negative locus exhibits one singular
point at (s, k) ≈ (1.35,−0.0274).

Denote by p(s) the denominator of the I/O closed-loop
transfer function W(s) = KG(s)P(s)

1+KG(s)P(s) :

p(s) = NUM(1 +KG(s)P(s))

The Routh table of p(s) is

r(4) 1 14 − 8K K

r(3) 11K − 7 12K − 8

r(2) −88K2+198K−90
11K−7 K

r(1) 1177K3−3234K2+2713K−720
88K2−198K+90

r(0) K

The positive locus crosses the imaginary axis at the
points s ≈ {0,±i2.98,±i0.297,±i1.02} corresponding to K ≈

{0,0.6321,0.669,1.4465}. The root locus is drawn in Figure
17. ◻

E. Direct pole assignment II

From a general point of view and disregarding dimension-
ality constraints, the direct pole assignment problem can be
tackled as follows, although at the price of an over-parametrized
controller. Let the open loop process be described by

P(s) =
b(s)

a(s)
=

b0 + b1s +⋯ + bn−1sn−1

a0 + a1s +⋯ + an−1sn−1 + sn
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and the controller by

G(s) =
c(s)

d(s)
=

c0 + c1s + ⋅ ⋅ ⋅ + cn−1sn−1

d0 + d1s + ⋅ ⋅ ⋅ + dn−1sn−1 + sn
(146)

Notice that we are considering a dimension of the controller
G(s) equal to the the dimension of the process P(s), despite
of any dimensional constraint (such as the ones considered
in the previous exercizes). Our problem is, given a 2n-degree
polynomial

p∗(s) =
2n

∏
j=1

(s− p∗j ) = a
∗
0 + a

∗
1s+ ⋅ ⋅ ⋅ + a

∗
2n−1s

2n−1
+ s2n (147)

to find unknowns c0,⋯, cn−1, d0⋯, dn−1 such that

p∗(s) = NUM(1 +G(s)) = a(s)d(s) + b(s)c(s) (148)

Notice that while the open loop poles are n we will end up with
a closed loop having 2n poles. By equating the coefficients of
equal powers in (148) we get

Sw = z (149)

where

z =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a∗2n−1 − an−1
⋮

a∗n − a0
a∗n−1
⋮

a∗0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ R2n,w =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

dn−1
⋮

d0
cn−1
⋮

c0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ R2n, (150)

and

S = (
A− B−
A+ B+

) ∈ R2n×2n, (151)

with

A− =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 ⋯ 0 0
an−1 1 0 ⋯ 0 0
an−2 an−1 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋯ ⋮ ⋮

a2 a3 a4 ⋯ 1 0
a1 a2 a3 ⋯ an−1 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

A+ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a0 a1 a2 ⋯ an−2 an−1
0 a0 a1 ⋯ an−3 an−2
0 0 a0 ⋯ an−4 an−3
⋮ ⋮ ⋮ ⋯ ⋮ ⋮

0 0 0 ⋯ a0 a1
0 0 0 ⋯ 0 a0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(152)

and

B− =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 ⋯ 0 0
bn−1 0 0 ⋯ 0 0
bn−2 bn−1 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋯ ⋮ ⋮

b2 b3 b4 ⋯ 0 0
b1 b2 b3 ⋯ bn−1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

B+ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

b0 b1 b2 ⋯ bn−2 bn−1
0 b0 b1 ⋯ bn−3 bn−2
0 0 b0 ⋯ bn−4 bn−3
⋮ ⋮ ⋮ ⋯ ⋮ ⋮

0 0 0 ⋯ b0 b1
0 0 0 ⋯ 0 b0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(153)

The matrix S in (151) is the so-called Sylvester matrix and its
determinant detS is known as Sylvester’s resultant. Clearly, we
can find a (unique) solution to (151) if and only if Sylvester’s
resultant is nonzero. It can be proven that the Sylvester’s
resultant is nonzero if and only if a(s) and b(s) are coprime,
i.e. a(s) and b(s) have no common roots.

For instance, let a(s) = s3, b(s) = 1 (which are coprime) and
p∗(s) = a∗0 + a

∗
1s + ⋅ ⋅ ⋅ + a

∗
5s

5 + s6 with given a∗1, . . . , a
∗
5 > 0.

Following (148), we require that

s3(s3 + d2s
2
+ d1s + d0) + c2s

2
+ c1s + c0

= s6 + a∗5s
5
+ ⋅ ⋅ ⋅ + a∗1s + a

∗
0 (154)

and solving in the unknowns d2, d1, d0, c2, c1, c0 ∈ R

d2 = a
∗
5, d1 = a

∗
4, d0 = a

∗
3, c2 = a

∗
2, c1 = a

∗
1, c0 = a

∗
0. (155)


