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Notes on Linear Control Systems: Module VII
Stefano Battilotti

Abstract—Controllability and observability. Eigenvalue assign-
ment and stabilization via state-feedback. PBH controllability
criterion. State Observers and detectors. PBH observability
criterion. Eigenvalue assignment and stabilization via output-
feedback: the separation principle.

I. CONTROLLABILITY

An important problem in control theory is to find an input
function which steers the state from an initial value x0 to a
final value xf in a given time tf . The characterization of the
states which can be reached at time tf starting from a given
state x0 is related to the notion of “reachable” states.

Definition 1.1: A state xf P Rn is said to be reachable from
x0 at time tf if there exists an input function u and tf ą 0 such
that

xptf , x0,uq “ xf (1)

Therefore, a state xf is reachable from x0 if there exists an
input function u which steers the solution xpt, x0,uq to the
point xf in tf sec. The set of reachable states from x0 :“ 0
is a vector space.

Proposition 1.1: The set of reachable states from x0 “ 0 is
a vector subspace of the state space Rn.

Therefore, if xa and xb are both reachable from x0 “ 0
then caxa` cbxb is reachable from x0 “ 0 for any ca, cb P R.

Let xa and xb two reachable states from x0 “ 0 at tfa and
tfb. The state caxa ` cbxb for reals ca, cb is reachable from
x0 “ 0 at tf “ maxttfa, tfbu.

Now, we want to characterize the set of reachable states in
terms of the matrices A and B. To this aim, let us introduce
the following time-varying nˆ n matrix

Gptq :“

ż t

0

eAτBBJeA
Jτdτ (2)

This matrix is symmetric and it is known as controllability
gramian. Also, define the controllability matrix

R :“
`

B AB A2B ¨ ¨ ¨ An´1B
˘

(3)

Proposition 1.2: For each t ‰ 0: SpantGptqu “ SpantRu.
Moreover, the set of reachable states from x0 “ 0 at time tf is
SpantGptf qu.

Note that, if SpantGptf qu “ Rn, any state xf P Rn is
reachable from x0 :“ 0 no matter what the final tf is. In this
case, by proposition 1.2 SpantRu “ Rn.

Definition 1.2: If SpantRu “ Rn then the system is said to
be controllable (or controllable).
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Now, we are in a position to characterize any state which
is reachable from a given x0 P Rn. Since

xpt, x0,uq “ eAtx0 ` e
Apt´τqBuτdτ (4)

it follows that a state xf is reachable from x0 P Rn at time
tf if and only if xf ´ eAtfx0 is reachable from 0 at time tf .

Proposition 1.3: The set of states reachable at time tf from
x0 P Rn is the set of states xf for which xf ´ eAtfx0 is
reachable at time tf from x0 :“ 0 and it is equal to

tz P Rn : z “ eAtfx0 ` y, y P SpantRuu (5)

As a final task, we want to find the input function u for
which a state xf is reachable from x0 P Rn at time tf . To this
aim, first we find the input function u for which a state xf is
reachable is reachable from 0 at time tf . If xf P SpantGptf qu
then xf is reachable from 0 at time tf by proposition 1.2.
Therefore, there exists w P Rn such that xf “ Gptf qw. The
input function u defined as

uptq :“ BJeA
J
ptf´tqw (6)

is such that

xf “ xptf , x0,uq (7)

Indeed,

xptf , x0,uq “

ż tf

0

eAptf´τqBuτdτ

“

ż tf

0

eAptf´τqBBJeA
J
ptf´τqwdτ “ Gptf qw “ xf

Next, we find the input function u for which xf is reachable
from x0 P Rn at time tf . If xf ´ eAtfx0 P SpantGptf qu
then xf ´ eAtfx0 is reachable from x0 P Rn at time
tf by proposition 1.3. Therefore, if w P Rn is such that
xf ´ e

Atfx0 “ Gptf qw, the input function u defined as

uptq :“ BJeA
J
ptf´tqw (8)

is such that

xf “ xptf , x0,uq (9)

Proposition 1.4: If SpantRu “ Rn, any state xf is reach-
able from any x0 within any time tf and an input funtion which
steers the state x0 to xf within tf sec is

uptq :“ BJeA
J
ptf´tqG´1ptf qpxf ´ e

Atfx0q (10)

Exercize 1.1: Consider the double integrator

9x1ptq “ x2ptq

9x2ptq “ uptq (11)
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and calculate the set of reachable states from 0. Determine the
input function u (if possible) which steers the state from x0 “
`

1 0
˘J

to xf “
`

8 ´6
˘J

within tf “ 1 sec.
In this case

A “

ˆ

0 1
0 0

˙

, B “

ˆ

0
1

˙

The controllability matrix is

R :“
`

B AB
˘

“

ˆ

0 1
1 0

˙

(12)

and SpantRu “ R2, Therefore, the set of reachable states
from 0 is R2. Also the set of reachable states from any x0 is
R2 (proposition 1.3).

The controllability gramian is

Gptq :“

ż t

0

eAτBBJeA
Jτdτ

“

ż t

0

ˆ

1 τ
0 1

˙ˆ

0
1

˙

`

0 1
˘

ˆ

1 0
τ 1

˙

dτ

“

ż t

0

ˆ

τ
1

˙

`

τ 1
˘

dτ “

ˆ

τ2 τ
τ 1

˙

dτ “

ż t

0

ˆ

1
3 t

3 1
2 t

2

1
2 t

2 t

˙

since

eAt “

ˆ

1 t
0 1

˙

(13)

Note that SpantRu “ SpantGptf qu “ R2 (proposition 1.2)
since Gptf q is nonsingular for each tf ‰ 0.

Let us calculate the input function u (if possible) which
steers the state from x0 :“

`

1 0
˘J

to xf “
`

8 ´6
˘J

(proposition 1.4). Let

w :“ G´1ptf qpxf ´ e
Atfx0q

“
12

t4f

ˆ

tf ´ 1
2 t

2
f

´ 1
2 t

2
f

1
3 t

3
f

˙„ˆ

8
´6

˙

´

ˆ

1
0

˙

“
12

t4f

ˆ

7tf ` 3t2f
´ 7

2 t
2
f ´ 2t3f

˙

“

ˆ

120
´66

˙

(14)

The desired input function is

uptq :“ BJeA
J
p1´tqw “

`

1´ t 1
˘

ˆ

120
´66

˙

“ ´120t`54.Ÿ

Exercize 1.2: Consider the model

9x1ptq “ ´x1ptq

9x2ptq “ x2ptq ` uptq (15)

and calculate the set of reachable states from 0. Determine the
input function u (if possible) which steers the state from x0 “
ˆ

2
0

˙

to xf “
`

1 ´6
˘J

and, respectively, to xf “
`

4 ´6
˘J

.

In this case

A “

ˆ

´1 0
0 1

˙

, B “

ˆ

0
1

˙

The controllability matrix is

R :“
`

B AB
˘

“

ˆ

0 0
1 1

˙

(16)

and SpantRu “ Spant
`

0 1
˘J
u. Therefore, the set of reach-

able states from 0 is Spant
`

0 1
˘J
u. Since

eAt “

ˆ

e´t 0
0 et

˙

(17)

the set of reachable states from any x0 :“
`

x01 x02
˘J

is

tz P Rn : z “ eAtfx0 ` y, y P SpantRuu

“ tz P Rn : z “

ˆ

e´tfx01
c

˙

, c P Ru

Therefore the state xf “
`

1 ´6
˘J

is reachable from x0 “
`

2 0
˘J

within tf “ ln2 sec. On the other hand, the state
xf “

`

4 ´6
˘J

is not reachable from x0 “
`

2 0
˘J

.
Using (17) the controllability gramian is

Gptq :“

ż t

0

eAτBBJeA
Jτdτ

“

ż t

0

ˆ

e´τ 0
0 eτ

˙ˆ

0
1

˙

`

0 1
˘

ˆ

e´τ 0
0 eτ

˙

dτ

“

ż t

0

ˆ

0 0
0 e2τ

˙

dτ “
1

2

ˆ

0 0
0 e2t ´ 1

˙

(18)

Note that for each tf ‰ 0

SpantRu “ SpantGptf qu “ Span
!

ˆ

0
1

˙

)

Let us calculate the input function u which steers the state
x0 “

`

2 0
˘J

to xf “
`

1 ´6
˘J

within tf “ ln2 sec. Let
w P R2 be such that xf ´ eAtfx0 “ Gptf qw, i.e.

xf ´ e
Aln2x0 “

ˆ

0
´6

˙

“ Gpln2qw “

ˆ

0 0
0 2

˙

w

We obtain

w “ ´3

ˆ

0
1

˙

(19)

The desired input function is

uptq :“ BJeA
J
pln2´tqw “ ´3

`

0 eln2´t
˘

ˆ

0
1

˙

“ ´6e´t.Ÿ

II. OBSERVABILITY

Another important problem in control theory is to recon-
struct the intial value x0 of the state from the observations of
the inputs and the outputs. The characterization of the states
which can be reconstructed from the inputs and the outputs is
related to the notion of unobservable states.

Definition 2.1: Two states xa, xb P Rn are said to be
indistinguishable if there exists tf ą 0 such that for any input
function u defined over r0, tf s and for all t P r0, tf s

ypt, xa,uq “ ypt, xb,uq (20)

Therefore, two states are indistinguishable if they produce
as initial conditions the same output under the same input. If
the initial state x0 is zero, we have the following definition.
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Definition 2.2: A state x P Rn is said to be unobservable if
there exists tf ą 0 such that for any input function u defined
over r0, tf s and for all t P r0, tf s

ypt, x,uq “ ypt, 0,uq (21)

The set of unobservable states is a vector space.
Proposition 2.1: The set of unobservable states is a vector

subspace of the state space Rn.
Now, we want to characterize the set of unobservable states in
terms of the matrices A and C. To this aim, let us introduce
the following time-varying nˆ n matrix

GOptq :“

ż t

0

eA
JτCJCeAτdτ (22)

This matrix is symmetric and it is known as observability
gramian. At the same time, define the observability matrix

O :“

¨

˚

˚

˚

˝

C
CA

...
CAn´1

˛

‹

‹

‹

‚

(23)

Proposition 2.2: For each t ‰ 0: KertGOptqu “ KertOu.
Moreover, the set of unobservable states is KertGOptf qu.

Note that, if KertGOptf qu “ t0u, the only unobservable
state is x “ 0 whatever the observation interval r0, tf s is. In
this case, by proposition 2.2 KertOu “ t0u.

Definition 2.3: If KertOu “ t0u then the system is said to
be observable.

Now, we are in a position to characterize the states xa which
are indistinguishable from a given xb. Since

ypt, xa,uq “ ypt, xb,uq, @t P r0, tf s

ô ypt, xa ´ xb,uq “ ypt, 0,uq, @t P r0, tf s (24)

it follows that xa is indistinguishable from a given xb if and
only if xa ´ xb is unobservable.

Proposition 2.3: The set of states xa is indistinguishable
from a given xb is the set of states xa for which xa ´ xb is
unobservable and it is equal to

tz P Rn : z “ xb ` y, y P KertOuu (25)

Relying on the previous characterizations, we study how
to reconstruct the initial states x0 (and, therefore, the entire
solution xpt, x0,uq) from the observation of the inputs and
the outputs over a time interval r0, tf s. The reconstruction
of x0 can be related to the observability gramian GO and
the unforced output response yp0qpt, x0q. If the system is
observable we claim that x0 can be reconstructed from

ż tf

0

eA
JθCJyp0qpθ, x0qdθ

Indeed,
ż tf

0

eA
JθCJyp0qpθ, x0qdθ

“

ż tf

0

eA
JθCJCeAθx0dθ “ GOptf qx0

and therefore

x0 “ G´1
O ptf q

ż tf

0

eA
JθCJyp0qpθ, x0qpx0qdθ

Proposition 2.4: If KertOu “ t0u, the only unobservable
state is 0 and the initial state x0 can be reconstructed from the
observation of the input u and the ensuing output yptqpx0,uq
over the time interval r0, tf s, tf ą 0, as

x0 “ G´1
O ptf q

ż tf

0

eA
JθCJypθ, x0qdθ

Exercize 2.1: Consider the double integrator

9x1ptq “ x2ptq

9x2ptq “ uptq

yptq “ x1ptq

and calculate the set of unobservable states. Reconstruct the
initial value of the state x0 from the unforced output response
1` t over the time interval r0, tf s with tf “ 1 sec.

In this case

A “

ˆ

0 1
0 0

˙

, B “

ˆ

0
1

˙

, C “
`

1 0
˘

The observability matrix is

O :“

ˆ

C
CA

˙

“

ˆ

1 0
0 1

˙

(26)

and KertOu “ t0u. Therefore, the set of unobservable states
is t0u. Also the set of indistinguishable states from any xa is
txau.

The observability gramian

GOptq :“

ż t

0

eA
JτCJCeAτdτ

“

ż t

0

ˆ

1 0
τ 1

˙ˆ

1
0

˙

`

1 0
˘

ˆ

1 τ
0 1

˙

dτ

“

ż t

0

ˆ

1
τ

˙

`

1 τ
˘

dτ “

ż t

0

ˆ

1 τ
τ τ2

˙

dτ “

ˆ

t 1
2 t

2

1
2 t

2 1
3 t

3

˙

since

eAt “

ˆ

1 t
0 1

˙

(27)

Note that KertOu “ KertGOptf qu “ t0u since GOptf q is
nonsingular for each tf ‰ 0. Next, we see how to reconstruct
x0 from the unforced output response 1 ` t over the time
interval r0, tf s with tf “ 1 sec. Then

G´1
O ptf qe

AJtCJ “
12

t4f

ˆ

1
3 t

3
f ´ 1

2 t
2
f

´ 1
2 t

2
f tf

˙ˆ

1
t

˙

“
12

t4f

ˆ

1
3 t

3
f ´

1
2 t

2
f t

´ 1
2 t

2
f ` tf t

˙

“ 12

ˆ

1
3 ´

1
2 t

´ 1
2 ` t

˙

(28)

The initial state x0 is reconstructed from the unforced response
1` t as

x0 “ G´1
O ptf q

ż tf

0

eA
JθCJy

punforcedq
θ px0qdθ

“ 12

ż 1

0

ˆ

1
3 ´

1
2θ

´ 1
2 ` θ

˙

p1` θqdθ

“ 12

ż 1

0

ˆ

1
3 ´

1
2θ

´ 1
2 ` θ

˙

p1` θqdθ “

ˆ

1
1

˙

.Ÿ
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Exercize 2.2: Consider the model

9x1ptq “ ´x1ptq

9x2ptq “ x2ptq ` uptq

yptq “ x2ptq (29)

and calculate the set of indistinguishable states from x “
`

1 1
˘J

.
In this case

A “

ˆ

´1 0
0 1

˙

, B “

ˆ

0
1

˙

, C “
`

0 1
˘

The observability matrix is

O :“

ˆ

C
CA

˙

“

ˆ

0 1
0 1

˙

(30)

and KertOu “ Spant
`

1 0
˘J
u, Therefore, the set of unob-

servable states is

KertOu “ Span
!

ˆ

1
0

˙

)

(propositions 2.2). The set of indistinguishable states from x “
`

1 1
˘J

is

tz P Rn : z “ x` y, y P KertOuu

“ tz P Rn : z “

ˆ

c
1

˙

, c P Ru

Therefore, all the initial states
`

c 1
˘J

, c P R, cannot
be reconstructed from the observation of the input u and
the ensuing output ypt, x0,uq over any time interval r0, tf s,
tf ą 0. Ÿ

III. EIGENVALUES ASSIGNMENT AND STABILIZATION

We have seen that for controllable systems it is possible to
drive the state from any initial state x0 to 0 within any given
time tf with an input function

uptq :“ ´BJeA
J
ptf´tqG´1ptf qe

Atfx0

where Gptf q is the controllability gramian. We have also seen
that this control input lacks in robustness. In this section, we
want to study the problem of steering all the states from any
initial state x0 to 0 within an infinite time interval (i.e. tf “
`8) with a given convergence rate. This can be formulated
as a problem of “assigning” the eigenvalues of the matrix A
in such a way that the natural modes are all convergent with
the given convergence rates.

A. Eigenvalues assignment via state feedback

Consider the class of control laws

uptq “ Fxptq ` vptq (31)

with matrix F p1 ˆ nq and v is the new control input. These
control laws are commonly referred to as static state feedback
laws, in the sense that the state information is used to im-
plement the control law and the relation between x and v on
one side and u on the other is instantaneous, i.e. no dynamics.

The system 9xptq “ Axptq`Buptq, subject to the control input
(31), is represented by the new equations

9xptq “ pA`BF qxptq `Bvptq (32)

In other words, the matrix A has been changed into A`BF
(see Figure 1). If we are able to find a matrix F in such a
way that the eigenvalues of A`BF are equal to a given set
tλ˚1 , . . . , λ

˚
nu Ă C, then the natural modes are all convergent

with rate convergence corresponding to the given negative
real parts. On the other hand, this guarantees also asymptotic
stability of (32). This problem can be formulated as follows.
Let σpNq denote the spectrum of a square matrix N , i.e. the
set of its eigenvalues.

Definition 3.1: (Spectrum assignment by state feedback).
Given numbers tλ˚1 , . . . , λ

˚
nu, λ

˚
i P C´ for all i “ 1, . . . , n,

either real or complex conjugate, find a matrix F p1 ˆ nq such
that σpA`BF q “ tλ˚1 , . . . , λ

˚
nu.

A necessary and sufficient condition for the existence of F
is the following.

Proposition 3.1: The Spectrum assignment by state feed-
back problem is solvable if and only if the system is control-
lable, i.e. the controllability matrixR is nonsingular. In particu-
lar, if R is nonsingular then for given numbers tλ˚1 , . . . , λ

˚
nu,

λ˚i P C´ for all i “ 1, . . . , n, the Spectrum assignment
problem is solvable with

F “ ´γp˚pAq (33)

where γ is the last row of R´1 and p˚pλq :“
śn
j“1pλ´ λ

˚
j q.

1) Controllability as a necessary condition for the solvabil-
ity of the Spectrum assignment problem: We want to show
that a necessary condition for the solvability of the Spectrum
assignment by state feedback problem is the controllability of
the system. To this aim, we will assume to have a matrix F
which solves the Spectrum assignment problem. If the system
is not controlable, we will come to a contradiction. Indeed, if
the system not controlable, R is not nonsingular and say

n ą r :“ rankRtRu

Let v1, . . . , vr P Rn be a basis of SpantRu (we may assume
that vi :“ Ai´1B, i “ 1, . . . , r, i.e. the first r columns of R)
and define

T :“
`

v1 ¨ ¨ ¨ vr w1 ¨ ¨ ¨ wn´r
˘´1

(34)

where w1, . . . , wn´r P Rn are such that
v1, . . . , vr, w1, . . . , wn´r altogether are a basis of Rn,
i.e. the matrix

`

v1 ¨ ¨ ¨ vr w1 ¨ ¨ ¨ wn´r
˘

is nonsingular. If we transform the state as z “ Tx this will
induce a transformation on the matrices A,B, F as follows

Ã “ TAT´1, ; B̃ “ TB, F̃ “ FT. (35)

It can be seen that there exist matrices Ã11pr ˆ rq, Ã12pr ˆ
pn´ rqq, Ã22ppn´ rq ˆ pn´ rqq and B̃1pr ˆ 1q such that

Ã “ TAT´1 “

ˆ

Ã11 Ã12

0 Ã22

˙

, B̃ “ TB “

ˆ

B̃1

0

˙

(36)
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x = Ax + Bu 
.

F

u

x

y
y = Cx

Figure 1. Control scheme for eigenvalue assignment by state feedback.

(this follows from ASpantRu Ă SpantRu and B P

SpantRu).
Note that for all λ P Cn

detpλI ´ pÃ` B̃F̃ qq “ detpλI ´ T pA`BF qT´1q

“ detpT pλI ´ pA`BF qqT´1q

“ detTdetpλI ´ pA`BF qqdetT´1

and, therefore, the roots of detpλI´pÃ`B̃F̃ qq and detpλI´
pA`BF qq are the same, i.e.

σpÃ` B̃F̃ q “ σpA`BF q (37)

From (36) and writing F̃ :“
`

F̃1 F̃2

˘

for some matrices
F̃1p1ˆ rq and F̃2p1ˆ pn´ rqq, then

σpA`BF q “ σpÃ` B̃F̃ q

“ σ

ˆ

Ã11 ` B̃1F̃1 Ã12 ` B̃1F̃2

0 Ã22

˙

“ σpÃ11 ` B̃1F̃1q Y σpÃ22q

Moreover, σpÃ22q Ă σpAq since σpÃq “ σpAq. It follows
that the eigenvalues of A which correspond to σpÃ22q cannot
be changed into any given subset of tλ˚1 , . . . , λ

˚
nu and this

contradicts the existence of F which solves the Spectrum
assignment problem.

2) Controllability as a sufficient condition for the solvability
of the Spectrum assignment problem: Ackermann formula for
spectrum assignment: Next, we want to show that a sufficient
condition for the solvability of the Spectrum assignment by
state feedback problem is the controllability of the system.
This is the constructive part of our result and gives a matrix
F , defined in (33), which assigns the given spectrum to the
matrix A (i.e. solves the Spectrum assignment problem).

Assume that the system is controllable, i.e. R is nonsingular.
Let γ be the last row of R´1 and define the reals a˚0 , . . . , a

˚
n´1

in such a way that

p˚pλq :“
n
ź

j“1

pλ´ λ˚j q

:“ a˚0 ` a
˚
1λ` ¨ ¨ ¨ ` a

˚
n´1λ

n´1 ` λn (38)

Note that the roots of p˚pλq are exactly the given
tλ˚1 , . . . , λ

˚
nu.

We will outline the procedure for obtaining the matrix F in
suitable new coordinates F̃ (for which the matrices A and B

have ad hoc expressions) and then back to F in the original
coordinates. Define

T :“

¨

˚

˚

˚

˝

γ
γA

...
γAn´1

˛

‹

‹

‹

‚

It can be shown that T is nonsingular (this follows from the
invertibility of R). It can be also seen that

Ã “ TAT´1

“

¨

˚

˚

˚

˚

˚

˝

0 1 0 ¨ ¨ ¨ 0 0
0 0 1 ¨ ¨ ¨ 0 0
...

...
... ¨ ¨ ¨

...
...

0 0 0 ¨ ¨ ¨ 0 1
´a0 ´a1 ´a2 ¨ ¨ ¨ ´an´2 ´an´1

˛

‹

‹

‹

‹

‹

‚

(39)

and

B̃ “ TB “

¨

˚

˚

˚

˚

˚

˝

0
0
...
0
1

˛

‹

‹

‹

‹

‹

‚

(40)

where a0, . . . , an´1 are the coefficients of the characteristic
polynomial ppλq of A:

ppλq “ a0 ` a1λ` ¨ ¨ ¨ ` an´1λ
n´1 ` λn (41)

Define

F̃

:“
`

a0 ´ a
˚
0 a1 ´ a

˚
1 ¨ ¨ ¨ an´2 ´ a

˚
n´2 an´1 ´ a

˚
n´1

˘

then

Ã` B̃F̃ “

¨

˚

˚

˚

˚

˚

˝

0 1 0 ¨ ¨ ¨ 0 0
0 0 1 ¨ ¨ ¨ 0 0
...

...
... ¨ ¨ ¨

...
...

0 0 0 ¨ ¨ ¨ 0 1
´a˚0 ´a˚1 ´a˚2 ¨ ¨ ¨ ´a˚n´2 ´a˚n´1

˛

‹

‹

‹

‹

‹

‚

(42)

and

detpλI ´ pÃ` B̃F̃ qq

“ a˚0 ` a
˚
1λ` ¨ ¨ ¨ ` a

˚
n´1λ

n´1 ` λn “ p˚pλq (43)
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Therefore, tλ˚1 , . . . , λ
˚
nu are the eigenvalues of Ã ` B̃F̃ .

Getting back in original coordinates

F :“ F̃ T (44)

But σpÃ` B̃F̃ q “ σpA`BF q. Indeed,

detpλI ´ pÃ` B̃F̃ qq “ detpλI ´ pTAT´1 ` TBF̃TT´1qq

“ detpT pλI ´ pA`BF qqT´1q

“ detTdetpλI ´ pA`BF qqdetT´1

We conclude that the Spectrum assignment problem by state
feedback is solved by F in (44). Moreover, it is easy to see,
after some manipulations, that

F “ ´γp˚pAq (45)

where γ is the last row of R´1 and

p˚pAq “ a0I ` a1A` ¨ ¨ ¨ ` an´1A
n´1 `An. (46)

The above formula (45) for F is known as Ackermann formula
for spectrum assignment.

B. Stabilization via state feedback
If the system is not controllable there is a subset of the

eigenvalues of A`BF that are invariant under any choice of
F (invariant spectrum). This subset is exactly the spectrum of
the matrix Ã22 (see (36)) which is a subset of the spectrum of
A. The matrix Ã22 can be calculated from TAT´1 where T
is defined as in (34). Even if the system is not controlable, it
is possible to find a F such that σpA`BF q “ tλ˚1 , . . . , λ

˚
nu

as long as the invariant spectrum of A`BF is a subset of the
given set tλ˚1 , . . . , λ

˚
nu. Denote by FR this invariant spectrum

of A`BF .
Proposition 3.2: Given numbers tλ˚1 , . . . , λ

˚
nu, λ

˚
i P C´ for

all i “ 1, . . . , n, either real or complex conjugate, there exists a
matrix F p1ˆ nq such that σpA` BF q “ tλ˚1 , . . . , λ

˚
nu if and

only if FR Ă tλ˚1 , . . . , λ
˚
nu.

1) Design of stabilizing state feedback controllers: We
show how to design F when FR Ă L “ tλ˚1 , . . . , λ

˚
nu. Let

r :“ rankRtRu. Under the coordinate transformation z “ Tx,
where T is defined as in (34), the matrices A and B are
trasformed into

Ã “

ˆ

Ã11 Ã12

0 Ã22

˙

, B̃ “

ˆ

B̃1

0

˙

(47)

with Ã11prˆ rq, Ã12prˆpn´ rqq, Ã22ppn´ rqˆpn´ rqq and
B̃1pr ˆ 1q. We want to show that

rankR
`

B̃1 Ã11B̃1 ¨ ¨ ¨ Ãr´1
11 B̃1

˘

“ r (48)

This means that the Eigenvalues assignment problem is solv-
able with matrices Ã11 and B̃1. As a matter of fact, since
TAjT´1 “ pTAT´1qj “ Ãj for all integer j, we have

r “ rankRtRu “ rankRt
`

B AB ¨ ¨ ¨ An´1B
˘

u

“ rankRtT
`

B AB ¨ ¨ ¨ An´1B
˘

u

“ rankRt
`

TB TAT´1TB ¨ ¨ ¨ TAn´1T´1TB
˘

u

“ rankRt
`

B̃ ÃB̃ ¨ ¨ ¨ Ãn´1B̃
˘

u

“ rankR

!

ˆ

B̃1

0
Ã11B̃1

0
¨ ¨ ¨

Ãr´1
11 B̃1

0

˙

)

“ rankRt
`

B̃1 Ã11B̃1 ¨ ¨ ¨ Ãr´1
11 B̃1

˘

u (49)

i.e. (48). Define

F̃ :“
`

F̃1 0
˘

(50)

with F̃1p1ˆ rq such that

σpÃ11 ` F̃1B̃1q “ LzFR

(F̃1 exists by virtue of (48) and proposition 3.1) and

F :“ F̃ T (51)

Note that for all λ P Cn

detpλI ´ pÃ` B̃F̃ qq “ detpλI ´ T pA`BF qT´1q

“ detpT pλI ´ pA`BF qqT´1q

“ detTdetpλI ´ pA`BF qqdetT´1

and, therefore, the roots of detpλI´pÃ`B̃F̃ qq and detpλI´
pA`BF qq are the same, i.e.

σpÃ` B̃F̃ q “ σpA`BF q (52)

Moreover,

σpA`BF q “ σpÃ` B̃F̃ q “ σpÃ11 ` B̃1F̃1q Y σpÃ22q

“ σpÃ11 ` B̃1F̃1q Y FR “ L

The construction of the matrix F can be summed up as
follows:
Step procedure for the design of stabilizing state-feedback
controllers
(i) Let r :“ rankRtRu. Find w1, . . . , wn´r such that
B,AB, ¨ ¨ ¨ , Ar´1B,w1, . . . , wn´r is a basis of Rn and define
T as

T :“
`

B AB ¨ ¨ ¨ Ar´1B w1 ¨ ¨ ¨ wn´r
˘´1

(53)

(ii) Find the matrices Ã11prˆ rq, Ã12prˆpn´ rqq, Ã22ppn´
rq ˆ pn´ rqq and B̃1pr ˆ 1q for which

Ã “ TAT´1 “

ˆ

Ã11 Ã12

0 Ã22

˙

, B̃ “ TB “

ˆ

B̃1

0

˙

(54)

(iii) Find F̃1p1 ˆ rq such that σpÃ11 ` F̃1B̃1q “ LzFR. In
particular,

F̃1 “ ´γsp
˚
s pÃ11q (55)

where p˚s pλq :“ α˚0 ` α˚1λ ` ¨ ¨ ¨ ` α˚r´1λ
r´1 ` λr is the

polynomial which has the roots in LzFR and

p˚s pÃ11q :“ α˚0 I ` α
˚
1 Ã11 ` ¨ ¨ ¨ ` α

˚
r´1Ã

r´1
11 ` Ãr11 (56)

and γs is the last row of the inverse of

Rs :“
`

B̃1 Ã1B̃1 ¨ ¨ ¨ Ãr´1
1 B̃1

˘

(57)

(iv) Define

F̃ :“
`

F̃1 0
˘

(58)

and, finally, set

F :“ F̃ T (59)

Exercize 3.1: Given

A “

ˆ

´1 0
1 ´2

˙

, B “

ˆ

1
β

˙

, β P R (60)
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find, if possible, F such that σpA`BF q “ t´2,´2u.
The controllability matrix R is

R “
`

B AB
˘

“

ˆ

1 ´1
β 1´ 2β

˙

Therefore, the system is controllable if and only if β ‰ 1.
Case β “ 1. The system is not controllable. We use proposition
3.2. In this case we have to check if the invariant spectrum of
A is a subset of t´2,´2u. Note that

r :“ rankRtRu “ rankRt
`

B AB
˘

u

“ rankR

!

ˆ

1 ´1
1 ´1

˙

)

“ 1 (61)

For calculating the invariant spectrum of A, we change the
coordinates as follows. A basis of SpantRu is

v1 :“

ˆ

1
1

˙

(we can take the first column of R since r “ 1). Define

T “
`

v1 w1

˘

“

ˆ

1 1
1 ´1

˙´1

“
1

2

ˆ

1 1
1 ´1

˙

In the new coordinates z “ Tx

Ã “ TAT´1 “

ˆ

´1 1
0 ´2

˙

, B̃ “ B “

ˆ

1
0

˙

(62)

Since r “ 1, Ã11 “ ´1, Ã12 “ 1, Ã22 “ ´2 and B̃1 “ 1 and
we conclude that the invariant spectrum is FR :“ σpÃ22q “

t´2u. Since FR :“ t´2u Ă L :“ t´2,´2u, by proposition
3.2 there exists F such that σpA ` BF q “ t´2,´2u. Let
construct this matrix F . We have

F̃ :“
`

F̃1 0
˘

(63)

where F̃1 is such that σpÃ11` B̃1F̃1q “ LzFR “ t´2u. Such
F̃1 exists since Ã11 and B̃1 represent a controllable system,
indeed

rankRtB̃1u “ 1 “ r (64)

On the hand, σpÃ11` B̃1F̃1q “ t´2u if and only if F̃1 “ ´1.
Finally, define

F :“ F̃ T “
`

´1 0
˘

T “ ´
1

2

`

1 1
˘

(65)

We can check that

σpA`BF q “ σ
´

ˆ

´1 0
1 ´2

˙

´
1

2

ˆ

1
1

˙

`

1 1
˘

¯

“ σ

ˆ

´ 3
2 ´ 1

2
1
2 ´ 5

2

˙

“ t´2,´2u (66)

Case β ‰ 1. The system is controllable. In this case we use
proposition 3.1. The spectrum to be assigned is t´2,´2u and,
therefore,

p˚pλq :“ pλ` 2q2

The matrix F which solves the Spectrum assignment problem
by state feedback with L :“ t´2,´2u is

F “ ´γp˚pAq (67)

where γ is the last row of R´1. Since

R “
`

B AB
˘

“

ˆ

1 ´1
β 1´ 2β

˙

then

R´1 “
1

1´ β

ˆ

1´ 2β 1
´β 1

˙

and
γ :“

1

1´ β

`

´β 1
˘

Moreover

p˚pAq :“ pA` 2Iq2 “ A2 ` 4A` 4I

“

ˆ

´1 0
1 ´2

˙2

` 4

ˆ

´1 0
1 ´2

˙

` 4

ˆ

1 0
0 1

˙

“

ˆ

1 0
1 0

˙

Finally,

F “ ´γp˚pAq “ ´
1

1´ β

`

´β 1
˘

ˆ

1 0
1 0

˙

“
`

´1 0
˘

(68)

We can check that

σpA`BF q “ σ
´

ˆ

´1 0
1 ´2

˙

`

ˆ

1
β

˙

`

´1 0
˘

¯

“ σ

ˆ

´2 0
1´ β ´2

˙

“ t´2,´2u.Ÿ (69)

C. The PBH controllability criterion

The invariant spectrum FR of A ` BF can be determined
without a coordinate transformation by calling upon the so-
called PBH controllability criterion (the acronym PBH is given
by the initials of the researchers Popov, Belevitch and Hautus
who introduced the criterion).

Proposition 3.3: (PBH controllability criterion). A neces-
sary and sufficient condition for reachability, i.e.R nonsingular,
is

rankRt
`

λI ´A B
˘

u “ n

for each λ P σpAq. Moreover,

rankRt
`

λI ´A B
˘

u

#

ă n ñ λ P FR

“ n ñ λ R FR

(70)

Proposition 3.4: (PBH controllability criterion). A neces-
sary and sufficient condition for reachability, i.e.R nonsingular,
is that

rankRt
`

λI ´A B
˘

u “ n

for each λ P Cn.
Exercize 3.2: We want to revisit the results of example 3.1

through the PBH controllability criterion.
Case β “ 1. The system is not controllable. It is easily seen

that σpAq “ t´1,´2u. By proposition 3.3

λ “ ´2 ñ rankRt
`

λI ´A B
˘

u

“ rankR

!

ˆ

´1 0 1
´1 0 1

˙

)

“ 1 ă n “ 2 ñ t´2u P FR
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and

λ “ ´1 ñ rankRt
`

λI ´A B
˘

u

“ rankR

!

ˆ

0 0 1
´1 1 1

˙

)

“ 2 “ nñ t´1u R FR

Therefore, there exists F such that σpA`BF q “ t´2,´2u.
Case β ‰ 1. The system is controllable and FR is empty. By
proposition 3.3

λ “ ´2 ñ rankRt
`

λI ´A B
˘

u

“ rankR

!

ˆ

´1 0 1
´1 0 β

˙

)

“ 2 “ nñ t´2u R FR

and

λ “ ´1 ñ rankRt
`

λI ´A B
˘

u

“ rankR

!

ˆ

0 0 1
´1 1 β

˙

)

“ 2 “ nñ t´1u R FR.Ÿ

D. Design of asymptotic observers

We have seen that for observable systems it is possible
to reconstruct the initial state x0, and therefore, the state
xpt, x0,uq, through the observations of the unforced output
response yp0qpt, x0q over a time interval r0, tf s as

x0 “ G´1
O ptf q

ż tf

0

eA
JθCJyptqpunforcedqpx0qdθ

where GOp¨q is the observability gramian. In this section,
we want to study the problem of reconstructing or estimating
the state xpt, x0,uq through observations of y and u over an
infinite time interval (i.e. T “ `8) with a given convergence
rate. This can be formulated as a problem of “assigning”
the convergence rate of the error between the state and its
reconstruction. Consider the class of “state estimators”

9
pxptq “ Apxptq `Buptq `Kpyptq ´ Cpxptqq. (71)

If e :“ x´ px is the estimation error, then the error dynamics
is described by the equations

9eptq “ 9xptq ´ 9
pxptq

“ Apx`Buptq `Kpyptq ´ Cpxptqq ´Axptq ´Buptq

“ pA´KCqeptq, (72)

with matrix Kpnˆ1q. If we are able to find a matrix K in such
a way that the eigenvalues of A´KC are equal to a given set
tλ˚1 , . . . , λ

˚
nu with negative real part, then the natural modes of

(72) are all convergent with rate convergence corresponding to
the given negative real parts and the state is reconstructed from
the output with the assigned rate. The system (71) is known as
asymptotic state observer and dynamically and asymptotically
reconstructs the state xptq with pxptq.

Our problem can be formulated as follows.
Definition 3.2: (Asymptotic state observation). Given num-

bers tλ˚1 , . . . , λ
˚
nu, λ

˚
i P C´ for all i “ 1, . . . , n, either

real or complex conjugate, find a matrix Kpn ˆ 1q such that
σpA´KCq “ tλ˚1 , . . . , λ

˚
nu.

Note that

σpA´KCq “ σppA´KCqJq “ σpAJ ´ CJKJq (73)

If we establish the following equivalences

AØ AJ

B Ø CJ

F Ø ´KJ (74)

we find out that it is possible to assign the eigenvalues of
A´KC with some matrix K if and only it is possible to assign
the eigenvalues of A ` BF with some matrix F . Therefore,
a necessary and sufficient condition for the existence of K
comes directly from proposition 3.5.

Proposition 3.5: The Asymptotic state observation problem
is solvable if and only if the system is observable, i.e. the
observability matrix O is nonsingular. In particular, if O is
nonsingular then for any given numbers tλ˚1 , . . . , λ

˚
nu, λ

˚
i P C´

for all i “ 1, . . . , n, the Asymptotic state observation problem
is solvable with

K “ p˚pAqγ (75)

where γ is the last column ofO´1 and p˚pλq :“
śn
j“1pλ´λ

˚
j q.

1) Observability as a sufficient condition for the solvability
of the asymptotic state observation problem: dual Ackermann
formula: Since the assignment of the eigenvalues of A´KC
with some matrix K is equivalent to the assignment of the
eigenvalues of A ` BF with some matrix F under the
equivalences (74), by proposition 3.1 the Asymptotic state
observation problem is solvable if and only the controllability
matrix defined with AØ AJ and B Ø CJ, i.e. the matrix

R :“
`

CJ AJCJ ¨ ¨ ¨ pAJqn´1CJ
˘

(76)

is nonsingular. Since for all j P N

pAJqj “ pAjqJ (77)

and

R :“
`

CJ AJCJ ¨ ¨ ¨ pAJqn´1CJ
˘

“

¨

˚

˚

˚

˝

C
CA

...
CAn´1

˛

‹

‹

‹

‚

J

“ OJ (78)

it follows that the Asymptotic state observation problem is
solvable if and only the observability matrix is nonsingular.

Moreover, by proposition 3.1 if O is nonsingular and under
the equivalences (74), for any given numbers tλ˚1 , . . . , λ

˚
nu,

λ˚i P C´ for all i “ 1, . . . , n, the Asymptotic state observation
problem is solvable with

´KJ :“ F “ ´γp˚pAJq (79)

where γ denotes the last row of

R´1 “
`

CJ AJCJ ¨ ¨ ¨ pAJqn´1CJ
˘´1

(80)

We have by changing signs and transposing (79)

K “ pp˚pAJqqJγJ (81)
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On account of (77)

pp˚pAJqqJ “ pa˚0 I ` a
˚
1A

J ` a˚2 pA
Jq2 ` . . .

`a˚n´1pA
Jqn´1 ` pAJqnqJ

pp˚pAJqqJ “ pa˚0 I ` a
˚
1A

J ` a˚2 pA
2qJ ` . . .

`a˚n´1pA
n´1qJ ` pAnqJqJ

“ a˚0 I ` a
˚
1A` a

˚
2A

2 ` ¨ ¨ ¨ ` a˚n´1A
n´1 `An “ p˚pAq

Also, note that since transpose and inverse commute

´

`

CJ AJCJ ¨ ¨ ¨ pAJqn´1CJ
˘´1

¯J

“

˜˜

¨

˚

˚

˚

˝

C
CA

...
CAn´1

˛

‹

‹

‹

‚

J

¸´1¸J

“

˜˜

¨

˚

˚

˚

˝

C
CA

...
CAn´1

˛

‹

‹

‹

‚

J

¸J¸´1

“ O´1

and since γ is the last row of the matrix inside the transpose
on the left of the first equality, it follows that γ :“ γJ is the
last column of O´1. This gives (75) back.

2) Observability as a necessary condition for the solvability
of the asymptotic state observation problem: Let’s see that
observability is a necessary condition for the solvability of
the Asymptotic state observation problem. If the system is not
observable, under the equivalences (74) there exist nonsingular
T pnˆnq and matrices ÃJ11ppn´ sqˆ pn´ sqq, Ã

J
12ppn´ sqˆ

sq, ÃJ22psˆ sq and C̃J1 ppn´ sq ˆ 1q, with

n´ s :“ rankRt
`

CJ AJCJ ¨ ¨ ¨ pAJqn´1CJ
˘

u

“ rankRtO
Ju “ rankRtOu (82)

such that

TAJT´1 “

ˆ

ÃJ11 ÃJ12
0 ÃJ22

˙

, TCJ “

ˆ

C̃J1
0

˙

(83)

Indeed, T is defined as follows. Let v1, . . . , vn´s P Rn be a
basis of

Spant
`

CJ AJCJ ¨ ¨ ¨ pAJqn´1CJ
˘

u “ SpantOJu

(we may assume vi :“ pAJqi´1CJ) and

T :“
`

v1 ¨ ¨ ¨ vn´s w1 ¨ ¨ ¨ ws
˘´1

(84)

where w1, . . . , ws P Rn are chosen independent each other and
from v1, ¨ ¨ ¨ , vs, i.e. v1, ¨ ¨ ¨ , vn´s, w1, ¨ ¨ ¨ , ws are a basis of
Rn. Taking transposes in (83), we conclude that there exist
matrices Ã11ppn´ sqˆ pn´ sqq, Ã12psˆpn´ sqq, Ã22psˆ sq
and C̃1p1ˆ sq such that

SAS´1 “

ˆ

Ã11 0

Ã12 Ã22

˙

, CS´1 “
`

C̃1 0
˘

(85)

where S :“ pTJq´1 “ pT´1qJ. Note that, since inverse and
transpose commute so that

S :“ pTJq´1 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

C
CA

...
CAn´s´1

wJ1
...
wJs

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(86)

E. Design of state detectors

It is clear from (85) that if the system is not observable
there is a non-empty subset of the eigenvalues of A ´ KC
that is invariant under any choice of K (invariant spectrum).
In this case, the system (71) is known as state detector and
dynamically and asymptotically reconstructs the state xptq
with pxptq but not with guaranteed rate (since some of the
eigenvalues of A ´ KC are not assignable). The invariant
subset under any choice of K is exactly the spectrum of the
matrix Ã22 (see 85) which is a subset of the spectrum of
A. Indeed, with the coordinate transformation z “ Sx the
matrices A´KC is transformed into Ã´ K̃C̃ with

Ã “ SAS´1 “

ˆ

Ã11 0

Ã12 Ã22

˙

, C̃ “ CS´1 “
`

C̃1 0
˘

(87)

and

K̃ “ SK (88)

Note that for all λ P Cn

detpλI ´ pÃ´ K̃C̃qq “ detpλI ´ SpA´KCqS´1q

“ detpSpλI ´ pA´KCqqS´1q

“ detSdetpλI ´ pA´KCqqdetS´1

and, therefore, the roots of detpλI ´ pÃ ´ K̃C̃qq and of
detpλI ´ pA´KCqq are the same, i.e.

σpÃ´ K̃C̃q “ σpA´KCq (89)

Assuming that

K̃ :“

ˆ

K̃1

K̃2

˙

for some matrices K̃1ppn´ sq ˆ 1q and K̃2psˆ 1q, then

σpA´KCq “ σpÃ´ K̃C̃q “ σ

ˆ

Ã11 ´ K̃1C̃1 0

Ã12 ´ K̃2C̃1 Ã22

˙

“ σpÃ11 ´ K̃1C̃1q Y σpÃ22q (90)

Moreover, σpÃ22q Ă σpAq since σpÃq “ σpAq. It follows that
the eigenvalues of A which correspond to σpÃ22q are invariant
under any choice of K. The matrix Ã22 can be calculated from
SAS´1 where S is defined as in (86).

Even if the system is not observable, it is possible to find
a K such that σpA ´ KCq “ tλ˚1 , . . . , λ

˚
nu as long as the

invariant spectrum of A ´ KC is a subset of the given set
tλ˚1 , . . . , λ

˚
nu. Denote by FO this invariant spectrum of A ´

KC.
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Proposition 3.6: Given numbers tλ˚1 , . . . , λ
˚
nu, λ

˚
i P C´ for

all i “ 1, . . . , n, either real or complex conjugate, there exists a
matrix Kpnˆ 1q such that σpA´KCq “ tλ˚1 , . . . , λ

˚
nu if and

only if FO Ă tλ˚1 , . . . , λ
˚
nu.

Let’s see how to construct K if FO Ă L :“ tλ˚1 , . . . , λ
˚
nu.

Assume that FO Ă L. Let n ´ s :“ rankRtOu. Under the
coordinate transformation z “ Tx the matrices A and C are
transformed into

Ã “

ˆ

Ã11 0

Ã12 Ã22

˙

, C̃ “
`

C̃1 0
˘

(91)

with Ã11ppn´ sqˆpn´ sqq, Ã12psˆpn´ sqq, Ã22psˆ sq and
C̃1p1ˆ pn´ sqq. We want to show that

rankR

!

¨

˚

˚

˚

˝

C̃1

C̃1Ã11

...
C̃11Ã

n´s´1
11

˛

‹

‹

‹

‚

)

“ n´ s (92)

This means that the Asymptotic state observation problem is
solvable with matrices C̃1 and Ã11 (proposition 3.5). As a
matter of fact, since SAjS´1 “ pSAS´1qj “ Ãj for all
integer j, we have

s “ rankRtOu

“ rankR

!

¨

˚

˚

˝

C
CA
¨ ¨ ¨

CAn´1

˛

‹

‹

‚

)

“ rankR

!

¨

˚

˚

˝

C
CA
¨ ¨ ¨

CAn´1

˛

‹

‹

‚

T´1
)

“ rankR

!

¨

˚

˚

˚

˝

CT´1

CT´1TAT´1

¨ ¨ ¨

CT´1TAn´1T´1
)

˛

‹

‹

‹

‚

“ rankR

!

¨

˚

˚

˝

C̃

C̃Ã
¨ ¨ ¨

C̃Ãn´1

˛

‹

‹

‚

)

“ rankR

!

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

C̃1

C̃1Ã11

...
C̃1Ã

n´s´1
11

C̃1Ã
n´s
11

...
C̃1Ã

n´1
11

0
0
...
0
0
...
0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

)

“ rankR

!

¨

˚

˚

˚

˝

C̃1

C̃1Ã11

...
C̃1Ã

n´s´1
11

˛

‹

‹

‹

‚

)

(93)

Define

K̃ :“

ˆ

K̃1

0

˙

(94)

with K̃1ppn´ sq ˆ 1q such that

σpÃ11 ´ C̃1K̃1q “ LzFO

(K̃1 exists by virtue of (92) and proposition 3.5) and

K :“ S´1K̃ (95)

Note that for all λ P Cn

detpλI ´ pÃ´ K̃C̃qq “ detpλI ´ SpA´KCqS´1q

“ detpSpλI ´ pA´KCqqS´1q

“ detSdetpλI ´ pA´KCqqdetS´1

and, therefore, the roots of detpλI ´ pÃ ´ K̃C̃qq and of
detpλI ´ pA´KCqq are the same, i.e.

σpÃ´ K̃C̃q “ σpA´KCq (96)

Assuming that

K̃ :“

ˆ

K̃1

K̃2

˙

for some matrices K̃1ppn´ sq ˆ 1q and K̃2psˆ 1q, then

σpA´KCq “ σpÃ´ K̃C̃q “ σpÃ11 ` C̃1K̃1q Y σpÃ22q

“ σpÃ11 ` C̃1K̃1q Y FO “ L

The construction of the matrix K can be summed up as
follows:
Step procedure for the design of state detectors:
(i) Let n ´ s :“ rankRtOu. Find w1, . . . , ws P Rn such that
CJ, pCAqJ, ¨ ¨ ¨ , pCAn´s´1qJ, w1, ¨ ¨ ¨ , ws are a basis of Rn
and define S as

S “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

C
CA

...
CAn´s´1

wJ1
...
wJs

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(97)

(ii) Find the matrices Ã11ppn ´ sq ˆ pn ´ sqq, Ã12ps ˆ pn ´
sqq, Ã22psˆ sq and C̃1p1ˆ sq for which

Ã “ SAS´1 “

ˆ

Ã11 0

Ã12 Ã22

˙

, C̃ “ CS´1 “
`

C̃1 0
˘

(98)

(iii) Find K̃1ppn´sqˆ1q such that σpÃ11´ C̃1K̃1q “ LzFO.
In particular,

K̃1 “ p˚o pÃ11qγo (99)

where p˚o pλq :“ β˚0 ` β
˚
1 λ` ¨ ¨ ¨ ` β

˚
n´s´1λ

n´s´1 ` λn´s is
the polynomial with roots in LzFO and

p˚o pÃ11q :“ β˚0 I ` β
˚
1 Ã11 ` ¨ ¨ ¨ ` β

˚
n´s´1Ã

n´s´1
11 ` Ãn´s11

and γo denotes the last column of the inverse of

O :“

¨

˚

˚

˚

˝

C̃1

C̃1Ã11

...
C̃1Ã

n´s´1
11

˛

‹

‹

‹

‚

(100)

(iv) Define

K̃ :“

ˆ

K̃1

0

˙

(101)

and

K :“ S´1K̃ (102)

Exercize 3.3: Given

A “

ˆ

´1 0
1 ´2

˙

, C “
`

1 α
˘

, α P R (103)
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find, if possible, K such that σpA´KCq “ t´2,´3u.
The observability matrix O is

O “

ˆ

C
CA

˙

“

ˆ

1 α
α´ 1 ´2α

˙

Since detO “ ´αpα`1q, the system is observable if and only
if α ‰ ´1 and α ‰ 0.
Case α “ 0. The system is not observable. We use proposition
3.6. In this case we have to check if the invariant spectrum of
A is a subset of t´2,´3u. We have n´ s :“ rankRtOu “ 1.
For calculating the invariant spectrum of A, we change the
coordinates as follows. A basis of SpantOJu is

v1 :“

ˆ

1
0

˙

(we can take the first column CJ of OJ since s “ 1). Define

S :“

ˆ

vJ1
wJ1

˙

“

ˆ

1 0
0 1

˙

“ I

Therefore, in the new coordinates z “ Sx

Ã “ SAS´1 “ A “

ˆ

´1 0
1 ´2

˙

,

C̃ “ CS´1 “ C “
`

1 0
˘

(104)

Since s “ 1, Ã11 “ ´1, Ã12 “ 1, Ã22 “ ´2 and C̃1 “ 1 and
we conclude that the invariant spectrum is FO :“ σpÃ22q “

t´2u. Since FO :“ t´2u Ă L :“ t´2,´3u, by proposition
3.6 there exists K such that σpA ´ KCq “ t´2,´3u. Let
construct the matrix K. We have

K̃ :“

ˆ

K̃1

0

˙

(105)

where K̃1 is such that σpÃ11´K̃1C̃1q “ LzFO “ t´3u. Such
K̃1 exists since

rankRtC̃1u “ 1 “ s (106)

i.e. Ã11 and C̃1 represent an observable system. On the hand,
σpÃ11´K̃1C̃1q “ t´3u if and only if K̃1 “ 2. Finally, define

K :“ S´1K̃ “

ˆ

2
0

˙

(107)

We can check that

σpA´KCq “ σ
´

ˆ

´1 0
1 ´2

˙

´

ˆ

2
0

˙

`

1 0
˘

¯

“ σ

ˆ

´3 0
1 ´2

˙

“ t´2,´3u (108)

Case α “ ´1. The system is not observable. We have to
check if the invariant spectrum of A is a subset of t´2,´3u.
We have s :“ rankRtOu “ 1. For calculating the invariant
spectrum of A, we change the coordinates as follows. A basis
of SpantOJu is

v1 :“

ˆ

1
´1

˙

(we can take the first column CJ of OJ since s “ 1). Define

S “

ˆ

vJ1
wJ1

˙

“

ˆ

1 ´1
1 1

˙

By direct calculations

S´1 “
1

2

ˆ

1 1
´1 1

˙

Therefore, in the new coordinates z “ Sx

Ã “ SAS´1 “

ˆ

´2 0
1 ´1

˙

, C̃ “ CS´1 “
`

2 1
˘

(109)

Since s “ 1, Ã11 “ ´2, Ã12 “ 1, Ã22 “ ´1 and C̃1 “ 2 and
we conclude that the invariant spectrum is FO :“ σpÃ22q “

t´1u. Since FO :“ t´1u R L :“ t´2,´3u, by proposition
3.6 there does not exist K such that σpA´KCq “ t´2,´3u.
Case α ‰ 1, α ‰ 0. The system is observable. In this case we
use proposition 3.5. The spectrum to be assigned is t´2,´3u
and, therefore,

p˚pλq :“ pλ` 2qpλ` 3q “ λ2 ` 5λ` 6

The matrix K which solves the Asymptotic state observation
problem with L :“ t´2,´3u is

K “ p˚pAqγ (110)

where γ is the last column of O´1. Since

O “

ˆ

C
CA

˙

“

ˆ

1 α
α´ 1 ´2α

˙

then

O´1 “ ´
1

αpα` 1q

ˆ

´2α ´α
1´ α 1

˙

and

γ :“ ´
1

αpα` 1q

ˆ

´α
1

˙

Moreover

p˚pAq :“ pA` 2IqpA` 3Iq “ A2 ` 5A` 6I

“

ˆ

´1 0
1 ´2

˙2

` 5

ˆ

´1 0
1 ´2

˙

` 6

ˆ

1 0
0 1

˙

“

ˆ

2 0
2 0

˙

Finally,

K “ p˚pAqγ “ ´
1

αpα` 1q

ˆ

2 0
2 0

˙ˆ

´α
1

˙

“
1

pα` 1q

ˆ

2
2

˙

(111)

We can check that

σpA´KCq “ σ
´

ˆ

´1 0
1 ´2

˙

´
1

pα` 1q

ˆ

2
2

˙

`

1 α
˘

¯

“ σ

ˆ

´1´ 2
α`1 ´ 2α

α`1

1´ 2
α`1 ´2´ 2α

α`1

˙

“ t´2,´3u.Ÿ (112)

F. The PBH observability criterion

The invariant spectrum of A ´ KC can be determined
without a coordinate transformation by calling upon the so-
called PBH observability criterion. Denote by FO this invariant
spectrum.
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Proposition 3.7: (PBH observability criterion). A necessary
and sufficient condition for observability, i.e. O nonsingular, is
that

rankR

!

ˆ

λI ´A
C

˙

)

“ n

for each λ P σpAq. Moreover,

rankR

!

ˆ

λI ´A
C

˙

)

#

ă n ñ λ P FO

“ n ñ λ R FO

(113)

Since the matrix
ˆ

λI ´A
C

˙

has rank n for each λ R σpAq (remember that detpλI´Aq “ 0
only for λ P σpAq by definition of eigenvalues), we have the
following equivalent form of the PBH observability criterion.

Proposition 3.8: (PBH observability criterion). A necessary
and sufficient condition for observability, i.e. O nonsingular, is
that

rankR

!

ˆ

λI ´A
C

˙

)

“ n

for each λ P Cn.
Exercize 3.4: Revisit the results of example 3.3 by using the

PBH observability criterion.
Case α “ 0. The system is not observable. It is easily seen
that σpAq “ t´1,´2u. We have

λ “ ´2 ñ rankR

!

ˆ

λI ´A
C

˙

)

“ rankR

!

¨

˝

´1 0
´1 0
1 0

˛

‚

)

“ 1 ă n “ 2 ñ t´2u P FO

and

λ “ ´1 ñ rankR

!

ˆ

λI ´A
C

˙

)

“ rankR

!

¨

˝

0 0
´1 1
1 0

˛

‚

)

“ 2 “ nñ t´1u R FO

By proposition 3.7 there exists K such that σpA ´ KCq “
t´2,´3u.

Case α “ ´1. The system is not observable. We have

λ “ ´2 ñ rankR

!

ˆ

λI ´A
C

˙

)

“ rankR

!

¨

˝

´1 0
´1 0
1 ´1

˛

‚

)

“ n “ 2 ñ t´2u R FO

and

λ “ ´1 ñ rankR

!

ˆ

λI ´A
C

˙

)

“ rankR

!

¨

˝

0 0
´1 1
1 ´1

˛

‚

)

“ 1 ă 2 “ nñ t´1u P FO

By proposition 3.7 there does not exist K such that σpA ´
KCq “ t´2,´3u.

Case α ‰ 0, α ‰ ´1. The system is observable. We have

λ “ ´2 ñ rankR

!

ˆ

λI ´A
C

˙

)

“ rankR

!

¨

˝

´1 0
´1 0
1 α

˛

‚

)

“ n “ 2 ñ t´2u R FO

and

λ “ ´1 ñ rankR

!

ˆ

λI ´A
C

˙

)

“ rankR

!

¨

˝

0 0
´1 1
1 α

˛

‚

)

“ n “ 2 ñ t´1u R FO.Ÿ

G. Eigenvalues assignment by output feedback: the separation
principle

The control laws used for eigenvalue assignment in section
III-A are not practically implementable since the state infor-
mation is required. Consider the class of control laws

uptq “ Fpxptq ` vptq
9
pxptq “ Apxptq `Buptq `Kpyptq ´ Cpxptqq (114)

with matrices F p1ˆnq, Kpnˆ1q and with v the new control
input. These control laws are commonly referred as output
feedback laws, in the sense that only the output and input
information is used to implement the control law. With this
control law the resulting system is represented by the new
equations
ˆ

9xptq
9
pxptq

˙

“

ˆ

A BF
KC A`BF ´KC

˙ˆ

xptq
pxptq

˙

`

ˆ

B
B

˙

vptq

(115)

which is a system with states px, ξq and inputs v. If we are able
to find matrices F and K in such a way that the eigenvalues
of

ˆ

A BF
KC A`BF ´KC

˙

(116)

are equal to a given set

tλ˚1 , . . . , λ
˚
nu Y tµ

˚
1 , . . . , µ

˚
nu

with negative real part, then the natural modes are all conver-
gent with rate convergence corresponding to the given negative
real parts. The problem can be formulated as follows.

Definition 3.3: (Spectrum assignment by output feedback).
Given numbers tλ˚1 , . . . , λ

˚
nu Y tµ˚1 , . . . , µ

˚
nu Ă C´, find

matrices F p1ˆ nq, Kpnˆ 1q such that

σ

ˆ

A BF
KC A`BF ´KC

˙

“ tλ˚1 , . . . , λ
˚
nu Y tµ

˚
1 , . . . , µ

˚
nu

A necessary and sufficient condition for the existence of F ,
H , G and K is the following.

Proposition 3.9: The Spectrum assignment problem by out-
put feedback is solvable if and only if the system is control-
lable and observable, i.e. the controllability and observability
matrices R and O are nonsingular. In particular, if R and O
are nonsingular then for any given numbers tλ˚1 , . . . , λ

˚
nu Y
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tµ˚1 , . . . , µ
˚
nu Ă C´, the Spectrum assignment problem with

output feedback is solvable with

F “ ´γRp
˚
RpAq,

K “ p˚OpAqγO,

where γR is the last row of R´1, γO is the last column of O´1,
p˚Rpλq :“

śn
j“1pλ´ λ

˚
j q and p˚Opλq :“

ś2n
j“n`1pλ´ µ

˚
j q.

Assume that the system is controllable and observable. By
changing state coordinates as

ˆ

x
e

˙

:“

ˆ

I 0
I ´I

˙ˆ

x
px

˙

(117)

the system (115) in the new coordinates is

9xptq “ pA`BF qxptq ´BFeptq `Bvptq

9eptq “ pA´KCqxptq

or in compact form
ˆ

9xptq
9eptq

˙

“

ˆ

A`BF ´BF
0 A´KC

˙ˆ

xptq
eptq

˙

`

ˆ

B
0

˙

vptq

Therefore, the eigenvalues of (116) are equal to the eigenvalues
of

ˆ

A`BF ´BF
0 A´KC

˙

since these two matrices differ by a coordinate transformation,
and clearly

σ

ˆ

A`BF ´BF
0 A´KC

˙

“ σpA`BF q Y σpA´KCq

Therefore, the spectrum tλ˚1 , . . . , λ
˚
nu Y tµ

˚
1 , . . . , µ

˚
nu can be

assigned to (116) if and only if the spectrums tλ˚1 , . . . , λ
˚
nu

and tµ˚1 , . . . , µ
˚
nu can be assigned to A`BF and, respectively,

A´KC. This proves the proposition by means of propositions
3.1 and 3.5.

H. Design of output feedback stabilizers

If the system is not controllable (resp. not observable) it is
clear that there is a subset of the eigenvalues of A ` BF
(resp. A ´ KC) that is invariant under any choice of F
and K (invariant spectrum). Even if the system is either not
controllable or not observable, it is possible to find a F and
K such that σpA`BF q “ tλ˚1 , . . . , λ

˚
nu and σpA´KCq “

tµ˚1 , . . . , µ
˚
nu, where tµ˚1 , . . . , µ

˚
nu and tλ˚1 , . . . , λ

˚
nu are given

numbers, as long as the invariant spectrum of A`BF (resp.
A ´ KC) is a subset of the given set tλ˚1 , . . . , λ

˚
nu (resp. a

subset of tµ˚1 , . . . , µ
˚
nu). Denote by FR this invariant spectrum

of A ` BF and FO the invariant spectrum of A ´ KC.
The following proposition can be proved as a combination
of propositions 3.2 and 3.6.

Proposition 3.10: Given two sets of numbers LR :“
tλ˚1 , . . . , λ

˚
nu Ă C´ and LO :“ tµ˚1 , . . . , µ

˚
nu Ă C´, there

exist matrices F p1ˆ nq, Kpnˆ 1q such that

σ

ˆ

A BF
KC A´KC

˙

“ LR Y LO

if and only if FR Ă LR and FO Ă LO.

The construction of the matrices F and K can be summed
up as follows:
Step procedure for the design of output feedback stabilizers:
(i) Let r :“ rankRtRu. Find w1, . . . , wn´r P Rn such that
B,AB, ¨ ¨ ¨ , Ar´1B,w1, ¨ ¨ ¨ , wn´r are a basis of Rn and
define T as

T :“
`

B AB ¨ ¨ ¨ Ar´1B w1 ¨ ¨ ¨ wn´r
˘´1

(118)

(ii) Find the matrices Ã11prˆ rq, Ã12prˆpn´ rqq, Ã22ppn´
rq ˆ pn´ rqq and B̃1pr ˆ 1q for which

Ã “ TAT´1 “

ˆ

Ã11 Ã12

0 Ã22

˙

, B̃ “ TB “

ˆ

B̃1

0

˙

(119)

(iii) Find F̃1p1 ˆ rq such that σpÃ11 ` F̃1B̃1q “ LzFR. In
particular,

F̃1 “ ´γsp
˚
s pÃ11q (120)

where p˚s pλq :“ α˚0 ` α˚1λ ` ¨ ¨ ¨ ` α˚r´1λ
r´1 ` λr is the

polynomial which has the roots in LzFR and

p˚s pÃ11q :“ α˚0 I ` α
˚
1 Ã11 ` ¨ ¨ ¨ ` α

˚
r´1Ã

r´1
11 ` Ãr11 (121)

and γs is the last row of the inverse of

Rs :“
`

B̃1 Ã1B̃1 ¨ ¨ ¨ Ãr´1
1 B̃1

˘

(122)

(iv) Define

F̃ :“
`

F̃1 0
˘

(123)

and, finally,

F :“ F̃ T (124)

(v) Let s :“ ranktOu. Find w1, . . . , ws P Rn such that
CJ, pCAqJ, ¨ ¨ ¨ , pCAs´1qJ, w1, ¨ ¨ ¨ , wn´s are a basis of Rn
and define S as

S “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

C
CA

...
CAs´1

wJ1
...

wJn´s

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(125)

(vi) Find the matrices Ã11psˆ sq, Ã12ppn´ sqˆ sq, Ã22ppn´
sq ˆ pn´ sqq and C̃1p1ˆ sq for which

Ã “ SAS´1 “

ˆ

Ã11 0

Ã12 Ã22

˙

, C̃ “ CS´1

“
`

C̃1 0
˘

(126)

(vii) Find with K̃1p1ˆ pn´ sqq such that σpÃ11 ´ C̃1K̃1q “

LzFO. In particular,

K̃1 “ p˚o pÃ11qγo (127)

where p˚o pλq :“ β˚0 ` β
˚
1 λ` ¨ ¨ ¨ ` β

˚
n´s´1λ

n´s´1 ` λn´s is
the polynomial which has the roots in LzFO and

p˚o pÃ11q :“ β˚0 I ` β
˚
1 Ã11 ` ¨ ¨ ¨ ` β

˚
n´s´1Ã

n´s´1
11 ` Ãn´s11
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and γo is the last column of the inverse of

Oo :“

¨

˚

˚

˚

˝

C̃1

C̃1Ã11

...
C̃1Ã

n´s´1
11

˛

‹

‹

‹

‚

(viii) Define

K̃ :“

ˆ

K̃1

0

˙

(128)

and eventually

K :“ S´1K̃ (129)

IV. TRACKING OF REFERENCE INPUTS WITH SPECTRUM
ASSIGNMENT

In this section we want to show, given a n-times contin-
uously differentiable function yref ptq together with a system
9x “ Ax`Bu, y “ Cx, in the (controllable canonical) form

9x1 “ x2

9x2 “ x3
... “

...
9xn´1 “ xn

9xn “ ´a0x1 ´ a1x2 ´ ¨ ¨ ¨ ´ an´1xn ` u,

y “ x1, (130)

with a0, a1, ¨ ¨ ¨ , an´1 P R, how it is possible to design a state-
feedback control u “ Fx`Φpyref ptq, y

p1q
ref ptq, ¨ ¨ ¨ y

pnq
ref ptqq`v

with F P R1ˆn and Φ : Rn`1 Ñ R such that the closed-loop
system

9x1 “ x2

9x2 “ x3
... “

...
9xn´1 “ xn

9xn “ ´a0x1 ´ a1x2 ´ ¨ ¨ ¨ ´ an´1xn ` Fx` Φptq,

y “ x1, (131)

has the property that limtÑ`8 }yptq ´ yref ptq} “ 0 for all
x0 P Rn. In this problem we want to design our control input
uptq in such a way that the steady-state output response yssptq
of the closed-loop system is identically equal to yref ptq.

Let

zj :“ xj ´ y
pj´1q
ref ptq, j “ 1, . . . , n,

z “

¨

˚

˚

˝

z1
z2
¨ ¨ ¨

zn

˛

‹

‹

‚

, xref ptq “

¨

˚

˚

˚

˝

yref ptq

y
p1q
ref ptq

¨ ¨ ¨

y
pn´1q
ref ptq

˛

‹

‹

‹

‚

, (132)

where ypjqref ptq is the j-th order derivative of yref ptq. In these
coordinates

9z1 “ z2

9z2 “ z3
... “

...
9zn´1 “ zn

9zn “ ´a0z1 ´ a1z2 ´ ¨ ¨ ¨ ´ an´1zn

´a0yref ptq ´ a1y
p1q
ref ptq ´ ¨ ¨ ¨ ´ an´1y

pn´1q
ref ptq ´ y

pnq
ref ptq ` u,

y “ z1 ` yref ptq, (133)

Let tλ˚1 , . . . , λ
˚
nu Ă C´ be a given set of eigenvalues we want

to assign to (133) and a˚0 , . . . , a
˚
n´1 P R be such that

p˚pλq “
n
ź

j“1

pλ´ λ˚j q “ a˚0 ` a
˚
1λ` ¨ ¨ ¨ ` a

˚
n´1λ

n´1 ` λn.

Define the state feedback control on (133)

u “ Fz ` Φpyref ptq, y
p1q
ref ptq, ¨ ¨ ¨ , y

pnq
ref ptqq ` v (134)

where

F “
`

a0 ´ a
˚
0 a1 ´ a

˚
1 ¨ ¨ ¨ an´1 ´ a

˚
n´1

˘

i.e. it is such that σpA`BF q “ tλ˚1 , . . . , λ
˚
nu Ă C´, and

Φpyref ptq, y
p1q
ref ptq, ¨ ¨ ¨ , y

pnq
ref ptqq

“ a0yref ptq ` a1y
p1q
ref ptq ` ¨ ¨ ¨ ` an´1y

pn´1q
ref ptq ` y

pnq
ref ptq.

The closed-loop system resulting from (133) is

9z1 “ z2

9z2 “ z3
... “

...
9zn´1 “ zn

9zn “ ´a
˚
0z1 ´ a

˚
1z2 ´ ¨ ¨ ¨ ´ a

˚
n´1zn

y “ z1 ` yref ptq, (135)

and such that limtÑ`8 }zptq} “ 0 for all z0 P Rn or,
equivalently in x-coordinates, limtÑ`8 }xptq ´ xref ptq} “ 0
for all x0 P Rn. In particular, limtÑ`8 }yptq ´ y

ref ptq} “ 0,
which is our control objective.

In x-coordinates we have

u “ Fz ` Φpyref ptq, y
p1q
ref ptq, ¨ ¨ ¨ , y

pnq
ref ptq ` v

“ Fx` Φ˚pyref ptq, y
p1q
ref ptq, ¨ ¨ ¨ , y

pnq
ref ptq ` v (136)

where

Φ˚pyref ptq, y
p1q
ref ptq, ¨ ¨ ¨ , y

pnq
ref ptqq

“ a˚0yref ptq ` a
˚
1y
p1q
ref ptq ` ¨ ¨ ¨ ` a

˚
n´1y

pn´1q
ref ptq ` y

pnq
ref ptq.

Notice that if we take yref ptq ” 0 then

u “ Fx` v (137)

which is the state feedback controller which assigns the
spectrum tλ˚1 , . . . , λ

˚
nu Ă C´ to the system (130). Hence,

the additional control term Φ˚pyref ptq, y
p1q
ref ptq, ¨ ¨ ¨ , y

pnq
ref ptq in

(136) is exactly the one that enforces the system’s output to
track the reference signal yref ptq.


