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Notes on Linear Control Systems: Module IX
Stefano Battilotti

Abstract—Stability of feedback systems in frequency domain.
Nyquist criteria.

I. STABILITY OF FEEDBACK SYSTEMS: NYQUIST CRITERIA

The stability of a feedback interconnection of P1(s) and
P2(s), when the process P2(s) on the feedback path is
unitary (i.e. P2(s) = 1) and when the Bode plot of P1(jω) is
available, can be analyzed by means of the so-called Nyquist
criterion. This corresponds to apply to the process P1 a control
action −y , i.e. proportional to its output (Figure 1).

A. The Simplified Nyquist criterion

Consider a process P(s) and let

9x(t) = Ax(t) +Bu(t)
y(t) = Cx(t) (1)

be some its state space realization. The state space represen-
tation of the feedback interconnection of P(s) with unitary
feedback is

9x(t) = Ax(t) +Bu(t), u(t) = v(t) − y(t),
y(t) = Cx(t) (2)

i.e.

9x(t) = (A −BC)x(t) +Bv(t),
y(t) = Cx(t) (3)

(the feedback or closed-loop system). Denote by p(s) the
characteristic polynomial of A

p(s) ∶= det(sI −A) (4)

and by w(s) the characteristic polynomial of the feedback
system

w(s) ∶= det(sI − (A −BC)) = det(sI −A +BC) (5)

Moreover, let Adj{sI −A} denote the adjoint of sI −A, i.e.
the transpose of the matrix with (i, j)-th element equal to the
cofactor of the (i, j)-th element of sI −A. Since from matrix
algebra

P(s) = Adj{sI −A}
det(sI −A) = Adj{sI −A}

p(s) ,

W(s) = Adj{sI −A +BC}
det(sI −A +BC) = Adj{sI −A +BC}

w(s)
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and assuming there are non zero-pole cancellations in P(s)
and W(s), we see that the poles of P(s) and W(s) are the
roots of p(s) (i.e. the eigenvalues of A) and, respectively,
w(s) (i.e. the eigenvalues of A −BC).

Moreover, let W(s) denote the I/O transfer function of the
feedback system. As we know, for feedback interconnections
with unitary feedback path

W(s) ∶= P(s)
1 +P(s) (6)

There is a precise relation between w(s) and p(s), on one
side, and P (s) on the other.

Proposition 1.1: For all s ∈ C
w(s)
p(s) = 1 +P(s) (7)

Proof. Since (1 ) is a realization of P(s) then P(s) = C(sI −
A)−1B. Moreover, for any matrices N(n × r) and M(r × n)

det{I +MN} = det{I +NM} (8)

where the first identity matrix is r × r and the second identity
matrix is n × n. We have

[1 +P(s)]p(s) = [1 +C(sI −A)−1B]det(sI −A)
= det[1 +C(sI −A)−1B]det(sI −A)
= det{[1 +C(sI −A)−1B](sI −A)}
= det{[1 +BC(sI −A)−1](sI −A)}
= det{sI −A +BC} =w(s)

where we used (8) with M ∶= C(sI −A)−1 and N ∶= B. ◁
Notice that, while ω varies from −∞ to +∞, the end-

point of the vector, which points into 1 + P(jω) and with
application point at the origin of the complex plane C (denoted
by
ÐÐÐÐÐÐ→
1 +P(jω)), describes a certain curve γ(ω) ∈ C. We want

to calculate the total number of times N(γ) (positive or
negative) the curve γ(ω) encircles the origin of C while ω
varies from −∞ to +∞, conventionally assigning +1 each
time the encirclement is clockwise and −1 each time the
encirclement is clockwise. On the other hand, N(γ) is equal
to the total phase variation of

ÐÐÐÐÐÐ→
1 +P(jω) as ω varies from

−∞ to +∞ divided by 2π. We associate a positive phase
increment to a counterclockwise rotation and negative phase
increment to a clockwise rotation. For computing the total
phase variation of

ÐÐÐÐÐÐ→
1 +P(jω) as ω varies from −∞ to +∞,

we need the following basic result which is a consequence of
simple graphical arguments.

Proposition 1.2: For any given complex number λ with
Re(λ) ≠ 0, the phase variation of ÐÐÐ→jω − λ for ω varying from
−∞ to +∞ is −π (i.e. one clockwise half tour of ÐÐÐ→jω − λ) if
Re(λ) > 0 and +π (i.e. one counterclockwise half tour ofÐÐÐ→
jω − λ) if Re(λ) < 0.
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Figure 1. Feedback interconnection with unitary feedback.

We are now in a position to determine the phase variation ofÐÐÐ→
p(jω) for ω varying from −∞ to +∞, where p(s) is any
n-degree polynomial without roots on the imaginary axis and,
for our convenience, has the form

p(s) ∶=
n

∏
j=1

(s − λj). (9)

Let n+(p) ∶= the number of roots of p(s) with positive real
part, i.e. the cardinality of the set {λ ∈ C+ ∶ p(λ) = 0}. The
next result which follows from the fact that

Arg{(jω − λ)(jω − µ)} = Arg{jω − λ} +Arg{jω − µ}

for any complex numbers λ and µ.
Proposition 1.3: For any given n-degree polynomial p(s)

without roots on the imaginary axis, the phase variation ofÐÐÐ→
p(jω) for ω varying from −∞ to +∞ is

−2n+(p)π + nπ

We have also the following consequence of the fact that

Arg{ jω − λ
jω − µ} = Arg{jω − λ} −Arg{jω − µ}

for any complex numbers λ and µ.
Proposition 1.4: For any two given n-degree polynomials

p1(s) and p2(s) without roots on the imaginary axis, the total

phase variation of
ÐÐÐÐÐÐ→
(p1(jω)
p2(jω)

) for ω varying from −∞ to +∞ is

2π(−n+(p1) + n+(p2))

where n+(p1) (resp. n+(p2)) is the number of roots of
(p1(s) (resp. (p2(s)) with positive real part.
From (7) we conclude that if p(s) in (4) and w(s) in (5)
are polynomials without roots on the imaginary axis, the total
phase variation of

ÐÐÐÐÐ→
(w(jω)
p(jω) ) =ÐÐÐÐÐÐ→1 +P(jω)

for ω varying from −∞ to +∞ is

2π(−n+(w) + n+(p))

where n+(p) (resp. n+(w)) is the number of roots of p(s)
(resp. w(s)) with positive real part.

Dividing the total phase variation of
ÐÐÐÐÐÐ→
1 +P(jω) by 2π

we obtain the number of counterclockwise tours (minus the
number of clockwise tours) of

ÐÐÐÐÐÐ→
1 +P(jω) around the origin

of C for ω varying from −∞ to +∞, i.e. −n+(w) + n+(p).
Since w(s) has no roots on the imaginary axis by hypothesis,

the polynomial w(s) is Hurwitz 1 (and therefore the closed-
loop system W(s) is asymptotically stable) if and only if
n+(w) = 0. In view of the above discussion, we can conclude
that w(s) is Hurwitz (and therefore the closed-loop system
W(s) is asymptotically stable) if and only if the number of
counterclockwise tours (minus the number of clockwise tours)
of
ÐÐÐÐÐÐ→
1 +P(jω) around the origin of C for ω varying from −∞

to +∞ is exactly n+(p).
Proposition 1.5: Assume that p(s) and w(s) have no roots

on the imaginary axis (or equivalently P(s) and W(s) have
no poles on the imaginary axis). The closed-loop system W(s)
is asymptotically stable if and only if the number of counter-
clockwise tours (minus the number of clockwise tours) around
the origin on behalf of the vector

ÐÐÐÐÐÐ→
1 +P(jω) for ω varying from

−∞ to +∞ is n+(p).
A couple of remarks which refine the statement of proposition
1.5. First, as mentioned before, the roots of p(s) are the poles
of P(s), so n+(p) is also the number of poles of P(s) with
positive real part. Moreover, the polynomial w(s) has at least
one root on the imaginary axis if and only if w(jω○) = 0 for
at least one ω○ ∈ (−∞,+∞). This means, on account of (7),
that

0 = w(jω○)
p(jω○) = 1 +P(jω○) (10)

or equivalently that P(jω○) = −1 or that the end-point ofÐÐÐ→
P(jω) passes through the point −1 + j0 for at least one ω○ ∈
(−∞,+∞). Therefore

Proposition 1.6: The polynomial w(s) has at least one root
on the imaginary axis if and only if the end-point of

ÐÐÐ→
P(jω)

crosses the point −1 + j0 for at least one ω○ ∈ (−∞,+∞). If
the end-point

ÐÐÐ→
P(jω) crosses the point −1 + j0 for at least one

ω○ ∈ (−∞,+∞) then w(s) is not Hurwitz (i.e. the closed-loop
system W(s) is not asymptotically stable).
Also notice that the number of counterclockwise tours (minus
the number of clockwise tours) around the origin on behalf of
the vector

ÐÐÐÐÐÐ→
1 +P(jω) for ω varying from −∞ to +∞ is equal

to the number of counterclockwise tours (minus the number
of clockwise tours) around −1 + j0 on behalf of the vectorÐÐÐ→
P(jω) for ω varying from −∞ to +∞.

We are ready to formulate the simplified Nyquist criterion.
Theorem 1.1: (Simplified Nyquist criterion). Assume that

● P(s) has no poles on the imaginary axis
● the end-point of

ÐÐÐ→
P(jω) does not cross the point −1+

j0 for any ω ∈ (−∞,+∞) (or, equivalently, P(jω) ≠
−1 + 0j for all ω ∈ (−∞,+∞)).

1A n-th degree polynomial p(s) is Hurwitz if its roots are all in C−
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The closed-loop system P(s) is asymptotically stable if and
only if the number of counterclockwise tours (minus the clock-
wise tours) of the vector

ÐÐÐ→
P(jω) around the point −1 + j0 for

ω varying from −∞ to +∞ is equal to n+(p). If the number of
counterclockwise tours around the point −1 + j0 on behalf of
the vector

ÐÐÐ→
P(jω) for ω varying from −∞ to +∞ is not equal

to n+(p) then w(s) has at least one root with positive real part
and the closed-loop system W(s) is unstable.
The plot of

ÐÐÐ→
P(jω) on the complex plane for ω varying from

−∞ to +∞ is known as Nyquist plot. The Nyquist plot is
needed for calculating the number of counterclockwise tours
(minus the clockwise tours) of the vector

ÐÐÐ→
P(jω) around the

point −1+ j0. This plot can be drawn directly from the Bode
plot as discussed in the following examples.

Exercize 1.1: Consider the system

P(s) = 1

s + 1
(11)

The Bode plot of P(jω) is drawn in Figure 2. Clearly,
P(s) has no poles on the imaginary axis and n+(p) = 0.
Moreover, it is also clear from the Bode plot of P(jω)
that P(jω) does not cross the point −1 + j0 (i.e. the point
with magnitude 1 and phase −π) for any ω ∈ (−∞,+∞).
Therefore, by the Simplified Nyquist criterion the closed-loop
system is asymptotically stable if and only if the number of
counterclockwise (decremented by the number of clockwise)
tours around the point −1+ j0 on behalf of the vector

ÐÐÐ→
P(jω)

for ω varying from −∞ to +∞ is 0.
The Nyquist plot can be drawn from the Bode plot as

follows. First, from now on we stipulate that the numbers on
the real positive axis of the complex plane have phase 0±2kπ,
K = 0,1, . . . , the numbers on the imaginary negative axis have
phase −π

2
± 2kπ, the numbers on the real negative axis have

phase −π ± 2kπ, the numbers on the imaginary positive axis
have phase − 3π

2
± 2kπ and so on. By doing this a clockwise

phase variation has negative sign.
Let us draw the curve described by

ÐÐÐ→
P(jω) on the complex

plane for ω varying from 0 to +∞. Note from the Bode plot
(Figure 2) that

P(0) = 1,

lim
ω→+∞ ∣P(jω)∣ = lim

ω→+∞
1√

1 + ω2
= 0,

lim
ω→+∞Arg{P(jω)} = lim

ω→+∞Arg{ 1

jω + 1
} = −π

2
.(12)

The curve described by
ÐÐÐ→
P(jω) for ω varying from 0 to +∞ has

the direction going from P(0) = 1 to limω→+∞P(jω) = 0 (see
Figure 3) and approaches the origin with tangent −π

2
(see the

third equation of (12) and Figure 2), remaining in the quadrant
which corresponds to phases between −π

2
± 2kπ and 0 ± 2kπ

(Figure 3). Recall that we stipulated that a positive variation of
the phase of

ÐÐÐ→
P(jω) corresponds to a counterclockwise rotation

of
ÐÐÐ→
P(jω) around −1+0j. Note from Figure 2 that the phase ofÐÐÐ→

P(jω) for ω varying from 0 to +∞ decreases monotonically,
therefore in Figure 3 the curve does not change its clockwise
rotation in going from P(0) = 1 to limω→+∞P(jω) = 0.

The curve described by
ÐÐÐ→
P(jω) for ω varying from −∞ to

0 is obtained directly from the curve described by
ÐÐÐ→
P(jω) for

ω varying from 0 to +∞. Indeed,

P(−jω) = 1

−jω + 1
= jω + 1

ω2 + 1

= (−jω + 1

ω2 + 1
)
∗
= ( 1

jω + 1
)
∗
= P∗(jω) (13)

Therefore, the curve described by
ÐÐÐ→
P(jω) for ω varying from

−∞ to 0 is obtained by taking the symmetric curve with
respect to the real axis of the curve described by

ÐÐÐ→
P(jω) for

ω varying from 0 to +∞ (see Figure 3).
As it is clear from Figure 3 we obtain a closed curve which

goes from P(0) = 1 to the origin, then from the origin back
again to P(0) = 1. The number of counterclockwise tours
(minus the number of clockwise tours) around the point −1+j0
on behalf of the vector

ÐÐÐ→
P(jω) for ω varying from −∞ to +∞

is 0. Since n+(p) = 0, by the Simplified Nyquist criterion the
closed-loop system is asymptotically stable.

Exercize 1.2: Consider the system

P(s) = −s + 0.1

(1 + s)(1 + 0.5s) (14)

The Bode plot of P(jω) is drawn in Figure 4. Clearly, P(s)
has no poles on the imaginary axis and n+(p) = 0. Moreover,
it is also clear from the Bode plot of P(jω) that P(jω)
does not cross the point −1 + j0 for any ω ∈ (−∞,+∞).
Therefore, by the Simplified Nyquist criterion the closed-loop
system is asymptotically stable if and only if the number of
counterclockwise tours (minus the number of clockwise tours)
around the point −1+ j0 on behalf of the vector

ÐÐÐ→
P(jω) for ω

varying from −∞ to +∞ is 0.
The Nyquist plot can be drawn from the Bode plot as

pointed out in the previous example. Let us draw the curve
described by

ÐÐÐ→
P(jω) on the complex plane for ω varying from

0 to +∞. Note that

P(0) = 0.1,

lim
ω→+∞ ∣P(jω)∣ = 0,

lim
ω→+∞Arg{P(jω)} = −3π

2
. (15)

The curve described by
ÐÐÐ→
P(jω) for ω varying from 0 to +∞ has

the direction going from P(0) = 0.1 to limω→±∞P(jω) = 0
(see Figure 5) and approaches the origin with tangent − 3π

2
(see the third equation of (12) and Figure 4). Note that
the curve described by

ÐÐÐ→
P(jω) is contained in the quadrants

which corresponds to phases between − 3π
2
± 2kπ and 0± 2kπ

(Figure 5). Note also from Figure 4 the phase of
ÐÐÐ→
P(jω) for

ω varying from 0 to +∞ decreases monotonically, therefore
in Figure 5 the curve does not change its clockwise rotation
in going from P(0) = 0.1 to limω→+∞P(jω) = 0. Moreover,ÐÐÐ→
P(jω) crosses the negative real axis for some ω○ ≈ 1.5rad/sec
with ∣P(jω○)∣ < 1, therefore the curve on the Nyquist plot
leaves to its left the point −1+ 0j while crossing the negative
real axis (Figure 5). The intersections of the negative real axis
can be always calculated from inspection of the Bode plot,
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Figure 2. Bode diagrams of to P(s) = 1
s+1 . Figure 3. Nyquist plot of P(s) = 1

s+1 .

Figure 4. Bode diagrams of to P(s) = −s+0.1
(1+s)(1+0.5s) . Figure 5. Nyquist plot of P(s) = −s+0.1

(1+s)(1+0.5s) .

seeking for the ω○ such that Arg{P(jω○)} = −π and then
looking at the values of ∣P(jω○)∣: if ∣P(jω○)∣ < 1 the curve
on the Nyquist plot leaves to her left the point −1 + 0j while
crossing the negative real axis, if ∣P(jω○)∣ > 1 the curve on
the Nyquist plot leaves to her right the point −1 + 0j while
crossing the negative real axis, otherwise if ∣P(jω○)∣ = 1 the
curve on the Nyquist plot crosses the point −1 + 0j.

The curve described by
ÐÐÐ→
P(jω) for ω varying from −∞ to

0 is obtained by taking the symmetric curve with respect to
the real axis of the curve described by

ÐÐÐ→
P(jω) for ω varying

from 0 to +∞ (see Figure 5).
As it is clear from Figure 5 we obtain a closed curve which

goes from P(0) = 0.1 to the origin, then from the origin back
again to P(0) = 0.1. The number of counterclockwise tours
(minus the number of clockwise tours) around the point −1+j0
on behalf of the vector

ÐÐÐ→
P(jω) for ω varying from −∞ to +∞

is 0. Since n+(p) = 0, by the Simplified Nyquist criterion the
closed-loop system is asymptotically stable.

Exercize 1.3: Consider the system

P(s) = 20
−s + 0.1

(1 + s)(1 + 0.5s) (16)

which is exactly the previous P(s) multiplied by 20. The Bode
plot of P(jω) are drawn in Figure 6. Note that

P(0) = 2

lim
ω→+∞ ∣P(jω)∣ = 0

lim
ω→+∞Arg{P(jω)} = −3π

2
(17)

As it is clear from Figure 7 we obtain a closed curve which
goes from P(0) = 2 to the origin, then from the origin back
again to P(0) = 2. Moreover,

ÐÐÐ→
P(jω) crosses the negative real

axis for some ω○ between 1 and 2rad/sec with ∣P(jω)∣ > 1,
therefore the curve on the Nyquist plot leaves to her right the
point −1+ 0j while crossing the negative real axis (Figure 7).

The number of counterclockwise tours (minus the number
of clockwise tours) around the point −1 + j0 on behalf of
the vector

ÐÐÐ→
P(jω) for ω varying from −∞ to +∞ is −2 (= 2

clockwise tours). Since n+(p) = 0, by the Simplified Nyquist
criterion the closed-loop system is unstable. We have seen
that by increasing the gain of P(s) (i.e. the value of P(0))
from 0.1 (Figure 5) to 2 (Figure 7) the closed-loop system has
become unstable.
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Figure 6. Bode diagrams of P(s) = 20 −s+0.1
(1+s)(1+0.5s) . Figure 7. Nyquist plot of P(s) = 20 −s+0.1

(1+s)(1+0.5s) .

B. The Extended Nyquist criterion

We have seen that the Simplified Nyquist criterion assumes
that p(s) has no roots on the imaginary axis. If p(s) has
at least one root z ∶= jω○ on the imaginary axis then the
magnitude of P(jω) goes to infinity as ω → ω○. This means
that the plot of

ÐÐÐÐÐÐ→
1 +P(jω) for ω varying from −∞ to +∞ is

an open curve and it is not possible to evaluate the number of
tours of −1 + 0j on behalf of

ÐÐÐÐÐÐ→
1 +P(jω) for ω varying from

−∞ to +∞. However, it is possible to close the curve in a
suitable way and then evaluate the number of tours of −1+0j

on behalf of
ÐÐÐ→
P(jω). We want to give an extended version of

the Nyquist criterion in this sense, by relaxing the assumption
that p(s) has no roots on the imaginary axis.

One key result from complex analysis, based on Laurent
expansions and Cauchy’s residuals theorem, is needed for this
extension.

Proposition 1.7: Let Γ be a closed curve in some domain
D ⊂ C and f(s) an olomorphic function on D, except for a
finite number of points. The number of counterclockwise tours
around the origin on behalf of the vector

ÐÐ→
f(s) for s ∈ Γ varying

clockwisely is −nz(f)+np(f), where nz(f) (resp. np(f)) is the
number of zeroes (resp. poles) of f(s) inside Γ counted with
their multiplicity.
Assume that p(s) has some roots z1, . . . , zr on the imaginary
axis. Define a curve ΓR,ρ ⊂ C as the concatenation of the
following curves:

(i) a half-circumference in the right-half complex
plane with radius R and centered at the origin
(ii) r half-circumferences in the right-half complex
plane, each with radius ρ and centered at the point
zi ∶= jωi of the imaginary axis (denote by z−i,ρ ∶=
jω−i,ρ the initial point of each half-circumference and
by z+i,ρ ∶= jω+i,ρ its final point, both on the imaginary
axis)
(ii) the segments on the imaginary axis joining the r
half-circumferences

Let s vary over the curve ΓR,ρ clockwisely (when R →∞ and
ρ→ 0 this corresponds to a variation of s over the imaginary
axis from −j∞ to +j∞).

The function 1 + P(s) is an olomorphic function on C,
except for a finite number of points (its poles). By virtue of
proposition 1.1 and proposition 1.7 and since ΓR,ρ encircles
only the zeroes of w(s) and p(s) with positive real part, the
number of counterclockwise tours around the origin on behalf
of the vector

ÐÐÐÐÐ→
1 +P(s) for s ∈ ΓR,ρ varying clockwisely is

−n+R,ρ(w)+n+R,ρ(p), where n+R,ρ(w) (resp. n+R,ρ(p)) denotes
the number of zeroes of w(s) (resp. p(s)) with positive real
part inside ΓR,ρ counted with their multiplicity.

Notice that as s goes from the point z−i,ρ ∶= jω−i,ρ to the
point z+i,ρ ∶= jω+i,ρ along each half-circumference in the right-
half complex plane, with radius ρ and centered at the point
zi = jωi, the vector

ÐÐÐÐÐ→
1 +P(s) goes from the point 1+P(jω−i,ρ)

to the point 1+P(jω+i,ρ) subject to a phase decrement of riπ
and, therefore, to ri clockwise half tours around the origin.
Indeed, if s = zi + ρejθ with θ varying from −π

2
to +π

2
(i.e. s

varies from z−i,ρ to z+i,ρ along each half-circumference in the
right-half complex plane, with radius ρ and centered at the
point zi) then for ρ ≈ 0

Arg{P(z+i,ρ)} −Arg{P(z−i,ρ)}
= Arg{P(zi + ρej

π
2 )} −Arg{P(zi + ρe−j

π
2 )}

= Arg{ 1

ej
π
2 ri

} −Arg{ 1

e−j
π
2 ri

} = −riπ (18)

since for ρ ≈ 0 the only term in P(s) which contribute to the
phase variation is 1

(s−zi)ri .
As R →∞ and ρ→ 0 then n+R,ρ(w)→ n+(w), n+R,ρ(p)→

n+(p) and the curve ΓR,ρ tends to coincide with the imaginary
axis.

Definition 1.1: The curve of P(jω) in C modified in such
a way that, for each pole zi = jωi of P(s) on the imaginary
axis and with multiplicity ri, we close the curve of P(jω) from
P(jω−i ) to P(jω+i ) with ri clockwise half tours (at infinity) as
the point s = jω on the imaginary axis crosses the point zi from
z−i = jω−i to z+i = jω+i is called Nyquist plot of P(jω).
On account of the above discussion, the extension of the
Nyquist criterion when p(s) has at least one root on the
imaginary axis is the same as its simplified version (theorem
1.1) as long as we substitute the polar plot with the Nyquist
plot. We obtain the following extended Nyquist criterion.
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Theorem 1.2: (Extended Nyquist criterion). Assume that
the end-point of

ÐÐÐ→
P(jω) does not cross the point −1 + j0 for

any ω ∈ (−∞,+∞) (or, equivalently, P(jω) ≠ −1 + j0 for
all ω ∈ (−∞,+∞)). The polynomial w(s) is Hurwitz (i.e. the
closed-loop system is asymptotically stable) if and only if the
number of counterclockwise tours (minus the number of clock-
wise tours) around the point −1 + j0 on behalf of the Nyquist
plot of

ÐÐÐ→
P(jω) is n+(p). If the number of counterclockwise

tours (minus the number of clockwise tours) around the point
−1 + j0 is not equal to n+(p) then w(s) has at least one root
with positive real part (i.e. the closed-loop system is unstable).
The Nyquist plot is needed for calculating the number of
counterclockwise tours around the point −1 + j0 on behalf
of the vector

ÐÐÐ→
P(jω). This plot can be drawn directly from the

Bode plot as discussed in the following examples.
Exercize 1.4: Consider the system

P(s) = 1

s(s + 1) (19)

The Bode plot of P(jω) is drawn in Figure 8. Clearly, P(s)
has a pole on the imaginary axis (more precisely, at 0) and
n+(p) = 0. Moreover, it is also clear from the Bode plot of
P(jω) that P(jω) does not cross the point −1 + j0 (i.e. the
point with magnitude 1 and phase −π) for any ω ∈ (−∞,+∞).
Therefore, by the Extended Nyquist criterion the closed-loop
system is asymptotically stable if and only if the number of
counterclockwise tours (minus the number of clockwise tours)
around the point −1+j0 on behalf of the Nyquist plot of

ÐÐÐ→
P(jω)

is n+(p) = 0.
The polar plot (Figure 9) can be drawn from the Bode plot

as follows. First, as usual we stipulate that the numbers on
the real negative axis of the complex plane has phase 0±2kπ,
K = 0,1, . . . , the numbers on the positive imaginary axis have
phase −π

2
± 2kπ, the numbers on the negative real axis have

phase −π ± 2kπ, the numbers on the positive imaginary axis
have phase − 3π

2
± 2kπ and so on.

We draw on the complex plane the curve described byÐÐÐ→
P(jω) for ω varying from 0+ (i.e. for ω → 0 from the left)
to +∞. Note that from the Bode plot (Figure 8) and since
P(−jω) = P∗(jω)

lim
ω→0+

∣P(jω)∣ = lim
ω→0+

1

ω
√

1 + ω2
= +∞,

lim
ω→0+

Arg{P(jω)} = lim
ω→0+

Arg{ 1

jω(jω + 1)} = −
π

2
,

lim
ω→+∞ ∣P(jω)∣ = lim

ω→+∞
1

ω
√

1 + ω2
= 0,

lim
ω→+∞Arg{P(jω)} = lim

ω→+∞Arg{ 1

jω(jω + 1)} = −π.

(20)

The curve described by
ÐÐÐ→
P(jω) for ω varying from 0+ to +∞

stems from P(0+) and approaches the origin with asymptotic
phase −π (see the fourth equation of (12) and Figure 8), re-
maining in the quadrants which correspond to phases between
π
2
± 2kπ and −π ± 2kπ (Figure 9). Recall that we stipulated

that a positive variation of the phase of
ÐÐÐ→
P(jω) corresponds to

a counterclockwise rotation on behalf of
ÐÐÐ→
P(jω). Note from

Figure 8 that the phase of
ÐÐÐ→
P(jω) for ω varying from 0+ to

+∞ decreases monotonically, therefore in Figure 9 the curve
does not change its clockwise rotation in going from P(0+)
to the origin.

The curve described by
ÐÐÐ→
P(jω) for ω varying from −∞ to

0− is obtained directly from the curve described by
ÐÐÐ→
P(jω) for

ω varying from 0+ to +∞. Indeed,

W (−jω) = 1

−jω(−jω + 1)

= −j(jω + 1)
ω(ω2 + 1) = ( ω − j

ω(ω2 + 1))
∗

= ( 1

jω(jω + 1))
∗
=W ∗(jω) (21)

Therefore, the curve described by
ÐÐÐ→
P(jω) for ω varying from

−∞ to 0 is obtained by drawing the symmetric curve with
respect to the real axis of the curve described by

ÐÐÐ→
P(jω) for

ω varying from 0 to +∞ (see Figure 9).
We obtain the Nyquist plot from Figure 9 by closing the

curve from P(0−) to P(0+) with a clockwise half tour around
0 (Figure 10). The number of counterclockwise tours (minus
the number of clockwise tours) around the point −1 + j0 on
behalf of the Nyquist plot of

ÐÐÐ→
P(jω) is 0. Since n+(p1) = 0,

by the Extended Nyquist criterion the closed-loop system is
asymptotically stable.

Exercize 1.5: Consider the system

P(s) = (s + 1)2
(s − 1)(s + 2)(s + 3)s (22)

The Bode plot of P(jω) is drawn in Figure 11. Clearly, P(s)
has a pole on the imaginary axis and n+(p) = 1. Moreover, it
is also clear from the Bode plot of P(jω) that P(jω) does
not cross the point −1+j0 (i.e. the point with magnitude 1 and
phase −π) for any ω ∈ (−∞,+∞). Therefore, by the Extended
Nyquist criterion the closed-loop system is asymptotically
stable if and only if the number of counterclockwise tours
(minus the number of clockwise tours) around the point −1+j0
on behalf of the Nyquist plot of

ÐÐÐ→
P(jω) is n+(p) = 1.

The polar plot (Figure 12) can be drawn from the Bode
plot as follows. As usual we stipulate that the numbers on the
positive real axis of the complex plane have phase 0 ± 2kπ,
K = 0,1, . . . , the numbers on the negative imaginary axis have
phase −π

2
± 2kπ, the numbers on the negative real axis have

phase −π ± 2kπ, the numbers on the positive imaginary axis
have phase − 3π

2
± 2kπ and so on.

We draw on the complex plane the curve described byÐÐÐ→
P(jω) for ω varying from 0+ (i.e. for ω → 0 from the left) to
+∞. Note that from the Bode plot (Figure 11)

lim
ω→0+

∣P(jω)∣ = +∞

lim
ω→0+

Arg{P(jω)} = −3π

2
lim
ω→+∞ ∣P(jω)∣ = 0

lim
ω→+∞Arg{P(jω)} = −π (23)

The curve described by
ÐÐÐ→
P(jω) for ω varying from 0+ to +∞

has the direction going from P(0+) to limω→+∞P(jω) = 0
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Figure 8. Bode diagrams of to P(s) = 1
s(s+1) . Figure 9. Polar plot of P(s) = 1

s(s+1) .

Figure 10. Nyquist plot of P(s) = 1
s(s+1) .

(see Figure 12) and approaches the origin with asymptotic
phase −π (see the fourth equation of (23) and Figure 11), re-
maining in the quadrants which correspond to phases between
−π

2
±2kπ and − 3π

2
±2kπ (Figure 12). Note from Figure 11 that

the phase of
ÐÐÐ→
P(jω) for ω varying from 0+ to +∞ increases

and finally decreases monotonically, therefore in Figure 12
the curve changes its rotation (from counterclockwise to
clockwise) in going from P(0+) to limω→+∞P(jω) = 0.

As usual, the curve described by
ÐÐÐ→
P(jω) for ω varying from

−∞ to 0 is obtained by taking the symmetric curve with
respect to the real axis of the curve described by

ÐÐÐ→
P(jω) for

ω varying from 0 to +∞ (see Figure 12).

We obtain the Nyquist plot from Figure 12 by closing the
curve from P(0−) to P(0+) with a clockwise half tour around
0. The number of counterclockwise tours (minus the number
of clockwise tours) around the point −1 + j0 on behalf of
the Nyquist plot of

ÐÐÐ→
P(jω) is −1. Since n+(p) = 1, by the

Extended Nyquist criterion the closed-loop system is unstable.

II. PROPORTIONAL AND DERIVATIVE FEEDBACK CONTROL

As we have already noticed, from the point of view of
stability the feedback interconnection with unitary feedback
corresponds to apply to the process a control action −y, i.e.
proportional to its output (proportional feedback). If the inter-
connection with unitary feedback is not asymptotically stable,
it is convenient to refer to more general proportional feedback
control actions like −Ky, where K is a real parameter. In
this case the Nyquist criterion can be applied to KP(s)
in place of P(s), by obtaining a qualitative analysis of the
stability of the feedback interconnection as a function of the
parameter K. Notice that increasing K > 0 in the product
KP(jω) corresponds to a radial expansion of the Nyquist
plot of P(jω) while decreasing K > 0 corresponds to its
radial contraction. On the other hand, decreasing K < 0 in
the product KP(jω) corresponds to a radial expansion of the
Nyquist plot of P(jω) with a clockwise rotation of π, while
increasing K < 0 corresponds to a radial contraction of the
Nyquist plot of P(jω) subject to a clockwise rotation by 180○.
Therefore, by varying K we modulate the radial extension of
the Nyquist plot of P(jω) and, therefore, the relative position
between the point −1+0j and the intersections of the Nyquist
plot of P(jω) with the real negative axis. More simply, one
can think of keeping unaltered the Nyquist plot of P(jω)
(therefore, the intersections of the Nyquist plot of P(jω) with
the real negative axis) and vary the relative position of the
point −1 + 0j with respect to the intersections of the Nyquist
plot of P(jω) with the real negative axis. In particular, letting
K vary from 0 to ∞ amounts to letting the −1+0j vary on the
negative real axis from −∞ to 0 (the Nyquist plot of P(jω)
is left unaltered) and letting K vary from −∞ to 0 amounts
to letting the −1 + 0j vary on the positive real axis from 0 to
+∞ (the Nyquist plot of P(jω) is left unaltered). For each
different position of the point −1 + 0j on the real axis, we
apply each time the Nyquist criterion. Clearly, the number of
counterclockwise tours of −1 + 0j will vary according to the
relative position of the point −1 + 0j and the Nyquist plot of
P(jω). This allows a qualitative discussion of the stability of
the feedback interconnection according to the values of K.
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Figure 11. Bode diagrams of to P(s) =
(s+1)2

(s−1)(s+2)(s+3)s . Figure 12. Polar plot of P(s) = (s+1)2
(s−1)(s+2)(s+3)s .

Figure 13. Bode diagrams of to P(s) = 1
s−10 . Figure 14. Nyquist plot of P(s) = 1

s−10 .

Figure 15. Bode diagrams of to P(s) = 1
(s+1)2(s+2) . Figure 16. Polar plot of P(s) = 1

(s+1)2(s+2) .
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Exercize 2.1: (High gain feedback control). Consider the
system

P(s) = 1

s − 10
(24)

The Bode plot of P(jω) is drawn in Figure 13 and the Nyquist
plot in Figure 14. The number of counterclockwise tours
around the point −1+j0 on behalf of the Nyquist plot of

ÐÐÐ→
P(jω)

is 0. Since n+(p) = 1, by the Simplified Nyquist criterion
the closed-loop system is unstable, therefore, P cannot be
stabilized with a unitary proportional feedback control action.

If we use a proportional feedback control action u = −Ky,
with real K, in order to investigate to what extent stabiliity of
the closed-loop system can be achieved by increasing ∣K ∣ we
apply the Nyquist criterion to

P(s) = K

s − 10
(25)

in place of (24). To this aim, let us go back to the Nyquist plot
of P in Figure 14. Notice that the plot crosses the negative real
axis at the point −0.1. If we imagine to let the point −1 + 0j
vary on the negative real axis from −∞ to 0, we change the
relative position of the point −1 + 0j and the crossing point
−0.1. Note also that there is a value of K, say K ∶=KA such
that the point −1 + 0j and the crossing point −0.1 will be
coincident. This corresponds to the case in which for some
value of K = KA the Nyquist plot of KP crosses the point
−1+0j. Therefore, for this value of K the closed-loop system
is not asymptotically stable. For K ∈ (0,KA) the Nyquist plot
of KP crosses the negative real axis leaving the point −1+0j
to its left, while for K ∈ (KA,+∞) the Nyquist plot of KP
crosses the negative real axis leaving the point −1 + 0j to its
right. In the first situation, we see from Figure 17 that the
number of counterclockwise tours of −1+0j is 0 while in the
second situation the number of counterclockwise tours around
−1 + 0j is 1. Since n+(p) = 1, for K ∈ (0,KA) the closed-
loop system is unstable, while for K ∈ (KA,+∞) the closed-
loop system is asymptotically stable. Therefore, by increasing
the amplitude K (beyond KA) of the proportional feedback
control action we stabilize the process. On the other hand, for
K < 0 the point −1+0j is positioned on the positive real axis
and the number of counterclockwise tours around −1+0j is −1,
therefore the closed-loop system is not asymptotically stable.
Note that the closed-loop system with proportional control
action u = −Ky is

W (s) = KP(s)
1 +KP(s) = K

s − 10 +K (26)

The pole of the closed-loop system is s = 10 − K which
is negative for K > 10. Therefore, KA = 10. The number
KA represents the critical value of K for which the closed-
loop system change its stability behaviour depending from the
values of K.

Exercize 2.2: (Low gain feedback control). Consider the
system

P(s) = 1

(s + 1)2(s + 2) (27)

The Bode plot of P(jω) is drawn in Figure 15 and the Nyquist
plot in Figure 16. The number of counterclockwise tours
around the point −1+j0 on behalf of the Nyquist plot of

ÐÐÐ→
P(jω)

is 0. Since n+(p) = 0, by the Simplified Nyquist criterion
the closed-loop system is asymptotically stable and P can be
stabilized with a unitary proportional feedback control action.
However, if we consider the amplified process 20P(jω), we
discover from the Nyquist plot and the Simplified Nyquist
criterion that P cannot be stabilized with a unitary proportional
feedback control action. This means that the stability of the
closed-loop system is not compatible with increasing values
of the proportional control action.

If we use a proportional feedback control action u = −Ky,
with real K, in order to investigate to what extent stability of
the closed-loop system can be maintained by increasing ∣K ∣
we apply the Nyquist criterion to KP(jω). We will see that
it is not possible to increase ∣K ∣ without losing the property
of the closed-plop stability. To this aim, let us go back to the
Nyquist plot of P in Figure 16. Notice that the plot crosses the
real axis at the points −0.05 and 0.5. If we imagine to let the
point −1+0j vary on the real axis from −∞ to +∞, we change
the relative position of the point −1 + 0j and the crossing
points −0.05 and 0.5. Note also that there are two values of
K, say KA > 0 and KB < 0, such that the point −1 + 0j and
the crossing point −0.05 (resp. 0.5) will be coincident. This
corresponds to the case in which for some values of K the
Nyquist plot of KP crosses the point −1 + 0j. Therefore, for
these values of K the closed-loop system is not asymptotically
stable. For K ∈ (0,KA) the Nyquist plot of KP crosses
the negative real axis leaving the point −1 + 0j to its left,
while for K ∈ (KA,+∞) the Nyquist plot of KP crosses the
negative real axis leaving the point −1 + 0j to its right. In
the first situation, we see from Figure 16 that the number of
counterclockwise tours of −1 + 0j is 0 while in the second
situation the number of counterclockwise tours of −1 + 0j is
−1. Since n+(p) = 0, for K ∈ (0,KA) the closed-loop system
is asymptotically stable, while for K ∈ (KA,+∞) the closed-
loop system is unstable. Therefore, by increasing the amplitude
K (below KA) of the proportional feedback control action we
stabilize the process. For K ∈ (−∞,KB) the Nyquist plot of
KP crosses the negative real axis leaving the point −1 + 0j
to its right, while for K ∈ (KB ,0) the Nyquist plot of KP
crosses the negative real axis leaving the point −1 + 0j to
its left. In the first situation, we see from Figure 16 that the
number of counterclockwise tours of −1 + 0j is −1 while in
the second situation the number of counterclockwise tours of
−1 + 0j is 0. Since n+(p) = 0, for K ∈ (−∞,KB) ∪ (0,KA)
the closed-loop system is asymptotically stable, while for other
vaues of K ∈ (KB ,0) ∪ (−∞,KB) the closed-loop system is
unstable.

Note that the closed-loop system with proportional control
action u = −Ky is

W (s) = KP(s)
1 +KP(s) = K

K + (s + 1)2(s + 2) (28)

The poles of the closed-loop system are the roots of w(s) =
K + (s+ 1)2(s+ 2). Therefore, we can study how these roots
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Figure 17. Nyquist plot of P(s) =K 1
s−10 .

Figure 18. Bode diagrams of to P(s) = s+1
s2(s+10) . Figure 19. Polar plot of P(s) = s+1

s2(s+10) .

vary with K by calling upon the Routh criterion. The Routh
table generated by w(s) is

r(3)

r(2)

r(1)

r(0)

1 5
4 2 +K

−K + 18
K + 2

(29)

Note that the values of K for which the elements of the first
column are zero determine the values of KA and KB . We can
discuss the number of variations and permanencies in the first
column of the Routh table as follows. First, we discuss the
sign of each r(j)1 , j = 1, . . . ,3:

● r
(0)
0 = 0 for K = −2, r(1)1 = 0 for K = 18

● r
(3)
1 and r(2)1 are positive for all k

● r
(1)
1 > 0 for K < 18

● r
(1)
0 > 0 for K > −2

These results can be visualized in the following table.
−2 18

r(3)

r(2)

r(1)

r(0)

Therefore, we have
● for K = −2 and K = 18 the table is not regular
● for K < −2 the table is regular and NV (p) = 1 and
NP (p) = 2

● for K ∈ (−2,18) the table is regular and NV (p) = 0 and
NP (p) = 3

● for K > 18 the table is regular and NV (p) = 2 and
NP (p) = 1

We conclude
● for K < −2 the table is regular and NV (p) = 1 and
NP (p) = 2 ⇒ p(λ) is not Hurwitz

● for K ∈ (−2,18) the table is regular and NV (p) = 0 and
NP (p) = 3 ⇒ p(λ) is Hurwitz

● for k > 18 the table is regular and NV (p) = 2 and
NP (p) = 1 ⇒ p(λ) is not Hurwitz

It is clear that KA = 18 and KB = −2, which are the critical
values of K for which te closed-loop system changes its
stability behaviour.

Exercize 2.3: (Conditionally low/high gain feedback con-
trol). Consider the system

P(s) = (s + 5)2
s(s + 1)(s + 0.1)(s + 75)2 (30)
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Figure 20. Nyquist plots of a), b), c), d) and e) of exercize 2.5 (for K = 1).

and discuss the stability of the closed-loop system under the
action of a proportional control action u = −Ky, with K ∈ R.

From the Nyquist plot we have for some K1,K2K3 > 0:

● if 0 < K < K1 the number of counterclockwise tours on
behalf of P(jω) around −1 + 0j is 0

● if K1 < K < K2 the number of counterclockwise tours
on behalf of P(jω) around −1 + 0j is −2

● if K2 < K < K3 the number of counterclockwise tours
on behalf of P(jω) around −1 + 0j is 0

● if K3 < K < +∞ the number of counterclockwise tours
on behalf of P(jω) around −1 + 0j is −2

● if K < 0 the number of counterclockwise tours on behalf
of P(jω) around −1 + 0j is −1

We conclude that since n+(p) = 0

● if 0 < K < K1 or K2 < K < K3 the closed-loop system
is asymptotically stable

● for any other value of K the closed-loop system is not
asymptotically stable.

The values of K1,K2,K3 can be obtained from the denomi-
nator of the closed-loop system W(s) = KP(s)

1+KP(s) which is

DEN(W(s)) = NUM(1 +KP(s))
= s5 + 151.1s4 + 5790.1s3

+(6202.5 +K)s2 + (562.5 + 10K)s + 25K (31)

by applying the Routh criterion. The values of K1,K2,K3 are
the values of K for which we have a change in the number
of sign variations in the first column of the Routh table:

K1 ≈ 42.37, K2 ≈ 11063, K3 ≈ 644973. (32)

Exercize 2.4: (Derivative plus proportional feedback con-
trol). Consider the double integrator

P(s) = 1

s2
(33)

The Nyquist plot crosses the point −1+ 0j and, therefore, the
closed-loop system with unitary feedback is not asymptotically



12

Figure 21. Nyquist plots of a), b) of exercize 2.6 (for K = 1). For ex. a) it is also shown the path for s = jω.

stable. Even the closed-loop system with proportional control
action u = −Ky is not asymptotically, since The Nyquist plot
crosses the point −1 + 0j. Therefore, the double integrator is
not stabilizable with proportional feedback action. Consider a
more general feedback control action

u = s + 1

s + 10
y (34)

This control action consists into the sum of two terms s
s+10y

and 1
s+10y, which approximately correspond to a derivative

(i.e. 9y) and, respectively, a proportional action (i.e. y): for
reasonable low frequencies the Bode diagram of s

s+10 and 1
s+10

is approximately that of s and 1 (this approximation is even
better if the time constant of the pole is decreased). The Bode
plot of P(jω) is drawn in Figure 18 and the Nyquist plot in
Figure 19. The number of counterclockwise tours around the
point −1+j0 on behalf of the Nyquist plot of

ÐÐÐ→
P(jω) is 0. Since

n+(p) = 0, by the Extended Nyquist criterion the closed-loop
system is asymptotically stable, therefore, P can be stabilized
with a derivative plus proportional feedback control action.
The stability behaviour does not change if we increase the

proportional control action K: this can be seen as in the above
examples.

Exercize 2.5: Draw the Nyquist plots of the following P(s)
(see Figure 20) and discuss the stability of the closed-loop
system for K ∈ R:

a)P(s) = K

1 + τs , τ > 0,

b)P(s) = K

(1 + τ1s)(1 + τ2s)
, τ1, τ2 > 0,

c)P(s) = K

1 − τs , τ > 0,

d)P(s) = K

(1 − τ1s)(1 − τ2s)
, τ1, τ2 > 0,

e)P(s) = K

(1 − τ1s)(1 + τ2s)
, τ1 > τ2 > 0, (35)

Exercize 2.6: Draw the Nyquist plots of the following P(s)
(see Figure 21 for a), b), Figure 22 for c), d) and Figure 23
for e), f)) and discuss the stability of the closed-loop system
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Figure 22. Nyquist plots of c), d) of exercize 2.6 (for K = 1).

for K ∈ R:

a)P(s) = K(1 − τs)
s2

, τ > 0,

b)P(s) = K

s2(1 − τs) , τ > 0,

c)P(s) = K(1 + τ1s)
s2(1 + τ2s)

, τ1 > τ2 > 0,

d)P(s) = K(1 + τ1s)
s2(1 + τ2s)

, τ2 > τ1 > 0,

e)P(s) = K(1 + τ1s)
s2(1 + τ2s)(1 + τ3s)(1 + τ4s)

,

τ1 > τ2 > τ3 > τ4 > 0,

f)P(s) = K(1 + τ1s)
s(τ2s − 1) , τ1 > τ2 > 0, (36)

III. STABILITY MARGINS: PHASE AND GAIN MARGINS

When the Nyquist plot has a regular behaviour in the sense
that the curve of ∣P(jω)∣ has a monotonically decreasing
behaviour as a function of ω and P(s) has no poles in C+

(i.e. n+(p) = 0), from the Nyquist plot of P it is possible to

extract information not only on the stability of the closed-loop
system P but also on its sensitivity to move towards instability
with respect to variations of the proportional control action
K. Clearly, more the Nyquist plot of P is far from encircling
the point −1 + 0j more the closed-loop system is far from
instability, more the Nyquist plot of P is close to encircling
the point −1 + 0j more the closed-loop system is close to
instability. By increasing (resp. decreasing) the proportional
control action K the Nyquist plot of KP is subject to a
radial expansion (resp. contraction) and for some value of K it
crosses the point −1+0j, which corresponds to some poles of
the closed-loop system on the imaginary axis. By restricting
ourselves to the cases in which the Nyquist plot of P has a
regular behaviour, it is useful to characterize to what extent
the closed-loop system remains asymptotically stable under
variations of the gain K through some stability margins.

Definition 3.1: The gain margin mg is the ratio
1

∣P(jω○)∣
where ω○ ∶ Arg{P(jω○)} = −π.

The gain margin is given in dB: mg(dB) = −∣P(jω○)∣dB .
Moreover, the gain margin mg(dB) is positive when the
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Figure 23. Nyquist plots of e), f) of exercize 2.6 (for K = 1).

Figure 24. Phase and gain margins on the Bode diagrams of to P(s) = 1
s(s+1)(s+2) .
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Figure 25. Phase and gain margins on polar plot of P(s) = 1
s(s+1)(s+2) .

Nyquist plot of P(jω) crosses the negative real axis leaving
the point −1 + 0j to its left (∣P(jω○)∣ < 1) and negative
when the Nyquist plot of P(jω) crosses the negative real axis
leaving the point −1+ 0j to its right (∣P(jω○)∣ > 1). The gain
margin gives a quantitative evaluation of how close, on the
negative real axis, are the point −1+0j and the point at which
P(jω) crosses the negative real axis itself.

Definition 3.2: The cross-over frequency ωt is the frequency
ωt ∶ ∣P(jωt)∣ = 1.

Definition 3.3: The phase margin mf (or mϕ) is defined as
Arg{P(jωt)} − (−π) = Arg{P(jωt)} + π.
The phase margin is given in degrees or radiant. Moreover,
the phase margin is negative when the Nyquist plot of P(jω)
crosses inward the circumference with radius 1 and center at 0
leaving the point −1 + 0j to its right (Arg{P(jωt)} < −180○)
and positive when the Nyquist plot of P(jω) crosses inward
the circumference with radius 1 and center at 0 leaving the
point −1 + 0j to its left (Arg{P(jωt)} > −180○). The phase
margin gives a quantitative evaluation of how close are, on the
circumference with radius 1 and center at 0, the point −1+0j
and the point at which P(jω) crosses the circumference itself.

Gain and phase margins are easily calculated from the Bode
and the Nyquist plot.

Exercize 3.1: Consider the system

P(s) = 1

s(s + 1)(s + 2) (37)

The phase margin is Arg{P(jω○)}− (−π) for ωt ∶ ∣P(jωt)∣ =
1, i.e. ωt ≈ 0.44 rad/sec and Arg{P(jω○)} − (−π) = 53○ (see
Figure 24). The gain margin mg is −∣P(jω○)∣dB for ω○ ∶
Arg{P(jω○)} = −π, i.e. ω○ ≈ 1.45 rad/sec and −∣P(jω○)∣dB =
15.7dB (see Figure 24). In Figure 25 gain and phase margins
are graphically pointed out.


