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Notes on Linear Control Systems: Module III
Stefano Battilotti

Abstract—Laplace (and inverse Laplace) transformation and
its properties. Differential models in Laplace domain. Modes,
eigenvalues and poles. Transfer functions. Residuals theorem and
decomposition of rational functions in simple fractional terms.
Calculus of forced and unforced state and output responses in
Laplace domain.

I. THE MATHEMATICAL MODEL IN LAPLACE DOMAIN

It is useful to consider a state space model, described by
differential equations, from a different perspective using the
so called Laplace transform (appendix A). The reasons for
this change of perspective is both for the technical advantages
the Laplace transform has over the time analysis and for
its relevance and direct application in an experimental setup,
which leads to the so called armonic or frequency analysis.
To this aim, we want to obtain the Laplace transform of the
system

9xptq “ Axptq `Buptq,

yptq “ Cxptq `Duptq,

In particular, on account of proposition A.2 and the linearity
property (see the appendix) of the Laplace transform

Lr
d

dt
xptqspsq “ sLrxptqspsq ´ x0 “ LrAxptq `Buptqspsq

“ ALrxptqspsq `BLruptqspsq

Therefore

psI ´AqLrxptqspsq “ x0 `BLruptqspsq

so that

Lrxptqspsq “ psI ´Aq´1x0 ` psI ´Aq
´1BLruptqspsq (1)

Recalling the form of the solution xptq, on account of propo-
sition A.3 and the linearity property of the Laplace transform

Lrxptqspsq “ LreAtx0 `

ż t

0

eApt´τqBuτdτ spsq

“ LreAtspsqx0 ` LreAtBspsqLruptqspsq

“ LrΦptqspsqx0 ` LrHptqspsqLruptqspsq (2)

By comparison of (1) and (2)

psI ´Aq´1x0 ` psI ´Aq
´1BLruptqspsq

“ LrΦptqspsqx0 ` LrHptqspsqLruptqspsq
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for all input functions u and x0 P Rn. It follows that

LrΦptqspsq “ psI ´Aq´1

LrHptqspsq “ psI ´Aq´1B (3)

The matrix LrHptqspsq is known as input-to-state (I/S) transfer
function matrix. Similarly, by linearity of the Laplace trans-
form and (2)

Lryptqspsq “ LrCxptq `Duptqspsq

“ CLrxptqspsq `DLruptqspsq “ CpLrΦptqspsqx0

`LrHptqspsqLruptqspsqq `DLruptqspsq

“ CLrΦptqspsqx0 ` rCLrHptqspsq `DsLruptqspsq

“ CpsI ´Aq´1x0 ` rCpsI ´Aq
´1B `DsLruptqspsq

(4)

and recalling the form of the output yptq

Lryptqspsq “ LrCeAtx0

`

ż t

0

pCeApt´τqB `Dδδδ
p0q
t´τ quτdτ spsq

“ LrCeAtspsqx0 ` LrCeAtB `Dδδδp0qptqspsqLruptqspsq

“ LrΨptqspsqx0 ` LrWptqspsqLruptqspsq (5)

By comparison of (4) and (5)

CpsI ´Aq´1x0 ` rCpsI ´Aq
´1B `DsLruptqspsq

“ LrΨptqspsqx0 ` LrWptqspsqLruptqspsq

for all all input functions u and x0 P Rn. It follows that

LrΨptqspsq “ CpsI ´Aq´1

LrWptqspsq “ CpsI ´Aq´1B `D (6)

The matrix LrWptqspsq is known as input-to-output (I/O)
transfer function matrix. Since

Lryptqspsq “ LrΨptqspsqx0 ` LrWptqspsqLruptqspsq

clearly

Lryp0qpt, x0qspsq “ LrΨptqspsqx0

Lrypuqpt,uqspsq “ LrWptqspsqLruptqspsq (7)

Similarly,

Lrxp0qpt, x0qspsq “ LrΦptqspsqx0

Lrxpuqpt,uqspsq “ LrHptqspsqLruptqspsq (8)
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II. RESIDUALS METHOD FOR DECOMPOSITION OF
RATIONAL FUNCTIONS

As it results from (7) and (8) it is possible to calculate the
state and output responses in the Laplace domain by means of
the Laplace transforms LrΦptqspsq, LrHptqspsq, LrΨptqspsq
and LrWptqspsq together with the Laplace transform of the
input function. The state and output responses in the time
domain are obtained as inverse Laplace transforms. For ex-
ercise, with an I/O transfer function LrWptqspsq “ 1

s`1 the
forced output response to the unit step input uptq “ δδδp´1q

ptq
(appendix A1) is in Laplace domain

Lrypuqpt,uqspsq “ LrWptqspsqLruptqspsq “
1

sps` 1q

and in the time domain is

L´1r
1

sps` 1q
sptq “ pypuqpt,uqq` (9)

where pypuqpt,uqq` denotes the signal associated to ypuqpt,uq
(appendix A7). The inverse Laplace transform of 1

sps`1q can-
not be obtained from known transforms: we know the inverse
Laplace transform of 1

s and 1
s`1 separately but not of their

product. We want to find a method for calculating the inverse
Laplace transform of rational functions, which are the most
common functions we have to deal with in the calculation of
an inverse Laplace transform.

Let Gpsq be a pnˆmq matrix of proper rational functions.
We recall that a rational function gpsq has the form

gpsq “
apsq

bpsq

where apsq and bpsq are polynomials and degras and deg rbs
denote the degree of apsq and, respectively, bpsq. The rational
function Gpsq is strictly proper if degras ă degras, proper if
degpaq ď degrbs and improper if degras ą degrbs. We want
to study a method for finding a pnˆmq matrix Qptq such that

Qptq “ L´1rGpsqsptq. (10)

First of all, we can always find a constant pnˆmq matrix G0

such that Gpsq “ G0`G1psq and G1psq is a pnˆmq matrix
of strictly proper rational functions (either use the comparison
method or divide the numerator of each element of Gpsq by
its denominator). For instance, the function

s` 2

s` 1
(11)

can be decomposed as

s` 2

s` 1
“ 1`

1

s` 1
(12)

This can be done by using a comparison method or, alterna-
tively, Ruffini’s method. With a comparison method, for some
reals α, β to be determined we have

s` 2

s` 1
“ α`

β

s` 1
(13)

Therefore,

s` 2

s` 1
“ α`

β

s` 1
“
αs` α` β

s` 1
(14)

and by comparing the coefficients of the corresponding powers
of s in the right and left-hand polynomials of (14) we obtain
the equations in the unknowns α, β

1 “ α

2 “ α` β (15)

i.e. α “ 1 and β “ 1.
It is easy to see that any strictly proper Gpsq can be always

written as

Gpsq “
Gpsq

mpsq
(16)

where Gpsq is a pn ˆ mq matrix of polynomial functions
and mpsq is the m.c.m. of all the polynomials bi,jpsq, where
bi,jpsq is the denominator of rGpsqsi,j :“

ai,jpsq
bi,jpsq

, the pi, jq
element of the matrix Gpsq. We can assume that mpsq has
the form

mpsq “
r
ź

j“1

ps´ λjq
µj (17)

where λ1, . . . , λr are the distinct roots of mpsq and µj denotes
the multiplicity of λj . The numbers λ1, . . . , λr are the poles
of Gpsq. We want to prove the following result.

Proposition 2.1: (Residuals theorem). Let Gpsq be a pnˆmq
matrix of strictly proper rational functions and let λ1, . . . , λr be
its distinct poles with multiplicity µ1, . . . , µr. Then

Gpsq “
r
ÿ

i“1

µi
ÿ

j“1

Ri,j
ps´ λiqj

(18)

where Ri,j is the so-called residual of order j associated to the
pole λi of Gpsq defined as

Ri,j :“
1

pµi ´ jq!
lim
sÑλi

dµi´j

dsµi´j
rGpsqps´ λiq

µis (19)

Proof (can be omitted). The decomposition (18) for some
matrices Ri,j to be determined follows from the fact that λi
is a pole of Gpsq with multiplicity µi. We have

Gpsqps´ λiq
µi “

r
ÿ

h“1

µh
ÿ

k“1

Rh,k
ps´ λhqk

ps´ λiq
µi (20)

Moreover, since

lim
sÑλi

dµi´j

dsµi´j
ps´ λiq

µi

ps´ λhqk
“ 0

for all h ‰ i, h, i “ 1, . . . , r and j “ 1, . . . , µi

lim
sÑλi

dµi´j

dsµi´j
rGpsqps´ λiq

µis

“ lim
sÑλi

r
ÿ

h“1

µh
ÿ

k“1

Rh,k
dµi´j

dsµi´j
ps´ λiq

µi

ps´ λhqk

“ lim
sÑλi

µi
ÿ

k“1

Ri,k
dµi´j

dsµi´j
ps´ λiq

µi´k

and

lim
sÑλi

dµi´j

dsµi´j
ps´ λiq

µi´k
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for all k ‰ j and j, k “ 1, . . . , µi,

lim
sÑλi

µi
ÿ

k“1

Ri,k
dµi´j

dsµi´j
ps´ λiq

µi´k

“ lim
sÑλi

µi
ÿ

k“1

Ri,kpµi ´ kqpµi ´ k ´ 1q ¨ ¨ ¨

¨ ¨ ¨ p´k ` j ` 1qps´ λiq
´k`j

“ Ri,jpµi ´ jqpµi ´ j ´ 1q ¨ ¨ ¨ 2 ¨ 1 “ Ri,jpµi ´ jq!

which proves formula (19). �
Recall that (appendix A4)

Lr
tj´1
`

pj ´ 1q!
spsq “

1

sj
(21)

and (frequency translation property in appendix A7)

Lr
eλittj´1

`

pj ´ 1q!
spsq “

1

ps´ λiqj
(22)

Therefore, in view of (18)

Qptq “
r
ÿ

i“1

µi
ÿ

j“1

Ri,je
λit
`

tj´1
`

pj ´ 1q!
(23)

is such that Gpsq “ LrQptqspsq and therefore Qptq solves our
problem (10).

Exercize 2.1: Find Qptq such that Qptq “ L´1rGpsqsptq
where Gpsq :“ 10

sps`1q .
We have from (18)

Gpsq “
10

sps` 1q
“
R1

s
`

R2

s` 1
(24)

and

R1 “ lim
sÑ0

Gpsqs “ 10

R2 “ lim
sÑ´1

Gpsqps` 1q “ ´10.

Therefore,

Gpsq “
s

ps´ 1q2
“

10

s
´

10

s` 1
(25)

and using the linearity property of the Laplace transform and
the frequency translation property (appendix A7)

Qptq “ L´1rLrδδδp´1q
ptqsps´ 1qsptq ` L´1rLrt`sps` 1qsptq

“ 10δδδp´1q
ptq ´ 10et` “ 10δδδp´1q

ptqr1` et`s.Ÿ (26)

Exercize 2.2: Find Qptq such that Qptq “ L´1rGpsqsptq
where Gpsq :“ s

ps´1q2 .
We have from (18)

Gpsq “
s

ps´ 1q2
“

R1

s´ 1
`

R2

ps´ 1q2
(27)

and

R2 “ lim
sÑ1

Gpsqps´ 1q2 “ 1

R1 “ lim
sÑ1

d

ds
pGpsqps´ λiq

µiq “ 1

Therefore,

Gpsq “
s

ps´ 1q2
“

1

s´ 1
`

1

ps´ 1q2
(28)

and using the linearity property of the Laplace transform and
the frequency translation property (appendix A7)

Qptq “ L´1rLrδδδp´1q
ptqsps´ 1qsptq ` L´1rLrt`sps´ 1qsptq

“ et` ` e
t
`t` “ et`r1` t`s.Ÿ (29)

Exercize 2.3: Find the function Qptq such that Qptq “
L´1rGpsqsptq where Gpsq :“ s`1

s2`s`1 .
We have from (18)

Gpsq “
s` 1

s2 ` s` 1
“

R1

s` 1
2 ` j

?
3
2

`
R2

s` 1
2 ´ j

?
3
2

and

R1 “ lim
sÑ´ 1

2´j
?

3
2

rGpsqps`
1

2
` j

?
3

2
qs

“

1
2 ´ j

?
3
2

´j
?
3
“

1

2
` j

?
3

6

R2 “ lim
sÑ´ 1

2`j
?

3
2

rGpsqps`
1

2
´ j

?
3

2
qs

“
1

2
´ j

?
3

6
“ R˚1

Therefore,

Gpsq “
s` 1

s2 ` s` 1
“

1
2 ` j

?
3
6

s` 1
2 ` j

?
3
2

`

1
2 ´ j

?
3
6

s` 1
2 ´ j

?
3
2

and using the linearity and frequency translation properties of
the Laplace transform

Qptq “ L´1r

1
2 ` j

?
3
6

s` 1
2 ` j

?
3
2

sptq ` L´1r

1
2 ´ j

?
3
6

s` 1
2 ´ j

?
3
2

sptq

“ p
1

2
` j

?
3

6
qL´1rLrδδδp´1q

ptqsps`
1

2
` j

?
3

2
qsptq

`p
1

2
´ j

?
3

6
qL´1rLrδδδp´1q

ptqsps`
1

2
´ j

?
3

2
qsptq

“ p
1

2
` j

?
3

6
qe
p´ 1

2´j
?

3
2 qt

` ` p
1

2
´ j

?
3

6
qe
p´ 1

2`j
?

3
2 qt

`

“ e´
t
2 rp

1

2
` j

?
3

6
qe
´j

?
3

2 t
` ` p

1

2
´ j

?
3

6
qe
j
?

3
2 t

` s

“ e´
t
2

´

p
1

2
` j

?
3

6
qpcos`p

?
3

2
tq ´ j sin`p

?
3

2
tqq

`p
1

2
´ j

?
3

6
qpcos`p

?
3

2
tq ` j sin`p

?
3

2
tqq

¯

“ e´
t
2

´

cos`p

?
3

2
tq `

?
3

3
sin`p

?
3

2
tq
¯

(30)

Note that for obtaining the inverse transform of second order
functions Gpsq with complex conjugate poles, alternatively it
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is possible to proceed as follows. Rewrite

Gpsq “
s` 1

s2 ` s` 1
“

s` 1
2 `

1
2

ps` 1
2 q

2 ` 3
4

“
s` 1

2

ps` 1
2 q

2 ` 3
4

`

1
2

ps` 1
2 q

2 ` 3
4

“
s` 1

2

ps` 1
2 q

2 ` 3
4

`
1
?
3

?
3
2

ps` 1
2 q

2 ` 3
4

“ Lrcos`p

?
3

2
tqsps`

1

2
q `

1
?
3
Lrsin`p

?
3

2
tqsps`

1

2
q

Therefore, using the inverse transforms of sinus and cosinus
and the frequency translation property of the Laplace trans-
form

Qptq “ L´1r
s` 1

2

ps` 1
2 q

2 ` 3
4

sptq ` L´1r
1
?
3

?
3
2

ps` 1
2 q

2 ` 3
4

sptq

“ L´1r
s` 1

2

ps` 1
2 q

2 ` 3
4

sptq `
1
?
3
L´1r

?
3
2

ps` 1
2 q

2 ` 3
4

sptq

“ L´1rLrcos`p

?
3

2
tqsps`

1

2
qsptq

`
1
?
3
L´1rLrsin`p

?
3

2
tqsps`

1

2
qsptq

“ e
´ t

2
` rcosp

?
3

2
tq `

?
3

3
sinp

?
3

2
tqs.Ÿ (31)

Exercize 2.4: Find a function Qptq such that Qptq “

L´1rGpsqsptq where

Gpsq :“
1

ps´ 3qps` 2q

ˆ

s´ 2 4
1 s` 1

˙

We have from (18)

Gpsq “
1

ps´ 3qps` 2q

ˆ

s´ 2 4
1 s` 1

˙

“
R1

s´ 3
`

R2

s` 2
(32)

and

R1 “ lim
sÑ3

pGpsqps´ 3qq “

ˆ

1
5

4
5

1
5

4
5

˙

R2 “ lim
sÑ´2

pGpsqps` 2qq “

ˆ

4
5 ´ 4

5
´ 1

5
1
5

˙

(33)

Therefore,

Gpsq “

ˆ

4
5 ´ 4

5
´ 1

5
1
5

˙

s´ 3
`

ˆ

4
5 ´ 4

5
´ 1

5
1
5

˙

s` 2
(34)

and the linearity and frequency translation properties of the
transform

Qptq “ L´1r

ˆ

4
5 ´ 4

5
´ 1

5
1
5

˙

s´ 3
sptq ` L´1r

ˆ

4
5 ´ 4

5
´ 1

5
1
5

˙

s` 2
sptq

“

ˆ

4
5 ´ 4

5
´ 1

5
1
5

˙

L´1rLrδδδp´1q
ptqsps´ 3qsptq

`

ˆ

4
5 ´ 4

5
´ 1

5
1
5

˙

L´1rLrδδδp´1q
ptqsps` 2qsptq

“

ˆ

4
5 ´ 4

5
´ 1

5
1
5

˙

e3t` `

ˆ

4
5 ´ 4

5
´ 1

5
1
5

˙

e´2t
` .Ÿ (35)

Exercize 2.5: Calculate xp0qpt, x0q with A “

ˆ

2 ´1
´2 3

˙

and x0 “
ˆ

1
1

˙

.

We have

LrΦptqspsq “ psI ´Aq´1 “

ˆ

s´ 2 1
2 s´ 3

˙´1

“
1

s2 ´ 5s` 4

ˆ

s´ 3 ´1
´2 s´ 2

˙

(36)

Since s2 ´ 5s` 4 “ ps´ 4qps´ 1q from (18)

psI ´Aq´1 “
1

ps´ 4qps´ 1q

ˆ

s´ 3 ´1
´2 s´ 2

˙

“
R1

s´ 4
`

R2

s´ 1
(37)

and

R1 “ lim
sÑ4

ppsI ´Aq´1ps´ 4qq “

ˆ

1
3 ´ 1

3
´ 2

3
2
3

˙

R2 “ lim
sÑ1

ppsI ´Aq´1ps´ 1qq “

ˆ

2
3

1
3

2
3

1
3

˙

(38)

Therefore,

psI ´Aq´1 “

ˆ

1
3 ´ 1

3
´ 2

3
2
3

˙

s´ 4
`

ˆ

2
3

1
3

2
3

1
3

˙

s´ 1
(39)

and the linearity and frequency translation properties of the
transform

eAt` “ L´1rpsI ´Aq´1sptq

“ L´1r

ˆ

1
3 ´ 1

3
´ 2

3
2
3

˙

s´ 4
sptq ` L´1r

ˆ

2
3

1
3

2
3

1
3

˙

s´ 1
sptq

“

ˆ

1
3 ´ 1

3
´ 2

3
2
3

˙

L´1rLrδδδp´1q
ptqsps´ 4qsptq

`

ˆ

2
3

1
3

2
3

1
3

˙

L´1rLrδδδp´1q
ptqsps´ 1qsptq

“

ˆ

1
3 ´ 1

3
´ 2

3
2
3

˙

e4t` `

ˆ

2
3

1
3

2
3

1
3

˙

et` (40)

The unforced state response ensuing from x0 is

xp0qpt, x0q “ eAt` x0

“

ˆ

1
3 ´ 1

3
´ 2

3
2
3

˙ˆ

1
1

˙

e4t` `

ˆ

2
3

1
3

2
3

1
3

˙ˆ

1
1

˙

et`

“

ˆ

1
1

˙

et`.Ÿ (41)
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Exercize 2.6: Calculate the forced output response with

W psq “
s2 ` 7s` 1

s2 ` 5s` 6

and input functionuptq :“ p1 ` 2 sinp2tqqδδδp´1q
ptq. Using the

linearity and time translation properties of the transform

Lruptqspsq “
1

s
`

4

s2 ` 4
“
s2 ` 4s` 4

sps2 ` 4q
(42)

Therefore,

ypsq “W psqupsq “
s2 ` 7s` 1

s2 ` 5s` 6

s2 ` 4s` 4

sps2 ` 4q
(43)

Using the residuals theorem

Gpsq “
s2 ` 7s` 1

s2 ` 5s` 6

s2 ` 4s` 4

sps2 ` 4q

“
R1

s` 3
`

R2

s` 2
`
R3

s
`
Ds` E

s2 ` 4
(44)

where R1, R2 and R3 can be computed with the residuals’
formula and D and E can be computed with comparison
method (see exercize 2.3). By the linearity and frequency
translation properties of the transform

L´1rGpsqsptq “ R1e
´3t
` `R2e

´2t
` `R3δδδ

p´1q
ptq

`D cos`p2tq ` E sin`p2tq.Ÿ

The method of residuals for calculating the inverse Laplace
transform of rational function can be extended to products of
rational functions with exponentials e´as, which correspond
to time translations in the time domain. Let Gpsq, λ1, . . . , λr
and µ1, . . . , µr be as above. In what follows, we point out the
method for finding a pnˆmq matrix Qptq such that

Qptq “ L´1rGpsq
N
ÿ

j“1

e´ajssptq (45)

where N P N and a1, . . . , aN are positive reals. In this case
the above residual method cannot be applied since e´ajs is
not a rational function. We can proceed as follows. In view of
(18)

fptq :“
r
ÿ

i“1

µi
ÿ

j“1

Ri,je
λit
`

tj´1
`

pj ´ 1q!
(46)

where Ri,j are determined as in (19), has Laplace transform
Gpsq. On account of the time translation property (appendix
A7),

Qptq :“
N
ÿ

j“1

fpt´ ajq (47)

has Laplace transform Gpsq
řN
j“1 e

´ajs and therefore Qptq
solves our problem (45).

Exercize 2.7: Calculate the forced output response with

W psq “
1

s` 2

and input function

uptq :“

#

t for 0 ď t ă 1

´t` 2 for 1 ď t ă 2

0 otherwise

(48)

The input function can be written as

uptq “ tδδδp´1q
ptq ´ 2pt´ 1qδδδp´1q

pt´ 1q

` pt´ 3qδδδp´1q
pt´ 3q (49)

Using the linearity and time translation properties of the
transform

Lruptqspsq “ Lrt`spsq ´ 2Lrpt´ 1q`spsq ` Lrpt´ 2q`spsq

“
1

s2ps` 2q
p1´ 2e´s ` e´2sq (50)

We cannot apply the residual method to Lryptqpforcedqspsq for
the presence of the irrational functions e´s and e´2s. We use
the residual method to get the inverse transform of the rational
component 1

s2ps`2q of Lryptqpforcedqspsq. If

Gpsq :“
1

s2ps` 2q
“
R1,1

s
`
R1,2

s2
`

R2

s` 2

and

R1,2 “ lim
sÑ0

pGpsqs2q “
1

2

R1,1 “ lim
sÑ0

d

ds
pGpsqs2q “ ´

1

4

R2 “ lim
sÑ´2

pGpsqps` 2qq “
1

4

Therefore,

Gpsq “ ´
1

4

1

s
`

1

2

1

s2
`

1

4

1

s` 2
(51)

and by the linearity and frequency translation properties of the
transform

L´1rGpsqsptq “ ´
1

4
L´1r

1

s
sptq `

1

2
L´1r

1

s2
sptq

`
1

4
L´1r

1

s` 2
sptq “ ´

1

4
δδδp´1q

ptq `
1

2
t` `

1

4
e´2t
`

(52)

It follows that

ypuqpt,uq “ L´1rGpsqp1´ 2e´s ` e´2sqsptq

“ L´1rGpsqsptq ´ 2L´1rGpsqspt´ 1q

`L´1rGpsqspt´ 2q.Ÿ

Exercize 2.8: Calculate the forced output response with

A “

¨

˝

´1 ´1 0
´2 ´2 0
1 1 ´1

˛

‚, B “

¨

˝

1
0
0

˛

‚, C “

ˆ

1 0 0
0 1 1

˙

and input function

uptq :“

#

1 for 1 ď t ă 3

0 otherwise
(53)
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The input function can be written as

uptq “ δδδp´1q
pt´ 1q ´ δδδp´1q

pt´ 3q (54)

Using the linearity and time translation properties of the
transform

Lruptqspsq “ Lrδδδp´1q
pt´ 1qspsq ´ Lrδδδp´1q

pt´ 3qspsq

“
1

s
pe´s ´ e´3sq (55)

Moreover

LrWptqspsq “ CpsI ´Aq´1B

“

ˆ

1 0 0
0 1 1

˙

¨

˝

s` 1 1 0
2 s` 2 0
´1 ´1 s` 1

˛

‚

´1¨

˝

1
0
0

˛

‚

“
1

sps` 1qps` 3q
ˆ

ˆ

ˆ

2
3 ps` 1qps` 3q ` 1

3 ps` 1qs
´ 2

3 ps` 1qps` 3q ` 3
2sps` 3q ` 1

6 ps` 1qs

˙

and

Lryptqpforcedqspsq “ CpsI ´Aq´1BLruptqspsq

“
e´s ´ e´3s

s2ps` 1qps` 3q
ˆ

ˆ

ˆ

2
3 ps` 1qps` 3q ` 1

3 ps` 1qs
´ 2

3 ps` 1qps` 3q ` 3
2sps` 3q ` 1

6 ps` 1qs

˙

(56)

We cannot apply the residual method to Lryptqpforcedqspsq for
the presence of the irrational functions e´s and e´3s. We use
the residual method to get the inverse transform of the rational
component of Lryptqpforcedqspsq. If

Gpsq :“
1

s2ps` 1qps` 3q
ˆ

ˆ

ˆ

2
3 ps` 1qps` 3q ` 1

3 ps` 1qs
´ 2

3 ps` 1qps` 3q ` 3
2sps` 3q ` 1

6 ps` 1qs

˙

from (18)

Gpsq “
R1,1

s
`
R1,2

s2
`

R2

s` 3
`

R3

s` 1

and

R1,2 “ lim
sÑ0

pGpsqs2q “

ˆ

2
3
´ 2

3

˙

R1,1 “ lim
sÑ0

d

ds
pGpsqs2q “

ˆ

1
9
´ 14

9

˙

R2 “ lim
sÑ´3

pGpsqps` 3qq “

ˆ

´ 1
9

´ 1
18

˙

R3 “ lim
sÑ´1

pGpsqps` 1qq “

ˆ

0
´ 3

2

˙

(57)

Therefore,

Gpsq “

ˆ

1
9
´ 14

9

˙

s
`

ˆ

2
3
´ 2

3

˙

s2
`

ˆ

´ 1
9

´ 1
18

˙

s` 3
`

ˆ

0
´ 3

2

˙

s` 1
(58)

and by the linearity and frequency translation properties of the
transform

L´1rGpsqsptq “ L´1r

ˆ

1
9
´ 14

9

˙

s
sptq ` L´1r

ˆ

2
3
´ 2

3

˙

s2
sptq

`L´1r

ˆ

´ 1
9

´ 1
18

˙

s` 3
sptq ` L´1r

ˆ

0
´ 3

2

˙

s` 1
sptq

“

ˆ

1
9
´ 14

9

˙

L´1rLrδδδp´1q
ptqspsqsptq `

ˆ

2
3
´ 2

3

˙

L´1rLrt`spsqsptq

`

ˆ

´ 1
9

´ 1
18

˙

L´1rLrδδδp´1q
ptqsps` 3qsptq

`

ˆ

0
´ 3

2

˙

L´1rLrδδδp´1q
ptqsps` 1qsptq

“

ˆ

1
9
´ 14

9

˙

δδδp´1q
ptq `

ˆ

2
3
´ 2

3

˙

t` `

ˆ

´ 1
9

´ 1
18

˙

e´3t
` `

ˆ

0
´ 3

2

˙

e´t`

(59)

It follows from (47) that

ypuqpt,uq “ L´1rGpsqpe´s ´ e´3sqsptq

“ L´1rGpsqspt´ 1q ´ L´1rGpsqspt´ 3q.Ÿ

APPENDIX

A. Laplace transform

Let I be an interval containing r0,`8q and let f : I Ñ C
be a real or complex-valued function.

Definition A.1: The function f : I Ñ C has a L-transform
if Ds P C such that φφφ : t Ñ φφφptq :“ e´stfptq is absolutely
integrable over r0,`8q, i.e.

ż `8

0

|e´stfptq|dt ă `8 (60)

If the integral on the left of (60) exists for s “ s0 then it exists
for all s P C such that Repsq ą Reps0q. Indeed, for all s P C
such that Repsq ą Reps0q

|e´stfptq| “ e´Repsqt|fptq| ď e´Reps0qt|fptq|

“ |e´s0tfptq| (61)

since |e´jImps0qt| “ |e´jImpsqt| “ 1. Therefore, |e´stfptq| is
majorized by an integrable function |e´s0tfptq| for all s P C
such that Repsq ą Reps0q and it is integrable for all such s.

We conclude that, if the set of s P C for which the integral
on the left of (60) exists is not empty, it is an open half-plane in
the complex plane, in particular the set ts P C : Repsq ą σrf su
where σrf s is the infimum of the real parts of the points s P C
for which the integral on the left of (60) exists.

Definition A.2: Let f : I Ñ C have a L-transform. If

σrf s :“ infrRepsq :

ż `8

0

|e´stfptq|dt ă `8s, (62)

for each s P C : Repsq ą σrf s we define the Laplace transform
of f as

Lrf spsq :“

ż `8

0

|e´stfptq|dt (63)
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and σrf s is called the convergence abscissa of f . Note that if

|fptq| ďMeαt (64)

for some M ą 0, real α and for all t ě 0, then f has a
L-transform and σrf s ď α. Indeed, for all s P C : Repsq ą α

|e´stfptq| “ e´Repsqt|fptq| ď e´RepsqtMeαt

“Mepα´Repsqqt (65)

and since Mepα´Repsqqt is integrable over r0,`8q, also
e´stfptq is.

1) Laplace transform of the Heaviside (or unit step) func-
tion: The Heaviside (or unit step function is

δδδp´1q
ptq :“

#

1 for t ě 0

0 otherwise
(66)

The function tÑ δδδp´1q
ptqe´st is integrable over r0,`8q for

all s P C : Repsq ą 0. Indeed,

|e´stδδδp´1q
ptq| “ e´Repsqt (67)

which is integrable over r0,`8q if and only if Repsq ą 0.
Therefore, σrf s “ 0 and the Laplace transform of f is

Lrδδδp´1q
ptqspsq :“

ż `8

0

|e´stδδδp´1q
ptq|dt

“

ż `8

0

|e´st|dt “
1

s
(68)

2) Laplace transform of exponential functions: As further
exercise, consider the function

fptq :“ eat (69)

with a “ α`jβ. The function tÑ fptqe´st is integrable over
r0,`8q for all s P C : Repsq ą α. Indeed,

|e´stfptq| “ e´pRepsq´αqt (70)

which is integrable over r0,`8q if and only if Repsq ą α.
Therefore, σrf s “ α and the Laplace transform of f is

Lrfptqspsq :“

ż `8

0

|e´stfptq|dt

“

ż `8

0

|e´ps´aqt|dt “
1

s´ a
(71)

3) Laplace transform of impulsive functions: Consider the
impulse function with duration T ą 0

fptq :“

#

1 for 0 ď t ă T

0 otherwise

“ δδδp´1q
ptq ´ δδδp´1q

pt´ T q (72)

The function t Ñ fptqe´st is absolutely integrable over
r0,`8q for all s P C. Indeed, for all s ‰ 0

ż `8

0

|e´stfptq|dt “

ż T

0

|e´st|dt “
1´ e´sT

s
(73)

This function has a singularity at s “ 0 but

lim
sÑ0

1´ e´sT

s
“ lim
sÑ0

1´ e´sT

Ts
T “ T (74)

Therefore, for all s

Lrfptqspsq :“

ż `8

0

|e´stfptq|dt “

ż T

0

|e´st|dt “
1´ e´sT

s

and σrf s “ ´8. This is a general fact: if f is null outside a
compact set of R, then σrf s “ ´8.

Next, consider the impulse function with duration T ą 0

fptq :“

# 1
T for 0 ď t ă T

0 otherwise

“
1

T
rδδδp´1q

ptq ´ δδδp´1q
pt´ T qs (75)

This impulse is called normalized since
ż `8

´8

fptqdt “

ż `8

0

fptqdt “ 1 (76)

Reasoning as in the former exercise, we find out that the
function f has a Laplace transform

Lrfptqspsq “
1´ e´sT

Ts
(77)

with σrf s “ ´8. Moreover, for each s

lim
TÑ0

Lrfptqspsq “ lim
TÑ0

1´ e´sT

Ts
“ 1 (78)

If we choose T “ 1
n , n P N, we obtain the family of functions

tfnptqu defined as tÑ fnptq :“ N rδδδp´1q
ptq´δδδp´1q

ptqpt´ 1
n qs.

Note that

lim
nÑ`8

fnptq “ δδδp0qptq :“

#

0 for t ‰ 0

`8 t “ 0
(79)

where δδδp0q is the Dirac impulse function and, on account of
(78) we define the Laplace transform of δδδp0q as

Lrδδδp0qptqspsq “ lim
nÑ`8

Lrfnptqspsq “ 1 (80)

4) Laplace transform of polynomial functions: As a final
exercise, consider the function

fptq :“
tk

k!
(81)

with k P N. Select k “ 0 and note that in this case fptq “

δδδp´1q
ptq over r0,`8q. As we have already seen, the function

fptq is integrable over r0,`8q for all s P C : Repsq ą 0 and

Lrfptqspsq :“
1

s
(82)

with σrf s “ 0. On the other hand, for all k P Nzr0s and for
all s P C : Repsq ą 0

Lr
tk

k!
spsq :“

ż `8

0

|e´st
tk

k!
|dt

“

”

´
e´st

s

tk

k!

ıt“`8

t“0
`

1

s

ż `8

0

|e´st
tk´1

pk ´ 1q!
|dt

“
1

s
Lr

tk´1

pk ´ 1q!
spsq (83)

Therefore

Lr
tk

k!
spsq “

1

sk`1
(84)

with σr t
k

k! s “ 0.
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5) Properties of Laplace transform: The Laplace transform
is alinear operator, i.e. for all pairs of c1, c2 P C and f1, f2
with Laplace transforms and convergence abscissa σrf1s and,
respectively, σrf2s
‚ (LINEARITY): Lrc1f1ptq`c2f2ptqspsq “ c1Lrf1ptqspsq`
c2Lrf2ptqspsq

with σrc1f1 ` c2f2s :“ maxrσrf1s, σrf2ss.
6) Laplace transform of sinusoidal and cosinusoidal func-

tions: As we have already seen, for each real ω

Lrejωtspsq “ c1Lrf1ptqspsq ` c2Lrf2ptqspsq (85)

for all s such that Re psq ą 0. By the linearity of the Laplace
transform

Lrsinpωtqspsq “ Lr
ejωt ´ e´jωt

2j
spsq

“
1

2j
rLrejωtspsq ´ Lre´jωtspsqs

“
1

2j
r

1

s´ jω
´

1

s` jω
s “

ω

s2 ` ω2
(86)

for all s such that Re psq ą 0. Likewise,

Lrcospωtqspsq “ Lr
ejωt ` e´jωt

2
spsq

“
1

2
r

1

s´ jω
`

1

s` jω
s “

s

s2 ` ω2
(87)

for all s such that Re psq ą 0.
7) Signals: The definition of Laplace transform depends

only on the values of the function f over r0,`8q. Therefore
if

f`ptq :“

«

fptq for t ě 0

0 otherwise
(88)

then f`ptq “ δδδp´1q
ptqfptq and Lrf`ptqspsq “ Lrfptqspsq.

Some remarkable properties of f` are:
‚ (TIME TRANSLATION): Lrf`pt ´ T qspsq “

e´sTLrf`ptqspsq, @T ą 0, @s : Repsq ą σrf s
‚ (FREQUENCY TRANSLATION): Lreatf`ptqspsq “

Lrf`ptqsps´ aq, @a P C, @s : Re ą σrf s ` Repaq.
Consider fptq “ sin t. Clearly

Lrf`ptqspsq “ Lrfptqspsq “
1

s2 ` 1
(89)

and from the time-translation property for all T ą 0

Lrf`pt´ T qspsq “ e´sTLrf`ptqspsq “
e´sT

s2 ` 1
(90)

Therefore,

Lrf`ptq ` f`pt´ πqspsq “
1` e´sπ

s2 ` 1
(91)

and

f`ptq ` f`pt´ πq “

#

sin t for 0 ď t ă 2π

0 otherwise
(92)

Note that since s “ ˘j are at the same time poles and zeroes
of 1`e´sπ

s2`1 then σrf`ptq ` f`pt´ T qs “ ´8.

Likewise, consider fptq “ δδδp´1q
ptq. Clearly,

Lrf`ptqspsq “ Lrfptqspsq “
1

s
(93)

and from the time-translation property for all T ą 0

Lrf`pt´ T qspsq “ e´sTLrf`ptqspsq “
e´sT

s
(94)

Therefore,

Lrf`ptq ´ f`pt´ T qspsq “ Lrfptqspsq “
1´ e´sT

s
(95)

and

f`ptq ´ f`pt´ T q “

#

1 for 0 ď t ă T

0 otherwise
(96)

Note that also in this exercise since 1´e´sT

s has no singularity
at s “ 0, since s “ 0 is at the same time pole and zero, then
σrf`ptq ´ f`pt´ T qs “ ´8.

Finally, consider fptq “ t. Clearly,

Lrf`ptqspsq “ Lrfptqspsq “
1

s2
(97)

and from the time-translation property

Lrf`ptq ´ 2f`pt´ 1q ` f`pt´ 2qspsq “
1´ 2e´s ` e´2s

s2

with

f`ptq ´ 2f`pt´ 1q ` f`pt´ 2q

“

#

t for 0 ď t ă 1
2´ t for 1 ď t ă 2
0 for t ě 2

8) Laplace transform of periodic functions: We can prove
the following result for the Laplace transform of periodic
functions fptq.

Proposition A.1: Let f be periodic with period T ą 0, i.e.
fpt`T q “ fptq for all t ě 0. If f is integrable over r0, T s, then

Lrfptqspsq “
1

1´ e´sT

ż T

0

e´stfptqdt (98)

with σrf s “ 0.
Consider the square wave

fptq :“

#

1 for 2n ď t ă 2n` 1, n P N

0 otherwise

“

`8
ÿ

j“0

rδδδp´1q
pt´ jq ´ δδδp´1q

pt´ j ´ 1qs (99)

The function fptq is periodic with period T “ 2. By proposi-
tion A.1

Lrfptqspsq “
1

1´ e´2s

ż 2

0

e´stfptqdt

“
1

1´ e´2s

ż 1

0

e´stdt “
1

1´ e´2s

1´ e´s

s

“
1

sp1` e´sq
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with σrf s “ 0.
As a further exercise, consider the function

fptq :“

#

sin t for 2nπ ď t ă p2n` 1qπ, n P N

0 otherwise

“

`8
ÿ

j“0

rsin`pt´ jπq ` sin`pt´ pj ` 1qπqs (100)

The function f is periodic with period T “ 2π. By proposition
A.1

Lrfptqspsq “
1

1´ e´2πs

ż 2π

0

e´stfptqdt

“
1

1´ e´2s

ż π

0

e´strsin`ptq ` sin`pt´ πqsdt

“
1

1´ e´2s

1` e´s

s2 ` 1
(101)

with σrf s “ 0, where we used the fact that
ż π

0

e´stpsin`ptq ` sin`pt´ T qqdt

“

ż `8

0

e´stpsin`ptq ` sin`pt´ T qqdt

“ Lpsin`ptq ` sin`pt´ T qqpsq “
1` e´s

s2 ` 1

Finally, consider fptq :“ | sinptq|. The function fptq is periodic
with period T “ π. By proposition A.1

Lrfptqspsq “
1

1´ e´πs

ż π

0

e´stfptqdt

“
1

1´ e´πs

ż π

0

e´st sinptqdt

“
1

1´ e´πs

ż π

0

e´stpsin`ptq ` sin`pt´ T qqdt

“
1

1´ e´πs

ż `8

0

e´stpsin`ptq ` sin`pt´ T qqdt

“
1

1´ e´πs
Lpsin`ptq ` sin`pt´ T qqpsq

“
1

1´ e´πs
1` e´s

s2 ` 1

with σrf s “ 0.
As it can be seen from the above examples, the term

şT

0
e´stfptqdt in (98) coincides with Lrf0ptqspsq where f0ptq

is a function which is zero outside r0, T s and such that
fptq “

ř8

j“0pf0q`pt´ jT q.
9) Further results on Laplace transforms: For the deriva-

tive of a function fptq we have the following result.
Proposition A.2: (TIME DERIVATIVE):Let f be a signal,

continuous for all t ą 0 and continuous from the right in t “ 0,
with piecewise continuous derivative with a Laplace transform.
Then for all s such that Repsq ą maxrσrf s, σrdfdt s

Lr
df

dt
ptqspsq “ sLrfptqspsq ´ fp0`q (102)

where fp0`q is the limit of f at t “ 0 from the right, i.e.
limtÑ0` fptq.

If f is once continuously differentiable and df
dt is continuous

for all t ą 0 and continuous from the right in t “ 0, with
piecewise continuous derivative with a Laplace transform, by
applying twice proposition A.2 we get

Lr
d2f

dt2
ptqspsq “ Lr

d

dt

df

dt
ptqspsq “ sLr

df

dt
ptqspsq ´

df

dt

ˇ

ˇ

ˇ

t“0

“ srsLrfptqspsq ´ fp0qs ´
df

dt

ˇ

ˇ

ˇ

t“0

“ s2Lrfptqspsq ´ sfp0q ´
df

dt

ˇ

ˇ

ˇ

t“0
(103)

In general, if f is pk´1q-times continuously differentiable and
dk´1f
dtk´1 ptq is continuous for all t ą 0 and continuous from the
right in t “ 0, with piecewise continuous derivative with a
Laplace transform, by applying twice proposition A.2 we get

Lr
dkf

dtk
ptqspsq “ skLrfptqspsq ´

k´1
ÿ

j“0

sj
dk´1´jf

dtk´1´j

ˇ

ˇ

ˇ

t“0

The Laplace transform of the time convolution of two
signals is given by the following result. We recall that the time
convolution of two time functions f and g integrable over R
is defined as

pf ˚ gqptq “

ż `8

´8

fpτqgpt´ τqdτ (104)

If f and g are signals

pf ˚ gqptq “

#

şt

0
fpτqgpt´ τqdτ for t ą 0

0 otherwise

(105)

Proposition A.3: (TIME CONVOLUTION): Let f and g be
two signals with Laplace transforms and convergence abscissa
σrf s and, respectively, σrgs. Then f ˚g has a Laplace transform
for all s such that Repsq ą maxrσrf s, σrgss and

Lrpf ˚ gqptqspsq “ LrfptqspsqLrgptqspsq. (106)

For exercise, the time convolution of a signal f , with
Laplace transforms and convergence abscissa σrf s, and
δδδp´1q

ptq is

pf ˚ δδδp´1q
qptq “

ż t

0

fpτqδδδp´1q
pt´ τqdτ “

ż t

0

fpτqdτ

Moreover, Lrδδδp´1q
ptqspsq “ 1

s with σrδδδp´1q
s “ 0. By

application of proposition A.3

Lr

ż t

0

fpτqdτ spsq “ Lrpf ˚ δδδp´1q
qptqspsq “

1

s
Lrfptqspsq(107)

with σr
şt

0
fpτqdτ s “ maxrσrf s, 0s.

We have already seen that the impulse function with dura-
tion T ą 0

fptq :“

# 1
T for 0 ď t ă T

0 otherwise

“
1

T
pδδδp´1q

ptq ´ δδδp´1q
pt´ T qq (108)
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and
ż `8

´8

fptqdt “ 1 (109)

Also, its Laplace transform is

Lrfptqspsq “
1´ e´sT

Ts
(110)

with σrf s “ ´8. The primitive of f is

ż t

0

fpτqdτ :“

#

1 for t ą T

t
T for 0 ď t ď T

“
1

T
pt` ´ pt´ T q`q

By application of (107)

Lr

ż t

0

fpτqdτ spsq “
1

s
Lrfptqspsq “

1

s

1´ e´sT

Ts

with σr
şt

0
fpτqdτ s “ ´8.

B. Inverse Laplace transform

It is possible, under certain conditions, to reconstruct a
signal f` from its Laplace transform, defining in some sense
an inverse Laplace transform. However, we are interested
in this kind of issues, except for the following important
remark. For any function f which has a Laplace transform
Lrfptqspsq, we define as its inverse Laplace transform f`ptq :“
L´1rLrfptqspsqsptq, which is the signal of fptq. Indeed, we
identify all the inverse transforms of Lrfptqspsq with the
signal of fptq (the inverse tranforms of Lrfptqspsq form an
equivalence class).

On the other hand, any proper rational function Fpsq can
be first decomposed into simple fractional terms using the
residuals theorem (theorem 2.1) and each fractional term can
be inverse transformed by obtaining as a final result the inverse
transform of Fpsq.


