Control Systems
 9/01/2018

Exercise 1 By defining $\bar{P}(s)=\frac{1}{s}(P(s)-2)=-2 \frac{s-5}{s(s+10)}$ and $L(s)=G(s) \bar{P}(s)$, one has

$$
y(s)=W(s) v(s)+W_{d}(s) d(s) \quad \text { with } \quad W(s)=\frac{L(s)}{1+L(s)}, \quad W_{d}(s)=\frac{1}{1+L(s)} .
$$

Let us write $G(s)=G_{2}(s) G_{1}(s)$ so that $G_{1}(s)$ is designed for fulfilling steady-state specifications (i.e., $(i i))$ whereas $G_{2}(s)$ will be later set for stability and transient performances (i.e., (i) and (iii)).
(ii) Since the input-to-error transfer function $W_{e}(s)=\frac{1}{1+L(s)}$ and recalling that the steady state response to $v(t)=t$ is given $e_{1}(t)=W_{e}(0) t+\frac{d W_{e}}{d s}(0)$, for the requirement to be satisfied one needs $W_{e}(0)=0$ and $\left|\frac{d W_{e}}{d s}\right|_{s=0} \leq 0.2$.
In this case, because an integrator is already located before the entering point of the disturbance, one has $W_{e}(0)=0$ so that for (ii) to be solved one sets $G_{1}(s)=k_{1}$ with $k_{1} \in \mathbb{R}$ such that

$$
\left|\frac{W_{e}(s)}{s}\right|_{s=0} \leq 0,2 \Longrightarrow k_{1} \geq 5
$$

Thus, one can fix $k_{1}=5$ while guaranteeing, for (ii) to be fulfilled by the closed-loop system, that $G_{2}(0) \geq 1$.
(iii) For assigning $\omega_{t}^{*}=2 \mathrm{rad} / \mathrm{sec}$ and $m_{\phi}^{*} \geq 50^{\circ}$ let us first draw the Bode plots of

$$
\begin{equation*}
L_{1}(s)=G_{1}(s) \bar{P}(s)=-10 \frac{s-5}{s(s+10)}=5 \frac{1-\frac{s}{5}}{s\left(1+\frac{s}{10}\right)} \tag{1}
\end{equation*}
$$

which are reported in Figure 1. As $\omega_{t}^{*}=2 \mathrm{rad} / \mathrm{sec}$ is the desired crossover frequency, we notice that

$$
\left|L_{1}\left(j \omega_{t}^{*}\right)\right|_{d B}=8.433 \quad \angle L_{1}\left(j \omega_{t}^{*}\right)=-123.1113 .
$$

Accordingly, $G_{2}(s)$ needs to be chosen in such a way that

$$
\begin{align*}
& \left|G_{2}\left(j \omega_{t}^{*}\right)\right|_{d B}+\left|L_{1}\left(j \omega_{t}^{*}\right)\right|_{d B}=0 \tag{2}\\
& 180^{\circ}+\angle L_{1}\left(j \omega_{t}^{*}\right)+\angle G_{2}\left(j \omega_{t}^{*}\right) \geq 50^{\circ} \tag{3}
\end{align*}
$$

with the further requirement $\left|G_{2}(0)\right| \geq 1$ to preserve (ii).
It is a matter of computations to verify that, with no need of further actions, (3) is already satisfied as $180^{\circ}+\angle L_{1}\left(j \omega_{t}^{*}\right)=56.8^{\circ}$. Accordingly, one can satisfy the specification by assigning the cross-over frequency to $\omega_{t}^{*}=2 \mathrm{rad} / \mathrm{sec}$. Thus, $G_{2}(\mathrm{~s})$ needs to be designed so to decrease the magnitude at $\omega_{t}^{*}=2 \mathrm{rad} / \mathrm{sec}$ without possibly affecting the phase in the corresponding neighborhood. By noticing that a simple proportional action is not

Figure 1: Bode plots of (1)
compatible with the requirement $\left|G_{2}(0)\right| \geq 1$, then an attenuating action of the form

$$
G_{2}(s)=k_{i}\left(\frac{1+\frac{\tau_{i}}{m_{1}} s}{1+\tau_{i} s}\right)^{n_{i}}
$$

is needed in such a way to guarantee

$$
\left|G_{2}\left(j \omega_{t}^{*}\right)\right|_{d B}=-8.433, \quad \angle G_{2}\left(j \omega_{t}^{*}\right) \geq-6.8^{o}, \quad\left|k_{i}\right|_{d B}>0 .
$$

As at ω_{t}^{*} must be affected as least as possible by the feedback action one has $k_{i}>0$. Denoting $\omega_{n}=\omega_{t}^{*} \tau_{i}$, it is evident that for decreasing the phase contribution at $\omega_{t}^{*}=$ $2 \mathrm{rad} / \mathrm{s}$ as much as possible, one needs ω_{n} to act at high frequency. Thus, we set $m_{i}=3$, $\omega_{n}=100$ and $n_{i}=1$ so that

$$
\left|G_{2}\left(j \omega_{t}^{*}\right)\right|_{d B}=\left|k_{i}\right|_{d B}-9.5390, \quad \angle G_{2}\left(j \omega_{t}^{*}\right)=-1.1454^{o} .
$$

Finally, the gain is set in such a way that $\left|k_{i}\right|_{d B}-9.5390=-8.433$ so resulting in $\left|k_{i}\right|_{d B}=1.106>0$ which is indeed compatible with specification $(i i)$ as $k_{i}=1.1358>1$. Figure 2 depicts the Bode plots of the open loop transfer function

$$
\begin{equation*}
L(s)=G_{2}(s) G_{1}(s) \bar{P}(s)=11.358 \frac{1+\frac{50}{3} s}{1+50 s} \frac{s-5}{s(s+10)} \tag{4}
\end{equation*}
$$

Figure 2: Bode plots of (4)
(ii) The open loop system $L(s)=G_{2}(s) G_{1}(s) \bar{P}(s)$ possesses no poles with positive real part and one pole in zero with multiplicity one. Thus, the feedback system is asymptotically stable if and only if the number of counter-clockwise tours around $-1+j 0$ on behalf of the extended Nyquist plot of $L(j \omega)$ is 0 . As Figure 3 suggests, the feedback system is asymptotically stable.

Exercise 2 (a) As the root locus of $P(s)$ describes the location of the poles of the feedback system under static feedback $G(s)=k$ (i.e., of the transfer function $\left.W(s)=\frac{k P(s)}{1+k P(s)}\right)$ the root locus of $P(s)$ is equivalent to the one of

$$
\bar{P}(s)=\frac{1}{(s-1)(s+2)}
$$

deduced when neglecting the proportional term 3 and relabeling $\tilde{k}=3 k$.
Denoting by n and m respectively the number of poles and zeros, the relative degree is $r=n-m=2$, the positive and negative locus possess respectively two branches. Moreover, the positive locus exhibits two vertical asymptotes centered at $s_{0}=-1$.
Defining $p(s, \tilde{k})=(s-1)(s+2)+\tilde{k}$ as the polynomial of the closed-loop poles, singularities

Figure 3: Nyquist plot of (4)
$\left(s^{*}, \tilde{k}^{*}\right) \in \mathbb{C} \times \mathbb{R}$ are given by the solution of the coupled equations

$$
p(s, \tilde{k})=0, \quad \frac{\partial}{\partial s} p(s, \tilde{k})=0
$$

given by $s^{*}=-\frac{1}{2}$ and $\tilde{k}^{*}=2$ (and thus $k=\frac{2}{3}$). Thus, the positive locus possesses a singularity of order two at $s^{*}=-\frac{1}{2}$ corresponding to $k=\frac{2}{3}$.
The positive and negative locus of $P(s)$ are thus reported in Figures 4 and 5
(b) For assigning all poles with damping $\geq .7$, it is enough to assign them real. Moreover, as the root locus suggests, a static feedback is not enough for assigning all poles with real part ≥ 1 as the center of the asymptotes is at $s_{0}=-\frac{1}{2}$. Thus, a feedback $G(s)$ with dimension at least one is needed so to move the center of the asymptotes beyond $s=-1$. To preserve the relative degree and simplify the design, let us design a feedback of the form

$$
G(s)=k_{1} \frac{s+2}{s+p}
$$

with $k_{1}, p \in \mathbb{R}$ also generating uncontrollability of the mode associated to the eigenvalue -2 .

Figure 4: Positive root locus of $P(s)=\frac{3}{(s-1)(s+2)}$

At this point $p>0$ needs to be set in such a way that

$$
s_{0}^{\prime}=\frac{1-p}{2} \leq-1 \Longrightarrow p>3 .
$$

For completing the design, it is enough to assign p so to generate a singularity of order 2 at some $s^{*} \in \mathbb{R}$ and $s^{*} \leq-1$. It is a matter of computations to verify that such a singularity is unavoidably located in correspondence of the center of the asymptotes s_{0}^{\prime}. Hence, one can set $p=5$ in such a way that the closed-loop poles are located at -2 corresponding to $k_{1}=3$. Thus, the closed-loop transfer function is given by

$$
\begin{equation*}
W(s)=\frac{9}{(s+2)^{2}} . \tag{5}
\end{equation*}
$$

(c) As the disturbance is affecting the output, the output-disturbance transfer function is given by

$$
W_{d}(s)=\frac{1}{1+G(s) P(s)}=\frac{(s+5)(s-1)}{(s+2)^{2}} .
$$

Accordingly, as $d(t)=t$, the steady state response is given by

$$
y_{d, s s}(t)=\nabla_{s} W_{d}(0)+W_{d}(0) t
$$

with

$$
W_{d}(0)=-\frac{5}{4}, \quad \nabla_{s} W_{d}(0)=-\frac{1}{4} .
$$

Exercise 3.

Figure 5: Negative root locus of $P(s)=\frac{3}{(s-1)(s+2)}$
(i) The forced response to the input $u(t)=$ cost $_{+}$can be computed as

$$
y_{f}(t)=\mathcal{L}^{-1}(Y(s))[t], \quad Y(s)=P(s) U(s) \quad U(s)=\mathcal{L}(u(t))[s]
$$

with \mathcal{L} and \mathcal{L}^{-1} being the Laplace and inverse Laplace transforms.
As the system is in canonical controllable form, the transfer function $P(s)=C(s I-A)^{-1} B$ is given by

$$
P(s)=\frac{1}{(s+a)^{2}} .
$$

Accordingly, as $U(s)=\mathcal{L}($ cost $)[s]=\frac{s}{s^{2}+1}$ one has

$$
Y(s)=\frac{s}{(s+a)^{2}\left(s^{2}+1\right)}=\frac{R_{11}}{s+a}+\frac{R_{12}}{(s+a)^{2}}+\frac{A s+B}{s^{2}+1}
$$

with

$$
\begin{aligned}
R_{11} & =\lim _{s \rightarrow-a} \nabla_{s} Y(s)(s+a)^{2}=\frac{1-a^{2}}{\left(1+a^{2}\right)^{2}} \\
R_{12} & =\lim _{s \rightarrow-a} Y(s)(s+a)^{2}=-\frac{a}{1+a^{2}} \\
A & =\frac{a^{2}-1}{a^{4}+2 a^{2}+1} \\
B & =\frac{2 a}{a^{4}+2 a^{2}+1} .
\end{aligned}
$$

Accordingly, by exploiting linearity of the Laplace operator one gets

$$
\begin{aligned}
y_{f}(t) & =R_{11} \mathcal{L}^{-1}\left(\frac{1}{s+a}\right)[t]+R_{12} \mathcal{L}^{-1}\left(\frac{1}{(s+a)^{2}}\right)[t]+A \mathcal{L}^{-1}\left(\frac{s}{s^{2}+1}\right)[t]+B \mathcal{L}^{-1}\left(\frac{1}{s^{2}+1}\right)[t] \\
& =\left(R_{11}+t R_{12} t\right) e_{+}^{-a t}+A \cos t_{+}+B \sin t_{+} .
\end{aligned}
$$

(ii) As the system only possesses one eigenvalue at $s=-a$ with multiplicity 2 , the output steadystate response only if the system is asymptotically stable that is if $a>0$. Accordingly, it can be easily deduced from the forced response by neglecting the terms whose effect vanish in time so getting

$$
y_{s s}(t)=A \cos t+B \sin t
$$

which can be rewritten as

$$
y_{s s}(t)=M \cos (t+\varphi)
$$

with $M=|P(j)|=\frac{1}{a^{2}-1}, \varphi=-\angle(j+a)^{2}$.

