Control Systems 8/1/2019(A)

Exercise 1 In Laplace domain the disturbance and input-to-output responses are given by

$$
y(s)=L(s) e(s)+d_{2}(s)+\frac{P_{1}(s)}{1+L_{1}(s)} d_{1}(s)
$$

with

$$
\begin{array}{r}
L(s)=G_{1}(s) P_{2}(s) P(s), \\
L_{1}(s)=G_{1}(s) P_{1}(s), \\
P(s)=\frac{L_{1}(s)}{1+L_{1}(s)} .
\end{array}
$$

In order to meet requirements (ii) and (iii) set

$$
G_{1}(s)=\frac{1}{s}, G_{2}=\frac{1}{s} \bar{G}(s)
$$

with one-dimensional $\bar{G}(s)$ (recall that G_{1} is required to be one dimensional and G_{2} twodimensional). Therefore

$$
P(s)=\frac{2.1 s+0.1}{s^{2}+1.1 s 0.1}, L(s)=\frac{\bar{G}(s)}{s} \frac{1}{2.1 s+0.1} \frac{2.1 s+0.1}{s^{2}+1.1 s 0.1}=\frac{\bar{G}(s)}{s} \frac{10}{s(s+1)(1+10 s)} .
$$

From the Bode plot of $L(s)=P_{2}(s) P(s)$ (Fig. 1) we see that we have to increase the phase (to maximize the phase margin) using an anticipative+proportional action $\bar{G}(s)=K R_{a}(s)=$ $K \frac{1+\tau_{a} s}{1+\frac{\tau_{a}}{m_{a} s}}$.
In order to maximize the phase margin, we choose $m_{a}=16$ with $\omega_{N}=4 \mathrm{rad} / \mathrm{sec}$ (maximum phase value) at $\omega_{t}^{*}=0.0001 \mathrm{rad} / \mathrm{sec}$ (where the Bode plot of the phase of $L(s)$ is higher: actually, any $\omega_{t}^{*} \leq 0.0001$ is good as well). We obtain $\tau_{a}=4 / 0.0001=4000$. Therefore, the anticipative action is $R_{a}(s)=\frac{1+4000 s}{1+\frac{4000}{16} s}$. For colocating ω_{t}^{*} at $0.0001 \mathrm{rad} / \mathrm{sec}$ we see from the Bode plots of $L(s) \frac{1+\tau_{a} s}{1+\frac{\tau_{a}}{m_{a}} s}$ (Fig. 2) that we need a proportional attenuation $K=\approx-93 d B=$ $2.23 * 10^{-5}$.
The controller $G_{1}(s)$ is given finally by

$$
G_{1}(s)=\frac{2.23 * 10^{-5}}{s} \frac{1+4000 s}{1+\frac{4000}{16} s} .
$$

The Bode plot of $G_{1}(s) L(s)$ is drawn in Fig. 3 and shows that we have a crossover frequency $\omega_{t}^{*}=10^{-3} \mathrm{rad} / \mathrm{sec}$ with a phase margin $m_{\phi}^{*} \approx 150^{\circ}$. The Nyquist plot shows that the closedloop system is asymptotically stable (we have 0 counterclockwise tours around the point $-1+0 j$).

Exercise 2 (a) The root locus of $P(s)=\frac{s+3}{s(s-3)(s+10)^{2}}$ is drawn in Fig. 1.

Figure 1: Bode plots of $L(s)=P_{2}(s) P(s)$

Figure 2: Bode plots of $L(s) R_{a}(s)$

The zero-pole excess is $n-m=3$ and the asymptote center is at $s_{0}=\frac{3-20+3}{3}=-\frac{14}{3} \approx 4.67$. The Routh table applied to $N U M(1+K P(s))=s^{4}+17 s^{3}+40 s^{2}+(K-300) s+3 K$ has the first column given by

$$
\begin{array}{r}
1 \\
17 \\
980-K \\
-K^{2}+413 K-294000 \\
\hline 980-K \\
\hline 51 K
\end{array}
$$

The number of sign variation in this column confirms the presence of 2 closed-loop poles with positive real part for $K>0$ and 1 closed-loop pole with positive real part for $K<0$. Moreover, neither locus crosses the imaginary axis. Therefore, there is no K such that the closed-loop system $W(s)=\frac{K P(s)}{1+K P(s)}$ is asymptotically stable (point (b)).
(c) It is required to find one dimensional $G(s)$ such that the closed-loop system $W(s)=$ $\frac{G(s) P(s)}{1+G(s) P(s)}$ is asymptotically stable with poles having real part ≤-2 and steady state error

Figure 3: Bode plots of $G_{1}(s) L(s)$

Figure 4: Nyquist plot of $G(s) P(s)$
to unit ramp input $\left|e_{1}\right| \leq 0.1$. Since the asymptote center is <-2 and the zeroes of $P(s)$ have real part <-2, we have only to decrease the zero-pole excess from 3 to 2 (keeping the asymptote center <-2) and then increase the gain to move the poles. Let

$$
G(s)=\frac{G_{1}(s)}{1+T s}
$$

with $G_{1}(s)=K(1+\bar{z} s)$ and $z>0$. Choose K in such a way that, whatever $\bar{z}>0$ is,

$$
\begin{array}{r}
\left|e_{1}\right|=\left|\frac{1}{s} W_{e}(s)\right|_{s=0}=\left|\frac{1}{s} \frac{1}{1+G(s) P(s)}\right|_{s=0}=\left|\frac{1}{s} \frac{1}{1+G_{1}(s) P(s)}\right|_{s=0} \\
\\
=\left|\frac{(s-3)(s+10)^{2}}{K(1+\bar{z} s)(s+3)+(s-3)(s+10)^{2} s}\right|_{s=0}=\left|\frac{100}{K}\right| \leq 0.1
\end{array}
$$

which gives $|K| \geq 1000$. Next, noticing that

$$
P(s) G_{1}(s)=K \bar{z} \frac{\left(s+\frac{1}{\bar{z}}\right)(s+3)}{(s-3)(s+10)^{2}}=\bar{K} \frac{\left(s+\frac{1}{\bar{z}}\right)(s+3)}{(s-3)(s+10)^{2}}
$$

Figure 5: Positive root locus of $P(s)$
with $\bar{K}=K \bar{z}$, choose $\bar{z}>0$ such that the new asymptote center s_{0}^{\prime} remains <-2

$$
s_{0}^{\prime}=\frac{-14+\frac{1}{\bar{z}}}{2}<-2 \Rightarrow \bar{z}>0.1
$$

Let's try the values $\bar{z}=1 / 4$ and (tentatively large) $K=10^{3}$. The Routh table applied to $N U M\left(1+G_{1}(s) P(s)\right)=s^{4}+9 s^{3}+212 s^{2}+462 s+1140$ has the first column given by
which implies stability of the closed-loop $\frac{G_{1}(s) P(s)}{1+G_{1}(s) P(s)}$. However, $G_{1}(s)$ is not implemntable as such and we have to add the pole $\frac{1}{1+T s}$ for obtaining the implementable controller

$$
G(s)=\frac{G_{1}(s)}{1+T s}
$$

Choose tentatively (small) $T=10^{-4}$ and check through the Routh table, applied to NUM(1+ $G(s) P(s)$), not to have sign variations in the first column.
(d) We seek a controller

$$
G(s)=K \frac{(s+10)^{2}}{s+3} \frac{s+z}{s+p} \frac{1}{1+T s}
$$

where we are canceling as many stable poles and zeroes of $P(s)$ as possible. The closed-loop transfer function is

$$
W(s)=\frac{L(s)}{1+L(s)}, L(s)=K \frac{s+z}{(s-3)(s+p)(1+T s)}=\bar{K} \frac{s+z}{\left(s+p_{1}\right)\left(s+p_{2}\right)\left(s+p_{3}\right)\left(s+p_{4}\right)}
$$

Figure 6: Negative root locus of $P(s)$
for $\bar{K}=\frac{K}{T}$ and for some $p_{1}, p_{2}, p_{3}, p_{4}>0$ such that

$$
\left(s+p_{1}\right)\left(s+p_{2}\right)\left(s+p_{3}\right)\left(s+p_{4}\right)=s(s+\bar{T})(s+p)(s-3)+\bar{K}(s+z)
$$

where $\bar{T} \frac{1}{T}$. In particular, we obtain by comparison from above

$$
\begin{array}{r}
\bar{T}+p-3=p_{1}+p_{2}+p_{3}+p_{4} \\
\bar{T} p-3 p-3 T=p_{3}\left(p_{1}+p_{2}\right)+p_{1} p_{2}+p_{4}\left(p_{1}+p_{2}+p_{3}\right) \\
K-3 \bar{T} p=p_{4}\left(p_{3}\left(p_{1}+p_{2}\right)+p_{1} p_{2}\right)+p_{1} p_{2} p_{3} \\
K z=p_{1} p_{2} p_{3} p_{4} \tag{1}
\end{array}
$$

Since the output response in Laplace domain to a unit step input is

$$
Y(s)=W(s) \frac{1}{s}=\bar{K} \frac{s+z}{s\left(s+p_{1}\right)\left(s+p_{2}\right)\left(s+p_{3}\right)\left(s+p_{4}\right)}
$$

we obtain in time

$$
y(t)=\bar{K}\left[R_{1} e_{+}^{-p_{1} t}+R_{2} e_{+}^{-p_{2} t}+R_{3} e_{+}^{-p_{3} t}+R_{4} e_{+}^{-p_{4} t} \frac{z}{p_{1} p_{2} p_{3} p_{4}} \delta_{-1}(t)\right.
$$

with residuals

$$
\begin{aligned}
& R_{1}=-\frac{z-p_{1}}{\left(p_{2}-p_{1}\right)\left(p_{3}-p_{1}\right)\left(p_{4}-p_{1}\right) p_{1}}, R_{2}=-\frac{z-p_{2}}{\left(p_{1}-p_{2}\right)\left(p_{3}-p_{2}\right)\left(p_{4}-p_{2}\right) p_{2}} \\
& R_{3}=-\frac{z-p_{3}}{\left(p_{1}-p_{3}\right)\left(p_{2}-p_{3}\right)\left(p_{4}-p_{3}\right) p_{3}}, R_{4}=-\frac{z-p_{4}}{\left(p_{1}-p_{4}\right)\left(p_{2}-p_{4}\right)\left(p_{3}-p_{4}\right) p_{4}}
\end{aligned}
$$

The steady state output response is

$$
y_{s s}(t)=\bar{K} \frac{z}{p_{1} p_{2} p_{3} p_{4}}
$$

The transient output respons is
$\left|y(t)-y_{s s}(t)\right|=\left|\bar{K}\left[R_{1} e_{+}^{-p_{1} t}+R_{2} e_{+}^{-p_{2} t} R_{3} e_{+}^{-p_{3} t}+R_{4} e_{+}^{-p_{4} t}\right]\right| \leq\left[\left|R_{1}\right|+\left|R_{2}\right|+\left|R_{3}\right|+\left|R_{4}\right|\right] e^{-\min _{i} p_{i} t}$

We require that

$$
\left|y(t)-y_{s s}(t)\right| \leq \frac{5}{100}\left|y_{s s}(t)\right|, \forall t \geq T_{a}=20^{-2}
$$

We obtain the condition

$$
\begin{array}{r}
e^{T_{a} \min _{i} p_{i}} \geq 25 \frac{p_{1} p_{2} p_{3} p_{4}}{z}\left[\left|R_{1}\right|+\left|R_{2}\right|+\left|R_{3}\right|+\left|R_{4}\right|\right] \\
\Rightarrow T_{a} \min _{i} p_{i} \geq \ln \left(25 \frac{p_{1} p_{2} p_{3} p_{4}}{z}\left[\left|R_{1}\right|+\left|R_{2}\right|+\left|R_{3}\right|+\left|R_{4}\right|\right]\right) \tag{2}
\end{array}
$$

For instance, if $p_{1}=z$ and $p_{3}=p_{4}+1, p_{2}=p_{3}+1, p_{3}=p_{2}+1$, and setting $T_{a}=20^{-2}$ in (2), we get

$$
\begin{equation*}
25 \cdot 10^{-4} p_{4} \geq \ln 25+\ln \left(3 p_{4}+2\right) \tag{3}
\end{equation*}
$$

from which $p_{4}=10^{4}$.
Exercise 3. The closed-loop I/O transfer function is

$$
W(s)=\frac{K_{d} P(s)}{1+K_{d} K_{r} P(s)}=\frac{K_{d}}{s+1+K_{d} K_{r}}
$$

The steady state forced response to the input $v(t)=1-t=v_{1}(t)-v_{2}(t)$ with $v_{1}(t)=1$ and $v_{2}(t)=t$

$$
y_{s s}(t)=y_{s s, 1}(t)-y_{s s, 2}(t)=W(0)-\left(W(0) t+\left.\frac{d W}{d s}\right|_{s=0}\right)=-W(0) t+\left(W(0)-\left.\frac{d W}{d s}\right|_{s=0}\right)
$$

We must require that $y_{s s}(t)=2 t+1$ which implies

$$
-W(0)=2, W(0)-\left.\frac{d W}{d s}\right|_{s=0}=1
$$

i.e.

$$
\frac{K_{d}}{1+K_{d} K_{r}}=-2, \frac{K_{d}}{\left(1+K_{d} K_{r}\right)^{2}}=3
$$

Moreover, for the existence of steady state regime we must require that the closed-loop is asymptotically stable, i.e. the closed-loop poles are in \mathbb{C}^{-}:

$$
1+K_{d} K_{r}>0
$$

From the first condition we obtain $K_{d}=4 / 3, K_{r}=-5 / 4$ which however do not satisfy the second condition since $1+K_{d} K_{r}=1-20 / 12<0$. We conclude that there are no values of K_{r} and K_{d} for which we have the desired steady state output response.

