Control Systems
 05/06/2018

Exercise 1 Denoting $L(s)=G(s) P(s)$, one has

$$
y(s)=W(s) v(s), \quad e(s)=W_{e}(s) v(s)
$$

with $W(s)=\frac{L(s)}{1+L(s)}$ and $W_{e}(s)=\frac{1}{1+L(s)}$. As usual, we shall split the controller in two loops; namely, $G(s)=G_{2}(s) G_{1}(s)$ with $G_{1}(s)$ designed for satisfying steady-state specifications (i.e., (ii)) whereas the outer loop $G_{2}(s)$ is defined for transient and stability requirements (i.e., (iii) and (i)).
(ii) Set for the time being $G_{2}(s)=1$. As $e_{s s}(t)=W_{e}(0) t+\frac{\partial W_{e}}{\partial s}(0)$, when $v(t)=t$, one needs $W_{e}(0)=0$ and $\frac{\partial W_{e}}{\partial s}(0)=0$. Accordingly, two integrating actions are needed. As the plant itself already possesses a pole at $s=0$, we set the inner control loop $G_{1}(s)=\frac{1}{s}$.
(iii) By inspecting the Bode Plots of

$$
\begin{equation*}
L_{1}(s)=G_{1}(s) P(s)=\frac{1}{s^{2}(s-1)} \tag{1}
\end{equation*}
$$

reported in Figure 1, one notices that the outer loop control action $G_{2}(s)$ needs to be chosen so to

1. increase the value of the phase at $\omega_{t}^{*}=3 \mathrm{rad} / \mathrm{s}$ as so that $m_{\varphi}^{*}=180^{\circ}+\angle G_{2}\left(j \omega_{t}^{*}\right) \mid+$ $\angle L_{1}\left(j \omega_{t}^{*}\right) \geq 30^{\circ}$ with $\angle L_{1}\left(j \omega_{t}^{*}\right)=-360^{\circ}+71.57^{\circ}$ so implying $\angle G_{2}\left(j \omega_{t}^{*}\right) \mid \geq 138.43^{\circ}$.
2. decrease the magnitude at $\omega_{t}^{*}=3 \mathrm{rad} / \mathrm{s}$ so to guarantee $\left|G_{2}\left(j \omega_{t}^{*}\right)\right|_{d B}+\left|L_{1}\left(j \omega_{t}^{*}\right)\right|_{d B}=$ 0 with $\left|L_{1}\left(j \omega_{t}^{*}\right)\right|_{d B} \approx-29.08$
Accordingly, as no bound is apriori set over the gain of $G_{2}(s)$ (that is $G_{2}(0)$), we shall design the outer loop as composed of anticipating actions aimed at increasing the phase at $\omega_{t}^{*}=3 \mathrm{rad} / \mathrm{s}$ and a gain to make $\omega_{t}^{*}=3 \mathrm{rad} / \mathrm{s}$ the new cross-over frequency.
Thus, the structure we propose for $G_{2}(s)$ is the following one

$$
G_{2}(s)=k G_{a}(s), \quad k>0
$$

with $G_{a}(s)=G_{a}^{1}(s) G_{a}^{2}(s)$. In particular, we introduce 3 anticipating actions of the form

$$
G_{a}^{1}(s)=\left(\frac{1+\tau_{a}^{1} s}{1+\frac{\tau_{a}^{1}}{m_{a}^{1}} s}\right)^{2}, \quad G_{a}^{2}(s)=\frac{1+\tau_{a}^{2} s}{1+\frac{\tau_{a}^{2}}{m_{a}^{2}} s}
$$

with

- $G_{a}^{1}(s)$ composed of two identical anticipating functions acting at $\omega_{N}^{1}=3 \mathrm{rad} / \mathrm{sec}$ with $m_{a}^{1}=16$ (that is at $\tau_{a}^{1}=1$) so that $\angle G_{a}^{1}\left(j \omega_{t}^{*}\right) \approx 121^{\circ}$ and $\left|G_{a}^{1}\left(j \omega_{t}^{*}\right)\right|_{d B} \approx 20.08$.
- $G_{a}^{2}(s)$ being one anticipating function with $\omega_{N}^{2}=5 \mathrm{rad} / \mathrm{sec}$ and $m_{a}^{2}=3$ (that is $\left.\tau_{a}^{2}=\frac{5}{3}\right)$ so that $\angle G_{a}^{2}\left(j \omega_{t}^{*}\right) \approx 20^{\circ}$ and $\left|G_{a}^{2}\left(j \omega_{t}^{*}\right)\right|_{d B} \approx 8$.
In this way, as $k>0, m_{\varphi}^{*}=32.57^{\circ}$ whereas k needs to be chosen so that $|k|_{d B}+$ $\left|G_{a}\left(j \omega_{t}^{*}\right)\right|_{d B}-29.08=0$ with $\left|G_{a}\left(j \omega_{t}^{*}\right)\right|_{d B} \approx 28.08$ so requiring $k=1.124$. The bode

Figure 1: Bode plots of (1)

Figure 2: Bode plots of (2)

Figure 3: Nyquist plot of (2)
plots of

$$
\begin{equation*}
L(s)=G_{2}(s) G_{1}(s) P(s)=1.124\left(\frac{1+s}{1+\frac{1}{16 s}}\right)^{2} \frac{1+\frac{5}{3} s}{1+\frac{5}{9} s} \frac{1}{s^{2}(s-1)} \tag{2}
\end{equation*}
$$

are reported in Figure 2.
(i) The Nyquist plot of (2) is reported in Figure 3. The number of counter-clockwise encirclements of $-1+j 0$ on behalf of the extended Nyquist plot of $L(j \omega)$ is 1 that is also coincident with the open loop poles with positive real part. Thus, the system is asymptotically stable in closed loop.

Exercise 2 a) Denoting by n and m the number of poles and zeros of the transfer function, the relative degree of $P(s)$ is given by $r=n-m=1$. Accordingly, the root locus possesses two asymptotes centered at

$$
s_{0}=\frac{1+5}{2}=3
$$

that can be discarded. Introducing $k \in \mathbb{R}$ and defining $p(s, k)=\left(s^{2}+1\right)(s-1)+k(s+5)$ as the polynomial defining the closed-loop poles under $G(s)=k$, one gets that singularities are the solutions to

$$
\begin{aligned}
& p(s, k)=s^{3}-s^{2}+(k+1) s+5 k-1=0 \\
& \frac{\partial p(s, k)}{\partial s}=3 s^{2}-2 s+k+1=0
\end{aligned}
$$

By solving the equations above, it turns out that the negative locus possesses one sin-

Figure 4: Root Locus of $P(s)=\frac{s+5}{(s-1)\left(s^{2}+1\right)}$.
gularity with multiplicity $\mu=2$ in correspondence of $\left(s^{*}, k^{*}\right) \approx(-7.7,-194.27)$. What is left to do is now is to quantify the number of intersection of the root locus with the imaginary axis. Those intersecting points correspond to values of $k \in \mathbb{R}$ for which the Routh table of $p(s, k)=s^{3}+(k+9) s^{2}+(4 k+14) s+4 k-24$ is not regular. Thus, by developing computations one gets

$$
\begin{array}{c|cc}
r^{3} & 1 & k+1 \\
r^{2} & -1 & 5 k-1 \\
r^{1} & -6 k & \\
r^{0} & 5 k-1 . &
\end{array}
$$

The Routh table is not regular for $k=\frac{1}{5}$ and $k=0$ so implying that the positive locus intersects the imaginary axis in correspondence of $k=\frac{1}{5}$ corresponding to the closedloop pole $s=0$ and at $k=0$ corresponding to the open loop poles $s= \pm j$. The root locus is reported in Figure 4.
b) From the above root locus and the Routh table it is evident that there exists no controller $G(s)=k$ asymptotically stabilizing the feedback system.
c) For ensuring zero-steady state error to constant inputs, the controller $G(s)$ must possess a pole at $s=0$. Thus, we set $p_{1}=0$ and, for the sake of notations, we shall denote
hereinafter $p=p_{2}$. Thus, by denoting

$$
L(s)=k \frac{\left(1+z_{1} s\right)\left(1+z_{2} s\right)(s+5)}{s\left(s^{2}+1\right)(s-1)(s+p)}=\hat{k} \frac{\left(s+\hat{z}_{1}\right)\left(s+\hat{z}_{2}\right)(s+5)}{s\left(s^{2}+1\right)(s-1)(s+p)}
$$

one gets that a necessary condition for assigning the poles with real part smaller or equal than 3 is that the new center of the asymptotes satisfies

$$
s_{0}^{\prime}=\frac{3-p+\hat{z}_{1}+\hat{z}_{2}}{2}<-3 .
$$

Accordingly, p, \hat{z}_{1} and \hat{z}_{2} can be fixed as $p=25, \hat{z}_{1}=3$ and $\hat{z}_{2}=4$ so getting $s_{0}^{\prime}=-6$ and implying $z_{1}=\frac{1}{3}, z_{2}=\frac{1}{4}$ and $k=12 \hat{k}$. At this point, one can set $\hat{k} \in \mathbb{R}$ (or equivalently $k \in \mathbb{R}$) by invoking the extended Routh criterion. Namely, one sets \hat{k} so to make the shifted closed-loop polynomial

$$
\begin{aligned}
p_{L}^{*}(s, \hat{k})=p_{L}(s-3, \hat{k}) & =(s-3)\left(s^{2}-6 s+10\right)(s-4)(s+22)+\hat{k} s(s+1)(s+2) \\
& =s^{5}+9 s^{4}+(\hat{k}-222) s^{3}+(3 \hat{k}+1266) s^{2}+(2 \hat{k}-3004) s+2640
\end{aligned}
$$

Hurwitz. By computing the Routh table

r^{5}	1	$\hat{k}-222$	$2 \hat{k}-3004$
r^{4}	3	$\hat{k}+422$	880
r^{3}	$\hat{k}-544$	$3 \hat{k}-4946$	
r^{2}	$\frac{\hat{k}^{2}-131 \hat{k}-214730}{\hat{k}-544}$	880	
r^{1}	$\frac{\left(\hat{k}^{3}-2073 \hat{k}^{2}+320392 \hat{k}+267210300\right)}{(\hat{k}-544)^{2}}$		
r^{0}	880		

one gets the specification satisfied for $\hat{k}>1815.4$.
Exercise 3 (i) For computing the forced response, one needs to rewrite the input

$$
u(t)=\left\{\begin{array}{l}
1-e^{t-1} \text { as } t \in[0,1) \\
t-1 \text { as } t \in[1,2) \\
1 \text { as } t \geq 2
\end{array}\right.
$$

as the linear combination of elementary signals. Accordingly, one gets

$$
u(t)=u_{1}(t)-e^{-1} u_{2}(t)-u_{1}(t-1)+u_{2}(t-1)+u_{3}(t-1)-u_{3}(t-2)
$$

with

$$
u_{1}(t)=1_{+}, \quad u_{2}(t)=e_{+}^{t}, \quad u_{3}(t)=t_{+} .
$$

Accordingly, as the system is time-invariant and linear, the output response can be computed as

$$
\begin{equation*}
y(t)=y_{1}(t)-e^{-1} y_{2}(t)-y_{1}(t-1)+y_{2}(t-1)+y_{3}(t-1)-y_{3}(t-2) \tag{3}
\end{equation*}
$$

with

$$
y_{i}(t)=\mathcal{L}^{-1}\left(P(s) u_{i}(s)\right)[t], \quad u_{i}(s)=\mathrm{L}\left(u_{i}(t)\right)[s], \quad i=1,2,3 .
$$

In particular, one has

$$
\begin{aligned}
y_{1}(t) & =K \mathcal{L}^{-1}\left(\frac{1}{s(1+s)}\right)[t]=K \mathcal{L}^{-1}\left(\frac{1}{s}\right)[t]-K \mathcal{L}^{-1}\left(\frac{1}{1+s}\right)[t]=K\left(1_{+}-e_{+}^{-t}\right) \\
y_{2}(t) & =K \mathcal{L}^{-1}\left(\frac{1}{(s-1)(s+1)}\right)[t]=\frac{K}{2} \mathcal{L}^{-1}\left(\frac{1}{s-1}\right)[t]-\frac{K}{2} \mathcal{L}^{-1}\left(\frac{1}{s+1}\right)[t]=\frac{K}{2}\left(e_{+}^{t}-e_{+}^{-t}\right) \\
y_{3}(t) & =K \mathcal{L}^{-1}\left(\frac{1}{s^{2}(s+1)}\right)[t]=K \mathcal{L}^{-1}\left(\frac{1}{s+1}\right)[t]-K \mathcal{L}^{-1}\left(\frac{1}{s}\right)[t]+\mathcal{L}^{-1}\left(\frac{1}{s^{2}}\right)[t] \\
& K\left(e_{+}^{-t}-1_{+}+t_{+}\right) .
\end{aligned}
$$

By substituting, after suitable time-shift, the above equalities in (3) one gets the result.
(ii) The system has a well-define steady-state response as it is asymptotically stable (all poles, that we assume also as eigenvalues, are with negative real part). The steady-state response can be computed starting from (3) by neglecting all terms whose effect is vanishing in time. Accordingly, one gets

$$
y_{s s}(t)=K
$$

(iii) The settling time is defined as the time instant $T_{s}>0$ for which the output response remains within 5% of its steady-state values for all $t \geq T_{s}$. Accordingly, by defining the transient response as $y_{\operatorname{tran}}(t)=y(t)-y_{s s}(t)$ one gets that K needs to be chosen so that, for $T_{s} \leq 10^{-3}$ and for all $t \geq T_{s}$

$$
\left|y_{\text {tran }}(t)\right| \leq 0.05\left|y_{s s}(t)\right| .
$$

By rewriting $y_{\operatorname{tran}}(t)=K \bar{y}_{\text {tran }}(t)$ and $y_{s s}(t)=K \bar{y}_{s s}(t)$ one gets that the above equality is independent upon K so that it is not possible to set the gain to decrease at will the settling time.

