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Exercise 1 Denoting L(s) = G(s)P (s), one has

y(s) = W (s)v(s), e(s) = We(s)v(s)

with W (s) = L(s)
1+L(s) and We(s) = 1

1+L(s) . As usual, we shall split the controller in two loops;

namely, G(s) = G2(s)G1(s) with G1(s) designed for satisfying steady-state specifications (i.e.,
(ii)) whereas the outer loop G2(s) is defined for transient and stability requirements (i.e., (iii)
and (i)).

(ii) Set for the time being G2(s) = 1. As ess(t) = We(0)t+ ∂We
∂s (0), when v(t) = t, one needs

We(0) = 0 and ∂We
∂s (0) = 0. Accordingly, two integrating actions are needed. As the

plant itself already possesses a pole at s = 0, we set the inner control loop G1(s) = 1
s .

(iii) By inspecting the Bode Plots of

L1(s) = G1(s)P (s) =
1

s2(s− 1)
(1)

reported in Figure 1, one notices that the outer loop control action G2(s) needs to be
chosen so to

1. increase the value of the phase at ω∗t = 3 rad/s as so that m∗ϕ = 180o+∠G2(jω
∗
t )|+

∠L1(jω
∗
t ) ≥ 30o with ∠L1(jω

∗
t ) = −360o+71.57o so implying ∠G2(jω

∗
t )| ≥ 138.43o.

2. decrease the magnitude at ω∗t = 3 rad/s so to guarantee |G2(jω
∗
t )|dB+|L1(jω

∗
t )|dB =

0 with |L1(jω
∗
t )|dB ≈ −29.08

Accordingly, as no bound is apriori set over the gain of G2(s) (that is G2(0)), we shall
design the outer loop as composed of anticipating actions aimed at increasing the phase
at ω∗t = 3 rad/s and a gain to make ω∗t = 3 rad/s the new cross-over frequency.

Thus, the structure we propose for G2(s) is the following one

G2(s) = kGa(s), k > 0

with Ga(s) = G1
a(s)G

2
a(s). In particular, we introduce 3 anticipating actions of the form

G1
a(s) =

( 1 + τ1as

1 + τ1a
m1

a
s

)2
, G2

a(s) =
1 + τ2as

1 + τ2a
m2

a
s

with

• G1
a(s) composed of two identical anticipating functions acting at ω1

N = 3 rad/sec
with m1

a = 16 (that is at τ1a = 1) so that ∠G1
a(jω

∗
t ) ≈ 121o and |G1

a(jω
∗
t )|dB ≈ 20.08.

• G2
a(s) being one anticipating function with ω2

N = 5 rad/sec and m2
a = 3 (that is

τ2a = 5
3) so that ∠G2

a(jω
∗
t ) ≈ 20o and |G2

a(jω
∗
t )|dB ≈ 8.

In this way, as k > 0, m∗ϕ = 32.57o whereas k needs to be chosen so that |k|dB +
|Ga(jω∗t )|dB − 29.08 = 0 with |Ga(jω∗t )|dB ≈ 28.08 so requiring k = 1.124. The bode
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Figure 1: Bode plots of (1)
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Figure 2: Bode plots of (2)
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Figure 3: Nyquist plot of (2)

plots of

L(s) = G2(s)G1(s)P (s) = 1.124
( 1 + s

1 + 1
16s

)2 1 + 5
3s

1 + 5
9s

1

s2(s− 1)
(2)

are reported in Figure 2.

(i) The Nyquist plot of (2) is reported in Figure 3. The number of counter-clockwise en-
circlements of −1 + j0 on behalf of the extended Nyquist plot of L(jω) is 1 that is
also coincident with the open loop poles with positive real part. Thus, the system is
asymptotically stable in closed loop.

Exercise 2 a) Denoting by n and m the number of poles and zeros of the transfer function, the
relative degree of P (s) is given by r = n−m = 1. Accordingly, the root locus possesses
two asymptotes centered at

s0 =
1 + 5

2
= 3

that can be discarded. Introducing k ∈ R and defining p(s, k) = (s2+1)(s−1)+k(s+5) as
the polynomial defining the closed-loop poles under G(s) = k, one gets that singularities
are the solutions to

p(s, k) = s3 − s2 + (k + 1)s+ 5k − 1 = 0

∂p(s, k)

∂s
= 3s2 − 2s+ k + 1 = 0

By solving the equations above, it turns out that the negative locus possesses one sin-
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Figure 4: Root Locus of P (s) = s+5
(s−1)(s2+1)

.

gularity with multiplicity µ = 2 in correspondence of (s∗, k∗) ≈ (−7.7,−194.27). What
is left to do is now is to quantify the number of intersection of the root locus with the
imaginary axis. Those intersecting points correspond to values of k ∈ R for which the
Routh table of p(s, k) = s3 + (k + 9)s2 + (4k + 14)s + 4k − 24 is not regular. Thus, by
developing computations one gets

r3 1 k + 1
r2 −1 5k − 1
r1 −6k
r0 5k − 1.

The Routh table is not regular for k = 1
5 and k = 0 so implying that the positive locus

intersects the imaginary axis in correspondence of k = 1
5 corresponding to the closed-

loop pole s = 0 and at k = 0 corresponding to the open loop poles s = ±j. The root
locus is reported in Figure 4.

b) From the above root locus and the Routh table it is evident that there exists no controller
G(s) = k asymptotically stabilizing the feedback system.

c) For ensuring zero-steady state error to constant inputs, the controller G(s) must possess
a pole at s = 0. Thus, we set p1 = 0 and, for the sake of notations, we shall denote
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hereinafter p = p2. Thus, by denoting

L(s) = k
(1 + z1s)(1 + z2s)(s+ 5)

s(s2 + 1)(s− 1)(s+ p)
= k̂

(s+ ẑ1)(s+ ẑ2)(s+ 5)

s(s2 + 1)(s− 1)(s+ p)

one gets that a necessary condition for assigning the poles with real part smaller or equal
than 3 is that the new center of the asymptotes satisfies

s′0 =
3− p+ ẑ1 + ẑ2

2
< −3.

Accordingly, p, ẑ1 and ẑ2 can be fixed as p = 25, ẑ1 = 3 and ẑ2 = 4 so getting s′0 = −6 and
implying z1 = 1

3 , z2 = 1
4 and k = 12k̂. At this point, one can set k̂ ∈ R (or equivalently

k ∈ R) by invoking the extended Routh criterion. Namely, one sets k̂ so to make the
shifted closed-loop polynomial

p∗L(s, k̂) = pL(s− 3, k̂) =(s− 3)(s2 − 6s+ 10)(s− 4)(s+ 22) + k̂s(s+ 1)(s+ 2)

=s5 + 9s4 + (k̂ − 222)s3 + (3k̂ + 1266)s2 + (2k̂ − 3004)s+ 2640

Hurwitz. By computing the Routh table

r5 1 k̂ − 222 2k̂ − 3004

r4 3 k̂ + 422 880

r3 k̂ − 544 3k̂ − 4946

r2 k̂2−131k̂−214730
k̂−544

880

r1 (k̂3−2073k̂2+320392k̂+267210300)

(k̂−544)2

r0 880

one gets the specification satisfied for k̂ > 1815.4.

Exercise 3 (i) For computing the forced response, one needs to rewrite the input

u(t) =


1− et−1 as t ∈ [0, 1)

t− 1 as t ∈ [1, 2)

1 as t ≥ 2.

as the linear combination of elementary signals. Accordingly, one gets

u(t) = u1(t)− e−1u2(t)− u1(t− 1) + u2(t− 1) + u3(t− 1)− u3(t− 2)

with

u1(t) = 1+, u2(t) = et+, u3(t) = t+.

Accordingly, as the system is time-invariant and linear, the output response can be
computed as

y(t) = y1(t)− e−1y2(t)− y1(t− 1) + y2(t− 1) + y3(t− 1)− y3(t− 2) (3)
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with

yi(t) = L−1(P (s)ui(s))[t], ui(s) = L(ui(t))[s], i = 1, 2, 3.

In particular, one has

y1(t) = KL−1( 1

s(1 + s)
)[t] = KL−1(1

s
)[t]−KL−1( 1

1 + s
)[t] = K(1+ − e−t+ )

y2(t) = KL−1( 1

(s− 1)(s+ 1)
)[t] =

K

2
L−1( 1

s− 1
)[t]− K

2
L−1( 1

s+ 1
)[t] =

K

2
(et+ − e−t+ )

y3(t) = KL−1( 1

s2(s+ 1)
)[t] = KL−1( 1

s+ 1
)[t]−KL−1(1

s
)[t] + L−1( 1

s2
)[t]

K(e−t+ − 1+ + t+).

By substituting, after suitable time-shift, the above equalities in (3) one gets the result.

(ii) The system has a well-define steady-state response as it is asymptotically stable (all poles,
that we assume also as eigenvalues, are with negative real part). The steady-state response
can be computed starting from (3) by neglecting all terms whose effect is vanishing in time.
Accordingly, one gets

yss(t) = K.

(iii) The settling time is defined as the time instant Ts > 0 for which the output response remains
within 5% of its steady-state values for all t ≥ Ts. Accordingly, by defining the transient
response as ytran(t) = y(t)− yss(t) one gets that K needs to be chosen so that, for Ts ≤ 10−3

and for all t ≥ Ts

|ytran(t)| ≤ 0.05|yss(t)|.

By rewriting ytran(t) = Kȳtran(t) and yss(t) = Kȳss(t) one gets that the above equality is
independent upon K so that it is not possible to set the gain to decrease at will the settling
time.


