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Exercise 1 Denoting L(s) = G(s)P(s), one has

with W(s) = 14]3?()5») and We(s) = m As usual, we shall split the controller in two loops;
namely, G(s) = G2(s)G1(s) with G1(s) designed for satisfying steady-state specifications (i.e.,
(7i)) whereas the outer loop G(s) is defined for transient and stability requirements (i.e., (7i7)
and (7).

(ii) Set for the time being Ga(s) = 1. As es5(t) = W (0)t + agf (0), when v(t) = t, one needs

W.(0) = 0 and 855 ¢(0) = 0. Accordingly, two integrating actions are needed. As the

plant itself already possesses a pole at s = 0, we set the inner control loop Gy (s) = +

<
(iii) By inspecting the Bode Plots of

1

Li(s) = Gi(s)P(s) = 21 (1)

reported in Figure 1, one notices that the outer loop control action Ga(s) needs to be
chosen so to

1. increase the value of the phase at wj = 3 rad/s as so that my, = 180° + £LGa(jw;)| +
ZLi(jwf) > 30° with ZLq (jw;) = —360°+T71.57° so implying ZG2(jw;)| > 138.43°.

2. decrease the magnitude at wf = 3 rad/s so to guarantee |G2(jw;)|a +|L1(jwi)|ap =
0 with |Li(jw])|ap = —29.08

Accordingly, as no bound is apriori set over the gain of Ga(s) (that is G2(0)), we shall
design the outer loop as composed of anticipating actions aimed at increasing the phase
at wi = 3 rad/s and a gain to make w; = 3 rad/s the new cross-over frequency.

Thus, the structure we propose for Ga(s) is the following one
Ga(s) = kGa(s), k>0

with G, (s) = GL(s)G2(s). In particular, we introduce 3 anticipating actions of the form

1+7ls\2 1+72
Gh(s) = (—T Y, Gy = 8"
1+ &5 1+ %5

with
e Gl(s) composed of two identical anticipating functions acting at Wzl\r = 3 rad/sec
with m} = 16 (that is at 7} = 1) so that ZGL(jw}) ~ 121° and |GL(jw;)|ap ~ 20.08.
e G2(s) being one anticipating function with w%, = 5 rad/sec and m2 = 3 (that is
72 = 2) so that ZG2(jw}) ~ 20° and |G2(jw})|a ~ 8.

In this way, as k > 0, my, = 32.57% whereas k needs to be chosen so that |k|sp +
|Ga(jwi)lap — 29.08 = 0 with |G, (jw;)|ap ~ 28.08 so requiring k = 1.124. The bode
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Figure 1: Bode plots of (1)
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Bode Diagram
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Figure 2: Bode plots of (2)
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Figure 3: Nyquist plot of (2)

plots of

1+s\21+3s 1
1+ 56/ 14+ 3ss%(s—1)

L(s) = Ga(s)G1(s)P(s) = 1.124( 2)

are reported in Figure 2.

(i) The Nyquist plot of (2) is reported in Figure 3. The number of counter-clockwise en-
circlements of —1 4+ j0 on behalf of the extended Nyquist plot of L(jw) is 1 that is
also coincident with the open loop poles with positive real part. Thus, the system is
asymptotically stable in closed loop.

Exercise 2 a) Denoting by n and m the number of poles and zeros of the transfer function, the
relative degree of P(s) is given by » = n —m = 1. Accordingly, the root locus possesses
two asymptotes centered at

145
So=—5— = 3
that can be discarded. Introducing k € R and defining p(s, k) = (s?+1)(s—1)+k(s+5) as
the polynomial defining the closed-loop poles under G(s) = k, one gets that singularities
are the solutions to

p(s,k) =8> —s*+ (k+1)s+5k—1=0
Ip(s, k)

=32~ 25s+k+1=0
0s

By solving the equations above, it turns out that the negative locus possesses one sin-
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Figure 4: Root Locus of P(s) = #jﬂl)

gularity with multiplicity u = 2 in correspondence of (s*, k*) ~ (—7.7,—194.27). What
is left to do is now is to quantify the number of intersection of the root locus with the
imaginary axis. Those intersecting points correspond to values of k£ € R for which the
Routh table of p(s, k) = s® + (k + 9)s% + (4k + 14)s + 4k — 24 is not regular. Thus, by
developing computations one gets

7 1 k+1

r2] -1  5k-1

rt —6k

0 | 5k — 1.
The Routh table is not regular for k = % and k£ = 0 so implying that the positive locus
intersects the imaginary axis in correspondence of k = % corresponding to the closed-

loop pole s = 0 and at k = 0 corresponding to the open loop poles s = +j. The root
locus is reported in Figure 4.

b) From the above root locus and the Routh table it is evident that there exists no controller
G(s) = k asymptotically stabilizing the feedback system.

c) For ensuring zero-steady state error to constant inputs, the controller G(s) must possess
a pole at s = 0. Thus, we set p; = 0 and, for the sake of notations, we shall denote



Control Systems 05/06/2018

hereinafter p = po. Thus, by denoting

(1+2z18)(1 + 298)(s +5) _ ]%(3 + 21)(s+ 22)(s + 5)

)= o 6D+ @+ De- D+

one gets that a necessary condition for assigning the poles with real part smaller or equal
than 3 is that the new center of the asymptotes satisfies

3—p+2+2
sTptaita

/
Sn =
0 2

Accordingly, p, 21 and 25 can be fixed as p = 25, 2; = 3 and 22 = 4 so getting s;, = —6 and
implying z; = %, Zz9 = % and k = 12k. At this point, one can set k£ € R (or equivalently
k € R) by invoking the extended Routh criterion. Namely, one sets k so to make the

shifted closed-loop polynomial

pi(s,k) = pr(s — 3,k) =(s = 3)(s* — 65+ 10) (s — 4)(s + 22) + ks(s + 1)(s +2)
=5° + 95 + (k — 222)s% + (3k 4 1266)s> + (2k — 3004)s + 2640

Hurwitz. By computing the Routh table

rd 1 k—222 2k — 3004
r4 3 k + 422 880
r3 k — 544 3k — 4946

2 k2—131k—214730
r A = 880
7“1 (k3—2073k2+320392k+267210300)

(k—544)2

rY 880

one gets the specification satisfied for k> 1815.4.

Exercise 3 (i) For computing the forced response, one needs to rewrite the input

1—et"taste]0,1)
u(t) = t—1lastel(l,2)
last>2.

as the linear combination of elementary signals. Accordingly, one gets
u(t) = uy(t) — e tug(t) —ug(t — 1) +ug(t — 1) +ug(t — 1) — uz(t — 2)
with
ui(t) =14, us(t) = ek, us(t) =ty

Accordingly, as the system is time-invariant and linear, the output response can be
computed as

y(t) =y (t) — e ya(t) =yt — 1) + 92t — 1) + ys(t — 1) — ys(t — 2) (3)
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with

In particular, one has

1) = KL (o)l = KL Q) = KL ()l = K (L = o)
lt) = KL (el = 5 £ ol = 567 (ol = (el =)
lt) = KL ()l = KL ()l = KE Q)+ £7 ()l

K(el' — 14 4+ t3).
By substituting, after suitable time-shift, the above equalities in (3) one gets the result.

(ii) The system has a well-define steady-state response as it is asymptotically stable (all poles,
that we assume also as eigenvalues, are with negative real part). The steady-state response

can be computed starting from (3) by neglecting all terms whose effect is vanishing in time.
Accordingly, one gets

Yss(t) = K.

(iii) The settling time is defined as the time instant T > 0 for which the output response remains
within 5% of its steady-state values for all ¢ > Ts. Accordingly, by defining the transient

response as Yyan(t) = y(t) — yss(t) one gets that K needs to be chosen so that, for T < 1073
and for all t > T

|ytran(t)’ § 005’yss(t)|

By rewriting Yran(t) = Ktran(t) and yss(t) = Kyss(t) one gets that the above equality is
independent upon K so that it is not possible to set the gain to decrease at will the settling
time.



