Control Systems
 5/2/2019(A)

Exercise 1 We have in Laplace domain

$$
Y(s)=\frac{P(s)}{1+L(s)} d(s)+\frac{L(s)}{1+L(s)} v(s), L(s)=G(s) P(s),
$$

so that $W_{d}(s)=\frac{P(s)}{1+L(s)}$ (disturbance-to-output transfer function) and $W_{e}(s)=\frac{1}{1+L(s)}$ (input-to-error transfer function).
(i) Since there is no integral action before the entering point of d, we set $G(s)=\frac{1}{s} \tilde{G}(s)$ so that the steady state response with constant disturbances is

$$
y_{0}=W_{d}(0)=0
$$

(ii),(iii) From (ii) we have the following constraint on $\tilde{G}(s):|\tilde{G}(j \omega)| \leq 36 \mathrm{~dB}$ for all ω. The Bode plots of $\tilde{P}(s)=\frac{1}{s} P(s)$ are drawn in Fig. 1.
We have form the Bode plots in Fig. 1

$$
\begin{aligned}
|\tilde{P}(j 5)|_{d B} & \approx-27.8 d B, \operatorname{Arg}(\tilde{P}(j 5)) \\
|\tilde{P}(j 10)|_{d B} & \approx 40 d B, \operatorname{Arg}(\tilde{P}(j 10)) \approx-181^{\circ}
\end{aligned}
$$

Let us place the new crossover frequency ω_{t}^{*} at $5 \mathrm{rad} / \mathrm{sec}$ with the desired phase margin $\geq 30^{\circ}$, using $\tilde{G}(s)$ and recalling that we must satisfy $\operatorname{vert} \tilde{G}(j \omega) \mid \leq 36 \mathrm{~dB}$ for all ω. For doing this, $\tilde{G}(s)$ must be such that

$$
|\tilde{G}(j 5)|_{d B} \approx 27.8 d B, \operatorname{Arg}(\tilde{G}(j 5)) \approx 42^{\circ}
$$

Let

$$
\tilde{G}(s)=K R_{a}(s)=K \frac{1+\tau_{a} s}{1+\frac{\tau_{a}}{m_{a}} s}
$$

and choose (from the compensating functions Bode plots) $m_{a}=6, \omega_{N}=2 \mathrm{rad} / \mathrm{sec}$ with $\omega_{t}^{*}=5$. At $\omega_{N}=2 \mathrm{rad} / \mathrm{sec}$ we have magnitude increase equal to 6 dB and phase increase equal to 45°. For $\omega_{t}^{*}=5$ we obtain $2=\omega_{N}=\omega_{t}^{*} \tau_{a}=5 \tau_{a} \Rightarrow \tau_{a}=2 / 5$.
We have $\left|R_{a}\left(j \omega_{t}^{*}\right) P\left(j \omega_{t}^{*}\right)\right|=-27.8+6 d B=-21.8 d B$ and $\operatorname{Arg}() \approx-191^{\circ}+45^{\circ}=146^{\circ}$ which would imply a phase margin $\approx 34^{\circ} \geq 30^{\circ}$ (as required by (iii)). For having an overall magnitude increase of $27.8 d B$ at $\omega_{t}^{*}=5 \mathrm{rad} / \mathrm{sec}$ we choose a proportional action $K=21.8 d B$ so that to have $\omega_{t}^{*} \approx 5 \mathrm{rad} / \mathrm{sec}$. Our controller $G(s)$ is finally

$$
\tilde{G}(s)=12.28 \frac{1+\frac{2}{5} s}{1+\frac{1}{15} s}
$$

Figure 1: Bode plots of $\frac{1}{s} P(s)$

Figure 2: Bode plots of $G(s) P(s)$

The Bode plots of $G(s) P(s)$ and its Nyquist plot are drawn in Fig. 2 and 3. The Nyquist plot shows that the closed-loop system is asymptotically stable (we have $-1+1=0$ counterclockwise tours around the point $-1+0 j$).

Exercise 2 We have in Laplace domain

$$
Y(s)=\frac{L_{1}(s)}{1+L_{2}(s)} d_{1}(s)+\frac{1}{P(s)} \frac{L_{1}(s)}{1+L_{2}(s)} d_{2}(s)+\frac{L_{2}(s)}{1+L_{2}(s)} v(s)
$$

where $L_{1}(s)=\frac{P(s)}{1+P(s)}$ and $L_{2}(s)=G(s) L_{1}(s)$.
(ii) Since the d_{1} to y transfer function is $W_{d_{1}}(s)=\frac{L_{1}(s)}{1+L_{2}(s)}$ we must have for unit ramp disturbance d_{1}

$$
\left|\frac{1}{s} \frac{L_{1}(s)}{1+L_{2}(s)}\right|_{s=0} \leq 0.1 \Rightarrow \left\lvert\, \frac{\left.N U M(G(s))\right|_{s=0}}{\left.\operatorname{DEN}(s G(s))\right|_{s=0}} \leq 0.1\right.
$$

Figure 3: Nyquist plot of $G(s) P(s)$
which implies that $G(s)=\frac{K_{G, 1}}{s} G_{2}(s)$ with

$$
\left|K_{G, 1}\right| \geq 10 .
$$

Choose $\left|K_{G, 1}\right|=10$.
(iii) Since the d_{1} to y transfer function is $W_{d_{2}}(s)=\frac{1}{P(s)} \frac{L_{1}(s)}{1+L_{2}(s)}$ we must have for constant disturbance d_{2}

$$
\left.\frac{1}{P(s)} \frac{L_{1}(s)}{1+L_{2}(s)}\right|_{s=0}=0
$$

which is true thanks to the pole at $s=0$ in $G(s)$.
(i) Recall that $G(s)$ is required to be two-dimensional. Therefore, $\tilde{G}(s)$ may have the form $\frac{K_{G_{2}}(s+z)^{2}}{s+p}$ so that $G(s)=\frac{1}{s} \tilde{G}(s)$ is indeed two dimensional and realizable (two pole-zero actions plus a proportional action). The direct path transfer function is

$$
L_{2}(s)=G(s) L_{1}(s)=10 \frac{s+2}{s^{2}(s-1)^{2}} \tilde{G}(s)
$$

the first zero of $\tilde{G}(s)$ will decrease the zero-pole excess from 3 to 2 and the zero-pole action will move the asymptote center to the left: the new asymptote center will be required to satisfy

$$
s_{0}^{\prime}=\frac{4-p+2 z}{2}<-1
$$

Moreover, notice that the zeroes of $L_{2}(s)$ must be all with real part <-1 (in such a way that by increasing the gain the closed-loop poles will move to the left of $\operatorname{Re}(s)=-1)$. We choose $z=3$ and $p=20$. Next, we choose $K_{G_{2}}$ from the Routh table of $\left.N U M(1+G(s) P(s))\right|_{s-1}=$ $s^{5}+13 s^{4}+(K-10) s^{3}+(5 K+235) s^{2}(8 K-224) s+4 K+76$. We obtain as first column of

Figure 4: Positive root locus of $P(s)=\frac{(s+1)^{2}}{(s-1)\left(s^{2}+1\right)}$

Figure 5: Negative root locus of $P(s)=\frac{(s+1)^{2}}{(s-1)\left(s^{2}+1\right)}$
the Routh table

$$
\begin{array}{r}
1 \\
13 \\
2 K_{G_{2}}-62 \\
\frac{10 K_{G_{2}}^{2}-165 K_{G_{2}}-4859}{2\left(K_{G_{2}}-31\right)} \\
\frac{18 K_{G_{2}}^{3}-839 K_{G_{2}}^{2}+404 K_{G, 2}+256733}{10 K_{G_{2}}^{2}-165 K_{G_{2}}-4859} \\
4 K_{G_{2}}+76
\end{array}
$$

which gives $K_{G_{2}}>\max \{31,19,31.78\}=31.78$ for having no sign variations.

Figure 6: Positive root locus of $P(s)=\frac{(s+1)^{2}}{s(s-1)\left(s^{2}+1\right)}$

Exercise 3. (i) The zero-pole excess is $n-m=1$, the asymptote center $s_{0}=1+21=3$ (it is not useful for $n-m=1$) and the singular points are determined by the equations:

$$
\begin{array}{r}
p(s, k)=\left(s^{2}+1\right)(s-1)+K(s+1)^{2}=0 \\
\frac{d}{d s} p(s, k)=2 s^{2}-2 s+s^{2}+1+2 K(s+1)=0
\end{array}
$$

We obtain as solution $s \approx-3.95$. From the Routh table of $N U M(1+K P(s))=s^{3}+(K-$ 1) $s^{2}+(1+2 K) s+K-1$ we obtain as first column

$$
\begin{array}{r}
1 \\
K-1 \\
2 K \\
K-1
\end{array}
$$

which implies $K>1$ for having no sign variations. Therefore, the closed-loop system with any $G(s)=K>1$ is asymptotically stable. The root locuses of $P(s)=\frac{(s+1)^{2}}{(s-1)\left(s^{2}+1\right)}$ have been drawn in Figg. 4 and 5.
(ii) The root locuses of $P(s)=\frac{(s+1)^{2}}{s(s-1)\left(s^{2}+1\right)}$ have been drawn in Figg. 4 and 5. Notice the singular points $s \approx 0.2 \pm 0.6 j$ for $K \approx 0.2$ and $s \approx 0.4$ for $K \approx 0.1$ for the positive locus (Fig. 6) and $s \approx-2.4$ for $K \approx-28$ for the negative locus (Fig. 7). From the Routh table of $\operatorname{NUM}(1+K P(s))=s^{4}-s^{3}+(K+1) s^{2}+(2 K-1) s+K$ we obtain as first column

$$
\begin{array}{r}
1 \\
-1 \\
3 K \\
2 K(3 K-1) \\
K
\end{array}
$$

which implies there is no $G(s)=K$ for which the closed-loop system is asymptotically stable.

Figure 7: Negative root locus of $\frac{(s+1)^{2}}{s(s-1)\left(s^{2}+1\right)}$

Exercise 4. Our process

$$
\begin{equation*}
\dot{x}=A x+B u+\tilde{P} d, y=C x \tag{1}
\end{equation*}
$$

where

$$
A=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), B=\binom{0}{1}, \tilde{P}=\binom{1}{0}, C=\left(\begin{array}{ll}
1 & 0
\end{array}\right) .
$$

We first check that (A, B) is stabilizable. Indeed, it is even controllable $(R=(B \quad 1 A B)=$ $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$).
We solve the problem with the output regulation procedure. Since $d=D \sin t$ we choose an exosystem for d of the form

$$
\dot{w}_{d}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) w_{d}=S_{d} w_{d}
$$

and its solutions have the form

$$
w_{d}(t)=\left(\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right) w_{d}(0)
$$

so that the disturbance is generated as $d(t)=\left(\begin{array}{ll}1 & 0\end{array}\right) w_{d}(t)=Q_{d} d(t)$ corresponding to the initial conditions $w_{d}(0)=\binom{0}{D}$.
Since $v=\delta_{-1}(t)$ we choose an exosystem for v of the form

$$
\dot{w}_{v}=0=S_{v} w_{v}
$$

whose solutions have the form

$$
\dot{w}_{v}=w_{v}(0)
$$

so that the reference input v is generated as $v(t)=w_{v}(t)=Q_{v} v(t)$ corresponding to the initial conditions $w_{v}(0)=1$. In the overall, we have the exosystem

$$
\dot{w}=\left(\begin{array}{cc}
S_{d} & 0 \\
0 & S_{v}
\end{array}\right) w=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) w
$$

and $w=\binom{w_{d}}{w_{v}}$. The output of the exosystem $q=Q w$ for generating the vector $\binom{d}{v}$ (distrubances and reference inputs) will be

$$
q=\binom{d}{v}=Q w=\left(\begin{array}{cc}
Q_{d} & 0 \\
0 & Q_{v}
\end{array}\right) w=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) w
$$

Finally the tracking error is defined as

$$
e=y-v=C x-Q_{v} w=\left(\begin{array}{ll}
1 & 0
\end{array}\right) x-\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right) w
$$

The process (1) together with the exosystem becomes

$$
\begin{array}{r}
\dot{x}=A x+B u+P d, \\
\dot{w}=S w, \\
e=C x+Q w, \tag{2}
\end{array}
$$

with

$$
P=\tilde{P} Q_{w}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), Q=-Q_{v}=\left(\begin{array}{lll}
0 & 0 & -1
\end{array}\right) .
$$

The regulator equations to be solved foursome $\Pi \in \mathbb{R}^{2 \times 3}$ and $\Gamma \in \mathbb{R}^{1 \times 3}$ are

$$
\begin{array}{r}
\Pi S=A \Pi+B \Gamma+P \\
C \Pi=Q
\end{array}
$$

From the second equation

$$
\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\binom{\pi_{1}}{\pi_{2}} \Rightarrow \pi_{1}=\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right)
$$

and using this in the first equation we get

$$
\pi_{2}=\left(\begin{array}{lll}
-1 & 0 & 0
\end{array}\right), \Gamma=\left(\begin{array}{lll}
0 & -1 & 0
\end{array}\right) .
$$

Therefore,

$$
\Pi=\left(\begin{array}{ccc}
0 & 0 & 1 \\
-1 & 0 & 0
\end{array}\right), \Gamma=\left(\begin{array}{lll}
0 & -1 & 0
\end{array}\right)
$$

and the (state feedback) regulator is given by

$$
u=F(x-\Pi w)+\Gamma w
$$

where $F \in \mathbb{R}^{1 \times 2}$ is any matrix for which $\sigma(A+B F) \in \mathbb{C}^{-}$(use Ackermann's formula for finding $\left.F: F=-\gamma p^{*}(A)\right)$. For example, with $F=\left(\begin{array}{ll}-1 & -2\end{array}\right)$ we assign the eigenvalues of $A+B F$ both in -1 .

