
Control Systems
5/2/2019(A)

Exercise 1 We have in Laplace domain

Y (s) =
P (s)

1 + L(s)
d(s) +

L(s)

1 + L(s)
v(s), L(s) = G(s)P (s),

so that Wd(s) = P (s)
1+L(s) (disturbance-to-output transfer function) and We(s) = 1

1+L(s) (input-

to-error transfer function).

(i) Since there is no integral action before the entering point of d, we set G(s) = 1
s G̃(s) so

that the steady state response with constant disturbances is

y0 = Wd(0) = 0

(ii),(iii) From (ii) we have the following constraint on G̃(s) : |G̃(jω)| ≤ 36 dB for all ω. The
Bode plots of P̃ (s) = 1

sP (s) are drawn in Fig. 1.

We have form the Bode plots in Fig. 1

|P̃ (j5)|dB ≈ −27.8dB, Arg(P̃ (j5)) ≈ −191◦

|P̃ (j10)|dB ≈ 40dB, Arg(P̃ (j10)) ≈ −180◦

Let us place the new crossover frequency ω∗t at 5 rad/sec with the desired phase margin ≥ 30◦,
using G̃(s) and recalling that we must satisfy vertG̃(jω)| ≤ 36 dB for all ω. For doing this,
G̃(s) must be such that

|G̃(j5)|dB ≈ 27.8dB, Arg(G̃(j5)) ≈ 42◦

Let

G̃(s) = KRa(s) = K
1 + τas

1 + τa
ma
s

and choose (from the compensating functions Bode plots) ma = 6, ωN = 2 rad/sec with
ω∗t = 5. At ωN = 2 rad/sec we have magnitude increase equal to 6 dB and phase increase
equal to 45◦. For ω∗t = 5 we obtain 2 = ωN = ω∗t τa = 5τa ⇒ τa = 2/5.

We have |Ra(jω∗t )P (jω∗t )| = −27.8 + 6dB = −21.8dB and Arg() ≈ −191◦ + 45◦ = 146◦

which would imply a phase margin ≈ 34◦ ≥ 30◦(as required by (iii)). For having an overall
magnitude increase of 27.8dB at ω∗t = 5 rad/sec we choose a proportional action K = 21.8dB
so that to have ω∗t ≈ 5 rad/sec. Our controller G(s) is finally

G̃(s) = 12.28
1 + 2

5s

1 + 1
15s
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Figure 1: Bode plots of 1
sP (s)
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Figure 2: Bode plots of G(s)P (s)

The Bode plots of G(s)P (s) and its Nyquist plot are drawn in Fig. 2 and 3. The Nyquist
plot shows that the closed-loop system is asymptotically stable (we have −1 + 1 = 0 counter-
clockwise tours around the point −1 + 0j).

Exercise 2 We have in Laplace domain

Y (s) =
L1(s)

1 + L2(s)
d1(s) +

1

P (s)

L1(s)

1 + L2(s)
d2(s) +

L2(s)

1 + L2(s)
v(s)

where L1(s) = P (s)
1+P (s) and L2(s) = G(s)L1(s).

(ii) Since the d1 to y transfer function is Wd1(s) = L1(s)
1+L2(s)

we must have for unit ramp
disturbance d1 ∣∣∣1

s

L1(s)

1 + L2(s)

∣∣∣
s=0
≤ 0.1⇒

∣∣∣NUM(G(s))|s=0

DEN(sG(s))|s=0
≤ 0.1
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Figure 3: Nyquist plot of G(s)P (s)

which implies that G(s) =
KG,1

s G2(s) with

|KG,1| ≥ 10.

Choose |KG,1| = 10.

(iii) Since the d1 to y transfer function is Wd2(s) = 1
P (s)

L1(s)
1+L2(s)

we must have for constant
disturbance d2

1

P (s)

L1(s)

1 + L2(s)

∣∣∣
s=0

= 0

which is true thanks to the pole at s = 0 in G(s).

(i) Recall that G(s) is required to be two-dimensional. Therefore, G̃(s) may have the form
KG2

(s+z)2

s+p so that G(s) = 1
s G̃(s) is indeed two dimensional and realizable (two pole-zero

actions plus a proportional action). The direct path transfer function is

L2(s) = G(s)L1(s) = 10
s+ 2

s2(s− 1)2
G̃(s)

the first zero of G̃(s) will decrease the zero-pole excess from 3 to 2 and the zero-pole action
will move the asymptote center to the left: the new asymptote center will be required to
satisfy

s′0 =
4− p+ 2z

2
< −1

Moreover, notice that the zeroes of L2(s) must be all with real part < −1 (in such a way that
by increasing the gain the closed-loop poles will move to the left of Re(s) = −1). We choose
z = 3 and p = 20. Next, we choose KG2 from the Routh table of NUM(1 +G(s)P (s))|s−1 =
s5 + 13s4 + (K − 10)s3 + (5K + 235)s2(8K − 224)s+ 4K + 76. We obtain as first column of
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Figure 4: Positive root locus of P (s) = (s+1)2

(s−1)(s2+1)
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Figure 5: Negative root locus of P (s) = (s+1)2

(s−1)(s2+1)

the Routh table

1

13

2KG2 − 62

10K2
G2
− 165KG2 − 4859

2(KG2 − 31)

18K3
G2
− 839K2

G2
+ 404KG,2 + 256733

10K2
G2
− 165KG2 − 4859

4KG2 + 76

which gives KG2 > max{31, 19, 31.78} = 31.78 for having no sign variations.
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Figure 6: Positive root locus of P (s) = (s+1)2

s(s−1)(s2+1)

Exercise 3. (i) The zero-pole excess is n−m = 1, the asymptote center s0 = 1 + 21 = 3 (it is not
useful for n−m = 1) and the singular points are determined by the equations:

p(s, k) = (s2 + 1)(s− 1) +K(s+ 1)2 = 0

d

ds
p(s, k) = 2s2 − 2s+ s2 + 1 + 2K(s+ 1) = 0

We obtain as solution s ≈ −3.95. From the Routh table of NUM(1 + KP (s)) = s3 + (K −
1)s2 + (1 + 2K)s+K − 1 we obtain as first column

1

K − 1

2K

K − 1

which implies K > 1 for having no sign variations. Therefore, the closed-loop system with

any G(s) = K > 1 is asymptotically stable. The root locuses of P (s) = (s+1)2

(s−1)(s2+1)
have been

drawn in Figg. 4 and 5.

(ii) The root locuses of P (s) = (s+1)2

s(s−1)(s2+1)
have been drawn in Figg. 4 and 5. Notice the

singular points s ≈ 0.2 ± 0.6j for K ≈ 0.2 and s ≈ 0.4 for K ≈ 0.1 for the positive locus
(Fig. 6) and s ≈ −2.4 for K ≈ −28 for the negative locus (Fig. 7). From the Routh table of
NUM(1 +KP (s)) = s4 − s3 + (K + 1)s2 + (2K − 1)s+K we obtain as first column

1

−1

3K

2K(3K − 1)

K

which implies there is no G(s) = K for which the closed-loop system is asymptotically stable.
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Figure 7: Negative root locus of (s+1)2

s(s−1)(s2+1)

Exercise 4. Our process

ẋ = Ax+Bu+ P̃ d, y = Cx (1)

where

A =

(
0 1
0 0

)
, B =

(
0
1

)
, P̃ =

(
1
0

)
, C =

(
1 0

)
.

We first check that (A,B) is stabilizable. Indeed, it is even controllable (R =
(
B 1AB

)
=(

0 1
1 0

)
).

We solve the problem with the output regulation procedure. Since d = D sin t we choose an
exosystem for d of the form

ẇd =

(
0 1
−1 0

)
wd = Sdwd

and its solutions have the form

wd(t) =

(
cos t sin t
− sin t cos t

)
wd(0)

so that the disturbance is generated as d(t) =
(
1 0

)
wd(t) = Qdd(t) corresponding to the

initial conditions wd(0) =

(
0
D

)
.

Since v = δ−1(t) we choose an exosystem for v of the form

ẇv = 0 = Svwv

whose solutions have the form

ẇv = wv(0)
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so that the reference input v is generated as v(t) = wv(t) = Qvv(t) corresponding to the
initial conditions wv(0) = 1. In the overall, we have the exosystem

ẇ =

(
Sd 0
0 Sv

)
w =

 0 1 0
−1 0 0
0 0 0

w

and w =

(
wd
wv

)
. The output of the exosystem q = Qw for generating the vector

(
d
v

)
(distrubances and reference inputs) will be

q =

(
d
v

)
= Qw =

(
Qd 0
0 Qv

)
w =

(
1 0 0
0 0 1

)
w

Finally the tracking error is defined as

e = y − v = Cx−Qvw =
(
1 0

)
x−

(
0 0 1

)
w

The process (1) together with the exosystem becomes

ẋ = Ax+Bu+ Pd,

ẇ = Sw,

e = Cx+Qw, (2)

(3)

with

P = P̃Qw =

(
1 0 0
0 0 0

)
, Q = −Qv =

(
0 0 −1

)
.

The regulator equations to be solved foursome Π ∈ R2×3 and Γ ∈ R1×3 are

ΠS = AΠ +BΓ + P

CΠ = Q

From the second equation

(
0 0 1

)
=
(
1 0

)(π1
π2

)
⇒ π1 =

(
0 0 1

)
and using this in the first equation we get

π2 =
(
−1 0 0

)
, Γ =

(
0 −1 0

)
.

Therefore,

Π =

(
0 0 1
−1 0 0

)
, Γ =

(
0 −1 0

)
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and the (state feedback) regulator is given by

u = F (x−Πw) + Γw

where F ∈ R1×2 is any matrix for which σ(A + BF ) ∈ C− (use Ackermann’s formula for
finding F : F = −γp∗(A)). For example, with F =

(
−1 −2

)
we assign the eigenvalues of

A+BF both in −1.


