Control Systems
 4/6/2019(A)

Exercise 1 The armonic response $P(j \omega)$ has constant phase equal to -270°. Therefore, in order to obtain stability of the closed-loop system we need to increase the phase of $P(j \omega)$ and obtain the largest phase margin as possible (under the constraint of at most two anticipative actions: see the form of $G(s))$. The controller has the form

$$
G(j \omega)=K_{G, 1}\left(\frac{1+\tau_{1} s}{1+\tau_{2} s}\right)^{2}=K_{G, 1}\left(\frac{1+\tau_{a} s}{1+\frac{\tau_{a}}{m_{a}} s}\right)^{2}=K_{G, 1} G_{2}(s)
$$

with $t a u_{a}>0, m_{a}>1$ to be chosen (from the compensating functions plots). Let us consider first the steady state requirement (i) on the response to the disturbance $d(t)$. In order to guarantee the required attenuation of the steady state response it is necessary to guarantee that

$$
\left|W_{d}(j \omega)\right|=\left|\frac{1}{1+G(j \omega) P(j \omega)}\right| \leq 0.11, \forall \omega \in[0,0.1] \mathrm{rad} / \mathrm{sec}
$$

i.e.

$$
|1+G(j \omega) P(j \omega)| \geq \frac{1}{0.11}, \forall \omega \in[0,0.1] \mathrm{rad} / \mathrm{sec} .
$$

Since for all $\omega>0$

$$
|1+G(j \omega) P(j \omega)| \geq|G(j \omega) P(j \omega)|-1
$$

our condition becomes

$$
\begin{equation*}
|G(j \omega) P(j \omega)| \geq \frac{1}{0.11}+1 \approx 10=20 d B, \forall \omega \in[0,0.1] \mathrm{rad} / \mathrm{sec} . \tag{1}
\end{equation*}
$$

Since this means that the Bode plot of the magnitude of $G(j \omega) P(j \omega)$ must not enter the rectangle delimited by the frequencies $\omega \in[0,0.1] \mathrm{rad} / \mathrm{sec}$ and the magnitudes $[0,20] d B$. This implies that the crossover frequency ω_{t}^{*} must be certainly greater than $0.1 \mathrm{rad} / \mathrm{sec}$.
As to requirement (ii) the gain $K_{G, 1}$ must be sufficiently less than 1 and positive in order counteract the magnitude increase due to the anticipative actions (this also introduce a further limitation on the maximum achievable phase margin). However, the value of $K_{g, 1}$ cannot be arbitrarily small on account of the constraint (1). Inspection of the Bode plot of $P(j \omega)$ (Fig. 1) leads to the conclusion that a good choice of $K_{G, 1}$ is $\geq-20 \mathrm{~dB}$. As a matter of fact since $|P(j 0.1)|=60 d B$ this choice guarantees that in any case $|G(j \omega) P(j \omega)| \geq 20 d B$ since the anticipative actions increase the magnitude. Set $K_{G, 1}=-40 d B$.

Next, we choose the parameters τ_{a}, M_{a}. The choice of $K_{G, 1}$ implies that each anticipative action msut introduce a magnitude increase of at most 20 dB . In order to obtain the largest phase margin as possible we will choose the normalized frequency $\omega_{N}=\omega \tau_{a}=3.2 \mathrm{rad} / \mathrm{sec}$, to which it associated a maximum increase in phase equal to 54°. Since the corresponding increase in magnitude is equal to $\approx 10 d B$ we will colocate the phase increase at the frequency $\bar{\omega}$ such that $\left|K_{G, 1} P(j \bar{\omega})\right|=-20 d B$ in order to obtain a phase margin of approximately

Figure 1: Bode plots of $P(s)$

Figure 2: Bode plots of $K_{G, 1} P(s)$
$-90^{\circ}+2 * 54^{\circ}=18^{\circ}$. From inspection of the Bode plot of $K_{G, 1} P(j \omega)$ (Fig. 2) we see that $\bar{\omega}=0.5 \mathrm{rad} / \mathrm{sec}$ and therefore $\tau_{a}=3.2 / 0.5$. The resulting controller $G(s)$ is

$$
G(j \omega)=0.01\left(\frac{1+\frac{3.2}{0.5} s}{1+\frac{3.2}{5} s}\right)^{2}
$$

The Bode plots of $G(s) P(s)$ and its Nyquist plot are drawn in Fig. 3 and 4. The Nyquist plot shows that the closed-loop system is asymptotically stable (we have $-1+1=0$ counterclockwise tours around the point $-1+0 j$).

Exercise 2 The root locus of $P(s)$ gives useful suggestions for the solution. The pole-zero excess is $n-m=3$ (number of poles minus number of zeroes) and the locus has at most $n-m+1=2$ singular points. The asymptote center is in

$$
s_{0}=-93=-3 .
$$

Figure 3: Bode plots of $G(s) P(s)$

Figure 4: Nyquist plot of $G(s) P(s)$

The singular points equation is

$$
3 s^{2}+18 s+a^{2}=0
$$

and its roots are

$$
s_{1,2}=\frac{-9 \pm \sqrt{9^{2}-3 a^{2}}}{3}
$$

These roots are real if and only if $a^{2} \leq 27$. In particular, for $a^{2} \in[0,27]$ the position of the the first singular point s_{1} varies from 0 (for $a=0$) to -3 (for $a^{2}=27$). Both these points are in the negative locus. On the other hand, if $a^{2}>27$ the roots are complex conjugates and they are not points of the locus (as it can be verified by replacing these values in the locus equations). In the case $a^{2}<27$ there exist negative values of K for which the closed-loop system has three real negative poles while In the case $a^{2}>27$ we always have a real pole and two complex conjugate ones.

Figure 5: Positive root locus of $P(s)$

Set for example $a^{2}=24$ for which $s_{1}=-2$ and $s_{2}=-4$. The open loop transfer function is

$$
K P(s)=\frac{K}{(s+9)\left(s^{2}+24\right)}
$$

(see root locuses in Fiig. 5 and 6). For finding the values of K which satisfy the requirements of the exercise, it is sufficient to compute the values of K corresponding to the crossing of the imaginary axis and the two singular points s_{1} and s_{2} denoting K_{0}, K_{1} and K_{2} respectively these values we conclude that the closed-loop poles will be real and negative if

$$
\max \left(K_{2}, K_{0}\right) \leq K \leq K_{1}
$$

For computing K_{0}, K_{1} and $K_{2} \mathrm{~V}$ we replace in the locus equation

$$
N U M(1+K P(s))=\left(s^{2}+24\right)(s+9)+K=0
$$

the corresponding values of s. We find

$$
K_{0}=-216, K_{1}=-196, K_{2}=-200 .
$$

For $a^{2}=27$ the admissible values of K are therefore $[-200,-196]$
As to the final part of the exercise, the steady state output response for a disturbance $d(t)=$ $A \sin a t$ is

$$
y_{s s}(t)=\left|W_{d}(j a)\right| A \sin (a t+\operatorname{Arg}(W(j a))
$$

where $W_{d}(s)$ is the disturbance-to-output transfer function of the closed-loop

$$
W_{d}(s)=\frac{1}{1+K P(s)}=\frac{(s+9)\left(s^{2}+a^{2}\right)}{(s+9)\left(s^{2}+a^{2}\right)+K}
$$

Since $W_{d}(s)$ has two zeroes at $s= \pm j a$ the forced response tends to zero as $t \rightarrow+\infty$ so that the steady state output response is 0 .

Exercise 3. First, let us study the controllability of the open loop $\dot{x}=A x+B u$.

Figure 6: Negative root locus of $P(s)$

The controllability matrix

$$
R=\left(\begin{array}{ll}
B & A B
\end{array}\right)=\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)
$$

and $\operatorname{det} R=0$. Therefore, the system is not controllable for all values of β and α.
We must discuss the values of α and β for which the eigenvalues of the controlled process can be moved (by state feedback) with real part $\leq-\gamma$. Therefore, we must discuss the values of α and β for which the invariant spectrum \mathcal{F}_{R} of $A+B F$ has real part $\leq-\gamma$. For this we use the Hautus tests. The eigenvalues of A are $\{-1,-\alpha\}$ (i.e. roots of det $\left.(\lambda I-A)=\lambda^{2}+(1+\alpha) \lambda+\alpha=0\right)$.

1) Controllability. Case $\beta=1$. Hautus test gives: for eigenvalue $\lambda=-1$ if $\alpha \neq 1$

$$
\operatorname{rank}\left(\begin{array}{cc}
A-\lambda I & B
\end{array}\right)=\left(\begin{array}{ccc}
1 & 1 & \beta \\
-\alpha & -\alpha & -\beta
\end{array}\right)=2 \Rightarrow \lambda=-1 \notin \mathcal{F}_{R}
$$

and if $\alpha=1$

$$
\operatorname{rank}\left(\begin{array}{cc}
A-\lambda I & B
\end{array}\right)=\left(\begin{array}{ccc}
1 & 1 & \beta \\
-\alpha & -\alpha & -\beta
\end{array}\right)=1 \Rightarrow \lambda=-1 \in \mathcal{F}_{R}
$$

Therefore, for satisfying the requirement that the real parts of the eigenvalues of $A+B F$ be $\leq-\gamma$ we must have $-1 \leq-\gamma \Rightarrow \gamma \leq 1$.
On the other hand, for eigenvalue $\lambda=-\alpha$

$$
\operatorname{rank}\left(\begin{array}{cc}
A-\lambda I & B
\end{array}\right)=\left(\begin{array}{ccc}
\alpha & 1 & \beta \\
-\alpha & -1 & -\beta
\end{array}\right)=1 \Rightarrow \lambda=-\alpha \in \mathcal{F}_{R}, \forall \alpha
$$

Therefore, for satisfying the requirement that the real parts of the eigenvalues of $A+B F$ be $\leq-\gamma$ we must have $-\alpha \leq-\gamma \Rightarrow \gamma \geq \alpha$.

