
Control Systems
4/6/2019(A)

Exercise 1 The armonic response P (jω) has constant phase equal to −270◦. Therefore, in order
to obtain stability of the closed-loop system we need to increase the phase of P (jω) and
obtain the largest phase margin as possible (under the constraint of at most two anticipative
actions: see the form of G(s)). The controller has the form

G(jω) = KG,1

(1 + τ1s

1 + τ2s

)2
= KG,1

( 1 + τas

1 + τa
ma
s

)2
= KG,1G2(s)

with taua > 0,ma > 1 to be chosen (from the compensating functions plots). Let us consider
first the steady state requirement (i) on the response to the disturbance d(t). In order to
guarantee the required attenuation of the steady state response it is necessary to guarantee
that

|Wd(jω)| =
∣∣∣ 1

1 +G(jω)P (jω)

∣∣∣ ≤ 0.11,∀ω ∈ [0, 0.1]rad/sec

i.e. ∣∣∣1 +G(jω)P (jω)
∣∣∣ ≥ 1

0.11
,∀ω ∈ [0, 0.1]rad/sec.

Since for all ω > 0 ∣∣∣1 +G(jω)P (jω)
∣∣∣ ≥ |G(jω)P (jω)| − 1

our condition becomes

|G(jω)P (jω)| ≥ 1

0.11
+ 1 ≈ 10 = 20dB, ∀ω ∈ [0, 0.1]rad/sec. (1)

Since this means that the Bode plot of the magnitude of G(jω)P (jω) must not enter the
rectangle delimited by the frequencies ω ∈ [0, 0.1]rad/sec and the magnitudes [0, 20]dB. This
implies that the crossover frequency ω∗

t must be certainly greater than 0.1 rad/sec.

As to requirement (ii) the gain KG,1 must be sufficiently less than 1 and positive in order
counteract the magnitude increase due to the anticipative actions (this also introduce a further
limitation on the maximum achievable phase margin). However, the value of Kg,1 cannot be
arbitrarily small on account of the constraint (1). Inspection of the Bode plot of P (jω) (Fig.
1) leads to the conclusion that a good choice of KG,1 is ≥ −20dB. As a matter of fact since
|P (j0.1)| = 60dB this choice guarantees that in any case |G(jω)P (jω)| ≥ 20dB since the
anticipative actions increase the magnitude. Set KG,1 = −40dB.

Next, we choose the parameters τa,Ma. The choice of KG,1 implies that each anticipative
action msut introduce a magnitude increase of at most 20dB. In order to obtain the largest
phase margin as possible we will choose the normalized frequency ωN = ωτa = 3.2 rad/sec,
to which it associated a maximum increase in phase equal to 54◦. Since the corresponding
increase in magnitude is equal to ≈ 10dB we will colocate the phase increase at the frequency
ω̄ such that |KG,1P (jω̄)| = −20dB in order to obtain a phase margin of approximately
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Figure 1: Bode plots of P (s)
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Figure 2: Bode plots of KG,1P (s)

−90◦ + 2 ∗ 54◦ = 18◦. From inspection of the Bode plot of KG,1P (jω) (Fig. 2) we see that
ω̄ = 0.5rad/sec and therefore τa = 3.2/0.5. The resulting controller G(s) is

G(jω) = 0.01
(1 + 3.2

0.5s

1 + 3.2
5 s

)2

The Bode plots of G(s)P (s) and its Nyquist plot are drawn in Fig. 3 and 4. The Nyquist
plot shows that the closed-loop system is asymptotically stable (we have −1 + 1 = 0 counter-
clockwise tours around the point −1 + 0j).

Exercise 2 The root locus of P (s) gives useful suggestions for the solution. The pole-zero excess is
n−m = 3 (number of poles minus number of zeroes) and the locus has at most n−m+1 = 2
singular points. The asymptote center is in

s0 = −93 = −3.
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Figure 3: Bode plots of G(s)P (s)
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Figure 4: Nyquist plot of G(s)P (s)

The singular points equation is

3s2 + 18s+ a2 = 0

and its roots are

s1,2 =
−9±

√
92 − 3a2

3

These roots are real if and only if a2 ≤ 27. In particular, for a2 ∈ [0, 27] the position of the
the first singular point s1 varies from 0 (for a = 0) to −3 (for a2 = 27). Both these points are
in the negative locus. On the other hand, if a2 > 27 the roots are complex conjugates and
they are not points of the locus (as it can be verified by replacing these values in the locus
equations). In the case a2 < 27 there exist negative values of K for which the closed-loop
system has three real negative poles while In the case a2 > 27 we always have a real pole and
two complex conjugate ones.
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Figure 5: Positive root locus of P (s)

Set for example a2 = 24 for which s1 = −2 and s2 = −4. The open loop transfer function is

KP (s) =
K

(s+ 9)(s2 + 24)

(see root locuses in Fiig. 5 and 6). For finding the values of K which satisfy the requirements
of the exercise, it is sufficient to compute the values of K corresponding to the crossing of the
imaginary axis and the two singular points s1 and s2 denoting K0,K1 and K2 respectively
these values we conclude that the closed-loop poles will be real and negative if

max(K2,K0) ≤ K ≤ K1

For computing K0, K1 and K2V we replace in the locus equation

NUM(1 +KP (s)) = (s2 + 24)(s+ 9) +K = 0

the corresponding values of s. We find

K0 = −216,K1 = −196,K2 = −200.

For a2 = 27 the admissible values of K are therefore [−200,−196]

As to the final part of the exercise, the steady state output response for a disturbance d(t) =
A sin at is

yss(t) = |Wd(ja)|A sin(at+ Arg(W (ja))

where Wd(s) is the disturbance-to-output transfer function of the closed-loop

Wd(s) =
1

1 +KP (s)
=

(s+ 9)(s2 + a2)

(s+ 9)(s2 + a2) +K

Since Wd(s) has two zeroes at s = ±ja the forced response tends to zero as t→ +∞ so that
the steady state output response is 0.

Exercise 3. First, let us study the controllability of the open loop ẋ = Ax+Bu.
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Figure 6: Negative root locus of P (s)

The controllability matrix

R =
(
B AB

)
=

(
1 −1
−1 1

)
and detR = 0. Therefore, the system is not controllable for all values of β and α.

We must discuss the values of α and β for which the eigenvalues of the controlled process
can be moved (by state feedback) with real part ≤ −γ. Therefore, we must discuss the
values of α and β for which the invariant spectrum FR of A + BF has real part ≤ −γ.
For this we use the Hautus tests. The eigenvalues of A are {−1,−α} (i.e. roots of det
(λI −A) = λ2 + (1 + α)λ+ α = 0).

1) Controllability. Case β = 1. Hautus test gives: for eigenvalue λ = −1 if α 6= 1

rank
(
A− λI B

)
=

(
1 1 β
−α −α −β

)
= 2⇒ λ = −1 /∈ FR

and if α = 1

rank
(
A− λI B

)
=

(
1 1 β
−α −α −β

)
= 1⇒ λ = −1 ∈ FR

Therefore, for satisfying the requirement that the real parts of the eigenvalues of A+BF be
≤ −γ we must have −1 ≤ −γ ⇒ γ ≤ 1.

On the other hand, for eigenvalue λ = −α

rank
(
A− λI B

)
=

(
α 1 β
−α −1 −β

)
= 1⇒ λ = −α ∈ FR, ∀α

Therefore, for satisfying the requirement that the real parts of the eigenvalues of A+BF be
≤ −γ we must have −α ≤ −γ ⇒ γ ≥ α.


