Control Systems
02/02/2018(A)

Exercise 1 Denoting L(s) = G(s)P(s), one has
y(s) = W(s)u(s) + Wa(s)d(s)

with input-output and disturbance-output transfer functions respectively provided by

W(s) = ﬂzzs) Wy(s)

__P(s)
1+ L(s)

In particular, we shall define G(s) = G2(s)G1(s) so that G1(s) is designed so to fulfil specifi-
cation (ii) whereas Ga(s) is designed for specifications (iii) and (7).

(ii) Assuming for the time-being Ga(s) = 1, as the input-disturbance is a ramp (i.e., d(t) = t)
an integrator is needed right before the entering point of the disturbance. This requires

_h
_8

G1(s)

with k1 € R in such a way to guarantee

Wa(s) 1
=% o = |zl = 01

so getting k1 > 10. Accordingly, we can set k; = 10 by constraining |G2(0)| > 1 so to
preserve the required specification. As a consequence of the choice of G1(s) it is then
clear that the dimension of Ga(s) must be at most 1 so to fulfil the constraint on the
dimension of G(s) = Ga(s)G1(s).

For understanding how to design Ga(s), let us draw the Bode plots of

10

Li(s) = Gi(s)P(s) = EF))

(1)

reported in Figure 1. It is evident that the cross-over frequency of the actual system
Ly(s) is given by wy = 3.08 rad/s with corresponding phase margin m,, = 18°.

For maximizing the phase margin of L(s) = Ga(s)Li(s), only one anticipating action
can be introduced, that is

Go(s) = kaGals), Gals) = a8

_1—1—7%3

and |kg| > 1. Accordingly, for increasing the phase margin as much as possible the
anticipating function cannot be set to be any; indeed, one has to set w; and all other
functions in such a way that

\kalap + |Ga(jwy)|ag + | L1(jwi)|ap = 0
180% 4+ £G4 (jwy) + £L1 (jwy)
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(iii)

Bode Diagram
Gm = Inf dB (at Inf rad/s) , Pm = 18 deg (at 3.08 rad/s)
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Figure 1: Bode plots of (1)

so providing, as |ka| > 1 implies |k2|sp > 0,
k2lap = —|Ga(jwi)las — [L1(jwi)lap =2 0 = [Ga(jwi)las + [L1(jwi)lap < 0.

Thus, for maximizing the phase margin m{, we set the anticipating function labeled by
me = 16 acting at w, = 4 rad/sec so getting |G,(jwi)|lap ~ —12 and ZLG,(jw]) =
62°. According to the above constraint, we set hence w; = 6.5 rad/sec so ensuring
|Go(jwi)lag + |L1(jw;)|ap = 0 and requiring ks = 1. Accordingly, the phase margin of

0.6154s+1 10
= (2)

~0.0385s +1s(s+1)

L(s) = kaGy(s)L1(s)

will be equal to mg, = 71.2°. The corresponding Bode plots are in Figure 2 and em-
phasize on the fact that the actual cross-over frequency is not w; = 6.5 rad/s due to
approximation errors. However, as the specification does not require a specific value for
the cross-over frequency, it is not necessary to include a further action through the gain
ko (that would be admissible in this case) to move it to w; = 6.5 rad/s.

(i) The Nyquist plot of (2) is reported in Figure 3. The number of counter-clockwise en-

circlements of —1 4+ j0 on behalf of the extended Nyquist plot of L(jw) is 0 that is
also coincident with the open loop poles with positive real part. Thus, the system is
asymptotically stable in closed loop.

Exercise 2 a) Denoting by n and m the number of poles and zeros of the transfer function, the

relative degree of P(s) is given by » = n —m = 1. Accordingly, the root locus possesses
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Bode Diagram
Gm = Inf dB (at Inf rad/s), Pm = 71.2 deg (at 6.12 rad/s)
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Figure 2: Bode plots of (2)

an horizontal asymptote centered at
1-6—-4+4+14
So=——7 = -5

that can be discarded. Introducing k¥ € R and defining p(s, k) = (s — 1)(s +4)(s + 6) +
k(s 4 2)? as the polynomial defining the closed-loop poles under G(s) = k, one gets that
singularities are the solutions to

p(s,k) =5+ (k+9)s® + (4k + 14)s + 4k — 24 =0

81’5,;”“) =352+ 2(k + 9)s + (4k + 14) = 0
&p(s, k)
5 6s+2(k+9)=0

By solving the equations above, it turns out that the negative locus possesses one sin-
gularity with multiplicity © = 2 in correspondence of (s*, k*) ~ (—4.74,—0.713). What
is left to do is now is to quantify the number of intersection of the root locus with the
imaginary axis. Those intersecting points correspond to values of k € R for which the
Routh table of p(s, k) = 3 + (k + 9)s? + (4k + 14)s + 4k — 24 is not regular. Thus, by
developing computations one gets
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e |
Figure 3: Nyquist plot of (2)
r3 1 4k + 14
r2 k+9 4k — 24
pl | 2k2423k+75
k+9
r0 k — 6.

The Routh table is not regular for £ = 6 so implying that the positive locus intersects
the imaginary axis in correspondance of k& = 6 corresponding to the closed-loop pole
s = 0. The root locus is reported in Figures 4 and 5.

b) From the root locus of P(s), it is evident that a static feedback G(s) = k is not enough for
assigning all poles with real part smaller than —3 as it does not exhibit three branches
on the left hand side of the vertical line cantered at —3. Thus, a dynamical feedback is
needed. First of all, such a feedback must increase the relative degree to v’ = 2. To this
end, as no limitation is made on the dimension of G(s) we propose a feedback of the
form

(s+4)(s+6)

G = 226 1 p)

with k,p € R so getting
1
(s=1)(s+p)

Note that the controller above generates unobservability of the mode associated to the
eigenvalue —2 and uncontrollability of the ones associated to the eigenvalues —4 and —6.
However, those cancellations do not affect asymptotic stabilizability of the closed loop.

L(s)=G(s)P(s) =k

At this point, k,p € R need to be chosen so that the closed-loop system possesses al
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Root Locus
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Figure 4: Positive root locus of P(s) = %

poles with real part smaller than —3. By denoting pr,(s, k,p) = (s — 1)(s + p) + k the
polynomial of the closed-loop poles, it is enough to invoke the Routh criterion and set
k,p so that the shifted polynomial p} (s,k,p) = pr(s —3,k,p) = (s—4)(s+p—3)+k =
s2+ (p—T)s+k —4(p— 3) is Hurwitz. Thus, one gets that the specification is satisfied
for all p, k € R satisfying

p>T7, k>4(p-—3).
Exercise 3 The system

T =Ax + Bd
y=Cx

possesses two aperiodic modes associated to the eigenvalues Ay = —3 and Ay = 2.
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Root Locus
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Figure 5: Negative root locus of P(s) = %

(i) The output response of the system for d = 0 gets the form

y(t) =Cx(t)

3 2

x(t) =cre 2 + el 2y

with 21 = (é), Z9 = <é> being the eigenvectors associated to Ay = —3 and A9 = 2 and

(&)= =)

with ¢ being the initial condition. Accordingly, one gets

y(t) =cre 3t + cpe?t

so that the y(t) — 0 as ¢ — oo for all initial conditions annihiliating the divergent
a-periodical mode. Because a-periodical modes evolve along the corresponding eigenvec-
tors, it is enough to set zp € span{z;} so getting, as a result, ca = 0.

(ii) For ensuring y(t) = 0 V¢t > 0 and d it is enough to chose B so that its image belongs to
the unobservable subspace Z of the system. Indeed, one gets

z:ker{<c?A>}:{0}

and thus the requirement is satisfied only for the trivial case of B = 0.
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b > in such a

One other way of solving the specification would have been to set B = <b1
2

way to make the input-output transfer function identically zero; namely,

y(s) = P(s)d(s) = 0,¥d <= P(s)=C(sI — A)"'B=0.

1
(iii) For B = <0), the transfer function of the system is given by

P(s) = C(sT ~ A) "B = - i -

Accordingly, by rewriting u(t) = aj sing(t — 1) + ag cosy(t — 1) with a; = cos1 = 0.54
and as = sin 1 = 0.84, one computes the forced response of the system as
y(t) =L (P(s)u(s)[t] = arL7H(P(s)e*ua(s))[t] + a2 L™ (P(s)e™*ua(s))[¢]
=a 1 L7 (P(s)u1(s))[t — 1] + ae L™ H(P(s)uz(s))[t — 1]
with ui(s) = L(sing(¢))[s] and wua(s) = L(cost(t))[s]. Thus, it is enough to compute

yi(s) = P(s)ui(s) by neglecting proportional terms and time-delays affecting the input.
For, one has

(s) 1 Ry +A1s—|—Bl
S = o
u (s+3)(s2+1) s+3 s2+1
with
1 1 3
R = — A = —— = —
U790 YT 100 TP 10

and consequently
Y1 (t) =L (y1 (S)) [t] = R 6_7_3':141 (COS t)+ + B; (sin t)+.

Similarly, one has

(s) = s Ry Ass+ DBo
b2 C (s+3)(s2+1) s+3 s2+1
with
3 3 1
Ry = Ay =—, By=—
SO M) M)
so getting

Yo (t) = L7 (y2(s))[t] = Rore;*" As(cost); + Ba(sint);.
Accordingly, the overall response is

y(t) = (a1 R11 + agRa1)e ") + (a1 Ay + agAg)(sin(t — 1)) 1 + (a1 By + a2 By)(cos(t — 1)) 4.



