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Exercise 1 Denoting L(s) = G(s)P (s), one has

y(s) = W (s)v(s) +Wd(s)d(s)

with input-output and disturbance-output transfer functions respectively provided by

W (s) =
L(s)

1 + L(s)
, Wd(s) =

P (s)

1 + L(s)
.

In particular, we shall define G(s) = G2(s)G1(s) so that G1(s) is designed so to fulfil specifi-
cation (ii) whereas G2(s) is designed for specifications (iii) and (i).

(ii) Assuming for the time-being G2(s) = 1, as the input-disturbance is a ramp (i.e., d(t) = t)
an integrator is needed right before the entering point of the disturbance. This requires

G1(s) =
k1
s

with k1 ∈ R in such a way to guarantee

∣∣Wd(s)

s

∣∣
s=0

=
∣∣ 1

s2 + s+ 1

∣∣
s=0
≤ 0.1

so getting k1 ≥ 10. Accordingly, we can set k1 = 10 by constraining |G2(0)| > 1 so to
preserve the required specification. As a consequence of the choice of G1(s) it is then
clear that the dimension of G2(s) must be at most 1 so to fulfil the constraint on the
dimension of G(s) = G2(s)G1(s).

For understanding how to design G2(s), let us draw the Bode plots of

L1(s) = G1(s)P (s) =
10

s(s+ 1)
(1)

reported in Figure 1. It is evident that the cross-over frequency of the actual system
L1(s) is given by ωt = 3.08 rad/s with corresponding phase margin mϕ = 18o.

For maximizing the phase margin of L(s) = G2(s)L1(s), only one anticipating action
can be introduced, that is

G2(s) = k2Ga(s), Ga(s) =
1 + τas

1 + τa
ma
s

and |k2| > 1. Accordingly, for increasing the phase margin as much as possible the
anticipating function cannot be set to be any; indeed, one has to set ω∗t and all other
functions in such a way that

|k2|dB + |Ga(jω∗t )|dB + |L1(jω
∗
t )|dB = 0

180o + ∠Ga(jω
∗
t ) + ∠L1(jω

∗
t )
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(iii)

Figure 1: Bode plots of (1)

so providing, as |k2| > 1 implies |k2|dB > 0,

|k2|dB = −|Ga(jω∗t )|dB − |L1(jω
∗
t )|dB ≥ 0 =⇒ |Ga(jω∗t )|dB + |L1(jω

∗
t )|dB ≤ 0.

Thus, for maximizing the phase margin m∗ϕ we set the anticipating function labeled by
ma = 16 acting at ωn = 4 rad/sec so getting |Ga(jω∗t )|dB ≈ −12 and ∠Ga(jω∗t ) =
62o. According to the above constraint, we set hence ω∗t = 6.5 rad/sec so ensuring
|Ga(jω∗t )|dB + |L1(jω

∗
t )|dB ≈ 0 and requiring k2 = 1. Accordingly, the phase margin of

L(s) = k2Ga(s)L1(s) =
0.6154s+ 1

0.0385s+ 1

10

s(s+ 1)
(2)

will be equal to m∗ϕ = 71.2o. The corresponding Bode plots are in Figure 2 and em-
phasize on the fact that the actual cross-over frequency is not ω∗t = 6.5 rad/s due to
approximation errors. However, as the specification does not require a specific value for
the cross-over frequency, it is not necessary to include a further action through the gain
k2 (that would be admissible in this case) to move it to ω∗t = 6.5 rad/s.

(i) The Nyquist plot of (2) is reported in Figure 3. The number of counter-clockwise en-
circlements of −1 + j0 on behalf of the extended Nyquist plot of L(jω) is 0 that is
also coincident with the open loop poles with positive real part. Thus, the system is
asymptotically stable in closed loop.

Exercise 2 a) Denoting by n and m the number of poles and zeros of the transfer function, the
relative degree of P (s) is given by r = n−m = 1. Accordingly, the root locus possesses
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Figure 2: Bode plots of (2)

an horizontal asymptote centered at

s0 =
1− 6− 4 + 4

1
= −5

that can be discarded. Introducing k ∈ R and defining p(s, k) = (s− 1)(s+ 4)(s+ 6) +
k(s+ 2)2 as the polynomial defining the closed-loop poles under G(s) = k, one gets that
singularities are the solutions to

p(s, k) = s3 + (k + 9)s2 + (4k + 14)s+ 4k − 24 = 0

∂p(s, k)

∂s
= 3s2 + 2(k + 9)s+ (4k + 14) = 0

∂2p(s, k)

∂s2
= 6s+ 2(k + 9) = 0.

By solving the equations above, it turns out that the negative locus possesses one sin-
gularity with multiplicity µ = 2 in correspondence of (s∗, k∗) ≈ (−4.74,−0.713). What
is left to do is now is to quantify the number of intersection of the root locus with the
imaginary axis. Those intersecting points correspond to values of k ∈ R for which the
Routh table of p(s, k) = s3 + (k + 9)s2 + (4k + 14)s + 4k − 24 is not regular. Thus, by
developing computations one gets
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Figure 3: Nyquist plot of (2)

r3 1 4k + 14
r2 k + 9 4k − 24

r1 2k2+23k+75
k+9

r0 k − 6.

The Routh table is not regular for k = 6 so implying that the positive locus intersects
the imaginary axis in correspondance of k = 6 corresponding to the closed-loop pole
s = 0. The root locus is reported in Figures 4 and 5.

b) From the root locus of P (s), it is evident that a static feedback G(s) = k is not enough for
assigning all poles with real part smaller than −3 as it does not exhibit three branches
on the left hand side of the vertical line cantered at −3. Thus, a dynamical feedback is
needed. First of all, such a feedback must increase the relative degree to r′ = 2. To this
end, as no limitation is made on the dimension of G(s) we propose a feedback of the
form

G(s) = k
(s+ 4)(s+ 6)

(s+ 2)2(s+ p)

with k, p ∈ R so getting

L(s) = G(s)P (s) = k
1

(s− 1)(s+ p)
.

Note that the controller above generates unobservability of the mode associated to the
eigenvalue −2 and uncontrollability of the ones associated to the eigenvalues −4 and −6.
However, those cancellations do not affect asymptotic stabilizability of the closed loop.

At this point, k, p ∈ R need to be chosen so that the closed-loop system possesses al
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Figure 4: Positive root locus of P (s) = (s+2)2

(s−1)(s+4)(s+6)

poles with real part smaller than −3. By denoting pL(s, k, p) = (s − 1)(s + p) + k the
polynomial of the closed-loop poles, it is enough to invoke the Routh criterion and set
k, p so that the shifted polynomial p∗L(s, k, p) = pL(s− 3, k, p) = (s− 4)(s+ p− 3) + k =
s2 + (p− 7)s+ k− 4(p− 3) is Hurwitz. Thus, one gets that the specification is satisfied
for all p, k ∈ R satisfying

p > 7, k > 4(p− 3).

Exercise 3 The system

ẋ =Ax+Bd

y =Cx

possesses two aperiodic modes associated to the eigenvalues λ1 = −3 and λ2 = 2.
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Figure 5: Negative root locus of P (s) = (s+2)2

(s−1)(s+4)(s+6)

(i) The output response of the system for d = 0 gets the form

y(t) =Cx(t)

x(t) =c1e
−3tz1 + c2e

2tz2

with z1 =

(
1
0

)
, z2 =

(
1
5

)
being the eigenvectors associated to λ1 = −3 and λ2 = 2 and

(
c1
c2

)
=

(
z1 z2

)−1
x0

with x0 being the initial condition. Accordingly, one gets

y(t) =c1e
−3t + c2e

2t

so that the y(t) → 0 as t → ∞ for all initial conditions annihiliating the divergent
a-periodical mode. Because a-periodical modes evolve along the corresponding eigenvec-
tors, it is enough to set x0 ∈ span{z1} so getting, as a result, c2 = 0.

(ii) For ensuring y(t) = 0 ∀t ≥ 0 and d it is enough to chose B so that its image belongs to
the unobservable subspace I of the system. Indeed, one gets

I = ker{
(
C
CA

)
} = {0}

and thus the requirement is satisfied only for the trivial case of B = 0.
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One other way of solving the specification would have been to set B =

(
b1
b2

)
in such a

way to make the input-output transfer function identically zero; namely,

y(s) = P (s)d(s) = 0,∀d ⇐⇒ P (s) = C(sI −A)−1B = 0.

(iii) For B =

(
1
0

)
, the transfer function of the system is given by

P (s) = C(sI −A)−1B =
1

s+ 3
.

Accordingly, by rewriting u(t) = a1 sin+(t − 1) + a2 cos+(t − 1) with a1 = cos 1 = 0.54
and a2 = sin 1 = 0.84, one computes the forced response of the system as

y(t) =L−1(P (s)u(s))[t] = a1L−1(P (s)e−su1(s))[t] + a2L−1(P (s)e−su2(s))[t]

=a1L−1(P (s)u1(s))[t− 1] + a2L−1(P (s)u2(s))[t− 1]

with u1(s) = L(sin+(t))[s] and u2(s) = L(cos+(t))[s]. Thus, it is enough to compute
yi(s) = P (s)ui(s) by neglecting proportional terms and time-delays affecting the input.
For, one has

y1(s) =
1

(s+ 3)(s2 + 1)
=

R11

s+ 3
+
A1s+B1

s2 + 1

with

R11 =
1

10
, A1 = − 1

10
, B1 =

3

10

and consequently

y1(t) = L−1(y1(s))[t] = R11e
−3t
+ A1(cos t)+ +B1(sin t)+.

Similarly, one has

y2(s) =
s

(s+ 3)(s2 + 1)
=

R21

s+ 3
+
A2s+B2

s2 + 1

with

R21 = − 3

10
, A2 =

3

10
, B2 =

1

10

so getting

y2(t) = L−1(y2(s))[t] = R21e
−3t
+ A2(cos t)+ +B2(sin t)+.

Accordingly, the overall response is

y(t) = (a1R11 + a2R21)e
−3(t−1)
+ + (a1A1 + a2A2)(sin(t− 1))+ + (a1B1 + a2B2)(cos(t− 1))+.


