Control Systems
 02/02/2018(A)

Exercise 1 Denoting $L(s)=G(s) P(s)$, one has

$$
y(s)=W(s) v(s)+W_{d}(s) d(s)
$$

with input-output and disturbance-output transfer functions respectively provided by

$$
W(s)=\frac{L(s)}{1+L(s)}, \quad W_{d}(s)=\frac{P(s)}{1+L(s)} .
$$

In particular, we shall define $G(s)=G_{2}(s) G_{1}(s)$ so that $G_{1}(s)$ is designed so to fulfil specification (ii) whereas $G_{2}(s)$ is designed for specifications (iii) and (i).
(ii) Assuming for the time-being $G_{2}(s)=1$, as the input-disturbance is a ramp (i.e., $d(t)=t$) an integrator is needed right before the entering point of the disturbance. This requires

$$
G_{1}(s)=\frac{k_{1}}{s}
$$

with $k_{1} \in \mathbb{R}$ in such a way to guarantee

$$
\left|\frac{W_{d}(s)}{s}\right|_{s=0}=\left|\frac{1}{s^{2}+s+1}\right|_{s=0} \leq 0.1
$$

so getting $k_{1} \geq 10$. Accordingly, we can set $k_{1}=10$ by constraining $\left|G_{2}(0)\right|>1$ so to preserve the required specification. As a consequence of the choice of $G_{1}(s)$ it is then clear that the dimension of $G_{2}(s)$ must be at most 1 so to fulfil the constraint on the dimension of $G(s)=G_{2}(s) G_{1}(s)$.
For understanding how to design $G_{2}(s)$, let us draw the Bode plots of

$$
\begin{equation*}
L_{1}(s)=G_{1}(s) P(s)=\frac{10}{s(s+1)} \tag{1}
\end{equation*}
$$

reported in Figure 1. It is evident that the cross-over frequency of the actual system $L_{1}(s)$ is given by $\omega_{t}=3.08 \mathrm{rad} / \mathrm{s}$ with corresponding phase margin $m_{\varphi}=18^{\circ}$.
For maximizing the phase margin of $L(s)=G_{2}(s) L_{1}(s)$, only one anticipating action can be introduced, that is

$$
G_{2}(s)=k_{2} G_{a}(s), \quad G_{a}(s)=\frac{1+\tau_{a} s}{1+\frac{\tau_{a}}{m_{a}} s}
$$

and $\left|k_{2}\right|>1$. Accordingly, for increasing the phase margin as much as possible the anticipating function cannot be set to be any; indeed, one has to set ω_{t}^{*} and all other functions in such a way that

$$
\begin{aligned}
& \left|k_{2}\right|_{d B}+\left|G_{a}\left(j \omega_{t}^{*}\right)\right|_{d B}+\left|L_{1}\left(j \omega_{t}^{*}\right)\right|_{d B}=0 \\
& 180^{\circ}+\angle G_{a}\left(j \omega_{t}^{*}\right)+\angle L_{1}\left(j \omega_{t}^{*}\right)
\end{aligned}
$$

(iii)

Figure 1: Bode plots of (1)
so providing, as $\left|k_{2}\right|>1$ implies $\left|k_{2}\right|_{d B}>0$,

$$
\left|k_{2}\right|_{d B}=-\left|G_{a}\left(j \omega_{t}^{*}\right)\right|_{d B}-\left|L_{1}\left(j \omega_{t}^{*}\right)\right|_{d B} \geq 0 \Longrightarrow\left|G_{a}\left(j \omega_{t}^{*}\right)\right|_{d B}+\left|L_{1}\left(j \omega_{t}^{*}\right)\right|_{d B} \leq 0 .
$$

Thus, for maximizing the phase margin m_{φ}^{*} we set the anticipating function labeled by $m_{a}=16$ acting at $\omega_{n}=4 \mathrm{rad} / \mathrm{sec}$ so getting $\left|G_{a}\left(j \omega_{t}^{*}\right)\right|_{d B} \approx-12$ and $\angle G_{a}\left(j \omega_{t}^{*}\right)=$ 62°. According to the above constraint, we set hence $\omega_{t}^{*}=6.5 \mathrm{rad} / \mathrm{sec}$ so ensuring $\left|G_{a}\left(j \omega_{t}^{*}\right)\right|_{d B}+\left|L_{1}\left(j \omega_{t}^{*}\right)\right|_{d B} \approx 0$ and requiring $k_{2}=1$. Accordingly, the phase margin of

$$
\begin{equation*}
L(s)=k_{2} G_{a}(s) L_{1}(s)=\frac{0.6154 s+1}{0.0385 s+1} \frac{10}{s(s+1)} \tag{2}
\end{equation*}
$$

will be equal to $m_{\varphi}^{*}=71.2^{\circ}$. The corresponding Bode plots are in Figure 2 and emphasize on the fact that the actual cross-over frequency is not $\omega_{t}^{*}=6.5 \mathrm{rad} / \mathrm{s}$ due to approximation errors. However, as the specification does not require a specific value for the cross-over frequency, it is not necessary to include a further action through the gain k_{2} (that would be admissible in this case) to move it to $\omega_{t}^{*}=6.5 \mathrm{rad} / \mathrm{s}$.
(i) The Nyquist plot of (2) is reported in Figure 3. The number of counter-clockwise encirclements of $-1+j 0$ on behalf of the extended Nyquist plot of $L(j \omega)$ is 0 that is also coincident with the open loop poles with positive real part. Thus, the system is asymptotically stable in closed loop.

Exercise 2 a) Denoting by n and m the number of poles and zeros of the transfer function, the relative degree of $P(s)$ is given by $r=n-m=1$. Accordingly, the root locus possesses

Figure 2: Bode plots of (2)
an horizontal asymptote centered at

$$
s_{0}=\frac{1-6-4+4}{1}=-5
$$

that can be discarded. Introducing $k \in \mathbb{R}$ and defining $p(s, k)=(s-1)(s+4)(s+6)+$ $k(s+2)^{2}$ as the polynomial defining the closed-loop poles under $G(s)=k$, one gets that singularities are the solutions to

$$
\begin{aligned}
& p(s, k)=s^{3}+(k+9) s^{2}+(4 k+14) s+4 k-24=0 \\
& \frac{\partial p(s, k)}{\partial s}=3 s^{2}+2(k+9) s+(4 k+14)=0 \\
& \frac{\partial^{2} p(s, k)}{\partial s^{2}}=6 s+2(k+9)=0 .
\end{aligned}
$$

By solving the equations above, it turns out that the negative locus possesses one singularity with multiplicity $\mu=2$ in correspondence of $\left(s^{*}, k^{*}\right) \approx(-4.74,-0.713)$. What is left to do is now is to quantify the number of intersection of the root locus with the imaginary axis. Those intersecting points correspond to values of $k \in \mathbb{R}$ for which the Routh table of $p(s, k)=s^{3}+(k+9) s^{2}+(4 k+14) s+4 k-24$ is not regular. Thus, by developing computations one gets

Figure 3: Nyquist plot of (2)

r^{3}	1	$4 k+14$
r^{2}	$k+9$	$4 k-24$
r^{1}	$\frac{2 k^{2}+23+75}{k+9}$	
r^{0}	$k-6$.	

The Routh table is not regular for $k=6$ so implying that the positive locus intersects the imaginary axis in correspondance of $k=6$ corresponding to the closed-loop pole $s=0$. The root locus is reported in Figures 4 and 5 .
b) From the root locus of $P(s)$, it is evident that a static feedback $G(s)=k$ is not enough for assigning all poles with real part smaller than -3 as it does not exhibit three branches on the left hand side of the vertical line cantered at -3 . Thus, a dynamical feedback is needed. First of all, such a feedback must increase the relative degree to $r^{\prime}=2$. To this end, as no limitation is made on the dimension of $G(s)$ we propose a feedback of the form

$$
G(s)=k \frac{(s+4)(s+6)}{(s+2)^{2}(s+p)}
$$

with $k, p \in \mathbb{R}$ so getting

$$
L(s)=G(s) P(s)=k \frac{1}{(s-1)(s+p)} .
$$

Note that the controller above generates unobservability of the mode associated to the eigenvalue -2 and uncontrollability of the ones associated to the eigenvalues -4 and -6 . However, those cancellations do not affect asymptotic stabilizability of the closed loop. At this point, $k, p \in \mathbb{R}$ need to be chosen so that the closed-loop system possesses al

Figure 4: Positive root locus of $P(s)=\frac{(s+2)^{2}}{(s-1)(s+4)(s+6)}$
poles with real part smaller than -3 . By denoting $p_{L}(s, k, p)=(s-1)(s+p)+k$ the polynomial of the closed-loop poles, it is enough to invoke the Routh criterion and set k, p so that the shifted polynomial $p_{L}^{*}(s, k, p)=p_{L}(s-3, k, p)=(s-4)(s+p-3)+k=$ $s^{2}+(p-7) s+k-4(p-3)$ is Hurwitz. Thus, one gets that the specification is satisfied for all $p, k \in \mathbb{R}$ satisfying

$$
p>7, \quad k>4(p-3) .
$$

Exercise 3 The system

$$
\begin{aligned}
\dot{x} & =A x+B d \\
y & =C x
\end{aligned}
$$

possesses two aperiodic modes associated to the eigenvalues $\lambda_{1}=-3$ and $\lambda_{2}=2$.

Figure 5: Negative root locus of $P(s)=\frac{(s+2)^{2}}{(s-1)(s+4)(s+6)}$
(i) The output response of the system for $d=0$ gets the form

$$
\begin{aligned}
& y(t)=C x(t) \\
& x(t)=c_{1} e^{-3 t} z_{1}+c_{2} e^{2 t} z_{2}
\end{aligned}
$$

with $z_{1}=\binom{1}{0}, z_{2}=\binom{1}{5}$ being the eigenvectors associated to $\lambda_{1}=-3$ and $\lambda_{2}=2$ and

$$
\binom{c_{1}}{c_{2}}=\left(\begin{array}{ll}
z_{1} & z_{2}
\end{array}\right)^{-1} x_{0}
$$

with x_{0} being the initial condition. Accordingly, one gets

$$
y(t)=c_{1} e^{-3 t}+c_{2} e^{2 t}
$$

so that the $y(t) \rightarrow 0$ as $t \rightarrow \infty$ for all initial conditions annihiliating the divergent a-periodical mode. Because a-periodical modes evolve along the corresponding eigenvectors, it is enough to set $x_{0} \in \operatorname{span}\left\{z_{1}\right\}$ so getting, as a result, $c_{2}=0$.
(ii) For ensuring $y(t)=0 \forall t \geq 0$ and d it is enough to chose B so that its image belongs to the unobservable subspace \mathcal{I} of the system. Indeed, one gets

$$
\mathcal{I}=\operatorname{ker}\left\{\binom{C}{C A}\right\}=\{0\}
$$

and thus the requirement is satisfied only for the trivial case of $B=0$.

One other way of solving the specification would have been to set $B=\binom{b_{1}}{b_{2}}$ in such a way to make the input-output transfer function identically zero; namely,

$$
y(s)=P(s) d(s)=0, \forall d \Longleftrightarrow P(s)=C(s I-A)^{-1} B=0 .
$$

(iii) For $B=\binom{1}{0}$, the transfer function of the system is given by

$$
P(s)=C(s I-A)^{-1} B=\frac{1}{s+3} .
$$

Accordingly, by rewriting $u(t)=a_{1} \sin _{+}(t-1)+a_{2} \cos _{+}(t-1)$ with $a_{1}=\cos 1=0.54$ and $a_{2}=\sin 1=0.84$, one computes the forced response of the system as

$$
\begin{aligned}
y(t) & =\mathcal{L}^{-1}(P(s) u(s))[t]=a_{1} \mathcal{L}^{-1}\left(P(s) e^{-s} u_{1}(s)\right)[t]+a_{2} \mathcal{L}^{-1}\left(P(s) e^{-s} u_{2}(s)\right)[t] \\
& =a_{1} \mathcal{L}^{-1}\left(P(s) u_{1}(s)\right)[t-1]+a_{2} \mathcal{L}^{-1}\left(P(s) u_{2}(s)\right)[t-1]
\end{aligned}
$$

with $u_{1}(s)=\mathcal{L}\left(\sin _{+}(t)\right)[s]$ and $u_{2}(s)=\mathcal{L}\left(\cos _{+}(t)\right)[s]$. Thus, it is enough to compute $y_{i}(s)=P(s) u_{i}(s)$ by neglecting proportional terms and time-delays affecting the input. For, one has

$$
y_{1}(s)=\frac{1}{(s+3)\left(s^{2}+1\right)}=\frac{R_{11}}{s+3}+\frac{A_{1} s+B_{1}}{s^{2}+1}
$$

with

$$
R_{11}=\frac{1}{10}, \quad A_{1}=-\frac{1}{10}, \quad B_{1}=\frac{3}{10}
$$

and consequently

$$
y_{1}(t)=\mathcal{L}^{-1}\left(y_{1}(s)\right)[t]=R_{11} e_{+}^{-3 t} A_{1}(\cos t)_{+}+B_{1}(\sin t)_{+} .
$$

Similarly, one has

$$
y_{2}(s)=\frac{s}{(s+3)\left(s^{2}+1\right)}=\frac{R_{21}}{s+3}+\frac{A_{2} s+B_{2}}{s^{2}+1}
$$

with

$$
R_{21}=-\frac{3}{10}, \quad A_{2}=\frac{3}{10}, \quad B_{2}=\frac{1}{10}
$$

so getting

$$
y_{2}(t)=\mathcal{L}^{-1}\left(y_{2}(s)\right)[t]=R_{21} e_{+}^{-3 t} A_{2}(\cos t)_{+}+B_{2}(\sin t)_{+} .
$$

Accordingly, the overall response is
$y(t)=\left(a_{1} R_{11}+a_{2} R_{21}\right) e_{+}^{-3(t-1)}+\left(a_{1} A_{1}+a_{2} A_{2}\right)(\sin (t-1))_{+}+\left(a_{1} B_{1}+a_{2} B_{2}\right)(\cos (t-1))_{+}$.

