Control Systems
 14/09/2018

Exercise 1 Denoting $L(s)=G(s) P(s)$, in the Laplace domain the error and output evolutions are described by

$$
e(s)=W_{e}(s) v(s), \quad y(s)=W(s) v(s)
$$

with $W(s)=\frac{L(s)}{1+L(s)}$ and $W_{e}(s)=\frac{1}{1+L(s)}$. We shall split the controller $G(s)=G_{2}(s) G_{1}(s)$ with $G_{1}(s)$ designed for steady-steady specifications (i.e., $\left.(i i)\right)$ and $G_{2}(s)$ for the remaining ones.
(ii) As $e(s)=W_{e}(s) v(s)$, one needs $W_{e}(0)=0$ and $\left|\frac{\partial W_{e}}{\partial s}\right|_{s=0} \leq M$ with $M=0.02$. As the plant possesses a pole at $s=0$, the former condition (i.e., $W_{e}(0)=0$) is verified whereas the latter one is ensured by the inequality above

$$
\left|\frac{W_{e}(s)}{s}\right|_{s=0} \leq M
$$

Setting $G_{1}(s)=k_{1}$ and, for the time-being $G_{2}(s)=1$, one has that the specification is fulfilled by setting

$$
\left|\frac{1}{5 k}\right| \leq 0.02 \Longrightarrow\left|k_{1}\right| \geq 10
$$

Accordingly, we fix $k_{1}=10$ while constraining the gain of the outer loop of the controller to verify $G_{2}(0)>1$.
(iii)-(iv) By inspecting the Bode plots (Figure 1) of

$$
\begin{equation*}
L_{1}(s)=\frac{50}{s(s+1)} \tag{1}
\end{equation*}
$$

one notes that as $\omega \in[8,14] \mathrm{rad} / \mathrm{s}$

1. the magnitude is decreasing and $\left|L_{1}(j \omega)\right|_{d B} \in[-11.88,-2.21]$;
2. the phase is decreasing and $\angle L_{1}(j \omega) \in\left[-175.91^{\circ},-172,88^{\circ}\right] \mathrm{rad} / \mathrm{s}$.

Accordingly, for increasing the phase margin $m_{\varphi}^{*} \geq 50^{\circ}$, an anticipative action is needed with phase contribution of at least 45.91° at $\omega=14 \mathrm{rad} / \mathrm{sec}$ and 42.88° at $\omega=8 \mathrm{rad} / \mathrm{s}$. Moreover, specification (iv) sets a bound over the magnitude of the controller so that one has

$$
|G(j \omega)|_{d B}=\left|G_{1}(j \omega)\right|_{d B}+\left|G_{2}(j \omega)\right|_{d B}=\left|k_{1}\right|_{d B}+\left|G_{2}(j \omega)\right|_{d B} \leq 36
$$

implying

$$
\left|G_{2}(j \omega)\right|_{d B} \leq 16 \quad \text { and } \quad\left|G_{2}(0)\right|_{d B}>1
$$

where the latter bound comes from specification (ii). Accordingly, we set the outer control loop as composed of a one anticipating action and one proportional term so

Figure 1: Bode plots of (1)
getting

$$
\begin{gathered}
G_{2}(s)=k_{2} G_{a}(s), \quad G_{a}(s)=\frac{1+\tau_{a} s}{1+\frac{\tau_{a}}{m_{a}} s} . \\
\left|k_{2}\right|_{d B}+\max _{\omega \geq 0}\left|G_{a}(j \omega)\right|_{d B} \leq 16 \quad \text { and } \quad\left|k_{2}\right|_{d B}>0 .
\end{gathered}
$$

For saving the control effort of the controller, we shall set an anticipative function labeled by $m_{a}=6$ and acting at $\omega_{n}=2 \mathrm{rad} / \mathrm{s}$ (that is $\left.\tau_{a}=\frac{2}{\omega_{t}^{*}}\right)$ so getting that $\angle G_{a}(j 8)=45^{\circ}$, $\left|G_{a}(j 8)\right|_{d B} \approx 6.53, \max _{\omega \geq 0}\left|G_{a}(j \omega)\right|_{d B} \approx 16$. Accordingly, we shall set $\omega_{t}^{*} \in[8,14] \mathrm{rad} / \mathrm{s}$ in such a way that

$$
\left|L_{1}\left(j \omega_{t}^{*}\right)\right|_{d B}-6.53=0
$$

that is achieved for $\omega_{t}^{*} \approx 10.3 \mathrm{rad} / \mathrm{sec}$ in correspondence of which $\angle L_{1}(j \omega) \approx-174.44^{\circ}$. Thus, setting $k_{2}=1$ specifications $(i i i)-(i v)$ are satisfied with $m_{\varphi}^{*} \approx 50.6^{\circ}$ as confirmed
by the Bode plots of

$$
\begin{equation*}
L(s)=G(s) P(s)=10 \frac{1+\tau_{a} s}{1+\frac{\tau_{a}}{m_{a}} s} \frac{5}{s(s+1)} \tag{2}
\end{equation*}
$$

reported in Figure 2.

Figure 2: Bode plots of (3)
(i) The Nyquist plot of the open loop system

$$
\begin{equation*}
L(s)=k G_{a}(s) P(s)=10 \frac{1+0.7939 s}{1+0.1323 s} \frac{s+1}{s^{3}} \tag{3}
\end{equation*}
$$

are reported in Figure 3. The number of counter-clockwise encirclements of $-1+j 0$ on behalf of the extended Nyquist plot of $L(j \omega)$ is 0 as the number the open loop poles of $\mathrm{L}(\mathrm{s})$ with positive real part. Thus, the system is asymptotically stable in closed loop.

Exercise 2 Denoting $L(s)=G_{2}(s) P(s)$ with $P(s)=P_{1}(s) P_{2}(s)$, one has that in the Laplace domain the inputs-output evolutions are described by

$$
y(s)=W_{d}(s) d(s)+W(s) v(s), \quad W_{d}(s)=\frac{1-G_{1}(s) P_{2}(s)}{1+L(s)}, \quad W(s)=\frac{L(s)}{1+L(s)} .
$$

Figure 3: Nyquist plot of (3)
(i) For ensuring that $y(t) \equiv 0$ for all disturbances, one has to define $G_{1}(s)$ in such a way that $W_{d}(s)=0$. This is achieved by setting $G_{1}(s) P_{2}(s)=1$ that is

$$
G_{1}(s)=\frac{s-2}{s+4}
$$

(ii) As $e(s)=W_{e}(s) v(s)$ with $W_{e}(s)=\frac{1}{1+L(s)}$, for ensuring that $|e(t)| \leq 1$ for ramp references $v(t)=1$, one needs

$$
W_{e}(0)=0, \quad\left|\frac{\partial W_{e}}{\partial s}\right|_{s=0} \leq 1
$$

so that one needs $G_{2}(s)=\frac{k_{1}}{s} \hat{G}_{2}(s)$ with $k_{1} \in \mathbb{R}$. Setting for the time-being $\hat{G}_{2}(s)=1$, one gets that the specification is verified if k_{1} is such that

$$
\left|\frac{W_{e}(s)}{s}\right|_{s=0} \leq 1
$$

that is implied by $k_{1} \geq \frac{1}{2}$. Accordingly, we fix $k_{1}=\frac{1}{2}$ and set $\hat{G}_{2}(0) \geq 1$.
For stabilizing the closed-loop system (that is assignining all poles of $W(s)$ with negative real part) setting $\hat{G}_{2}(s)=\hat{k}$ with $\hat{k}>1$ is not enough. Indeed, setting

$$
\begin{equation*}
F(s)=\frac{\hat{k}}{2 s} P(s)=\underbrace{\frac{\hat{k}}{2}}_{:=k} \frac{s+4}{s(s-1)(s-2)} \tag{4}
\end{equation*}
$$

one has that the closed-loop pole polynomial is $p_{F}(s, \hat{k})=s^{3}-3 s^{2}+(2+k) s+4 k$ exhibiting two sign variations in the coefficients for all $\hat{k} \in \mathbb{R}$. Accordingly, by invoking the necessary condition of the Routh criterion, there exists no $\hat{G}(s)=\hat{k} \in \mathbb{R}$ making the closed-loop system asymptotically stable. Thus, one can set

$$
\hat{G}(s)=\frac{s+z}{s+p}
$$

with $p \in \mathbb{R}$ chosen in such a way that

$$
\begin{equation*}
\frac{-p+3+4+z}{2}<0 \Longrightarrow p-z>7 . \tag{5}
\end{equation*}
$$

Hence, setting $z=4$, the above necessary condition is satisfied for $p=21$. Thus, one has that

$$
L(s)=\underbrace{\frac{\hat{k}}{2}}_{:=k} \frac{(s+4)^{2}}{s(s-1)(s-2)(s+21)}
$$

so that the stabilizing \hat{k} can be computed by invoking the Routh criterion and computing the Routh table associated to the closed-loop pole polynomial

$$
p_{L}(s, k)=s^{4}+18 s^{3}+(k-61) s^{2}+(8 k+42) s+16 k
$$

that is given by

r^{4}	1	$k-61$	$16 k$
r^{3}	9	$4 k+21$	
r^{2}	$\frac{5 k-570}{9}$	$16 k$	
r^{1}	$\frac{20 k^{2}-2319 k-11970}{5 k-570}$		
r^{0}	k		

Thus, one has that for $k>120.9$ (and thus $\hat{k}>241.8$) the closed-loop system is asymptotically stable under the controller

$$
G_{2}(s)=\frac{\hat{k}}{2} \frac{s+4}{s(s+21)}
$$

The root locus of $P(s) G_{1}(s) G_{2}(s)=\frac{\hat{k}}{2} \frac{s+4}{s(s-1)(s+21)}$ is equivalent to the one of

$$
K(s)=\frac{s+4}{s(s-1)(s+21)} .
$$

Accordingly, denoting by n and m the number of poles and zeros and $r=n-m=2$ as the relative degree, one has that positive locus possesses one vertical asymptote centered at

$$
s_{0}=\frac{-21+1+4}{2}=-8 .
$$

Moreover, the positive locus possesses one sigularity of order $\mu=2$ at $\left(s^{*}, \tilde{k}^{*}\right) \approx(0.48,1.2)$

Figure 4: Root Locus of $P(s) G_{1}(s) G_{2}(s)=\frac{\hat{k}}{2} \frac{s+4}{s(s-1)(s+21)}$.
as solutions to the equalities

$$
\begin{aligned}
p_{K}(s, \tilde{k}) & =s^{3}+20 s^{2}+(\tilde{k}-21) s+4 \tilde{k}=0 \\
\frac{\partial p_{K}(s, \tilde{k})}{\partial s} & =3 s^{2}+40 s+\tilde{k}-21
\end{aligned}
$$

The locus is reported in Figure 4.
Exercise 3 The closed-loop denominator of the input-output transfer function is given by

$$
p(s)=N U M(1+P(s))=s^{3}+3 s^{2}+(3+z) s+1-z
$$

(i) For the roots of $p(s)$ to possess real part smaller or equal to $-\frac{1}{2}$ it is necessary and sufficient, by the Routh criterion, that the polynomial

$$
p_{\frac{1}{2}}(s)=p\left(s-\frac{1}{2}\right)=s^{3}+\frac{3}{2} s^{2}+\left(z+\frac{3}{4}\right) s-\frac{3}{2} z+\frac{1}{8}
$$

is Hurwitz. By computing the Routh table

r^{3}	1	$z+\frac{3}{4}$
r^{2}	$\frac{3}{2}$	$-\frac{3}{2} z+\frac{1}{8}$
r^{1}	$3 z+1$	
r^{0}	$-3 z+\frac{1}{4}$	

the closed-loop system has all poles with real part smaller than $-\frac{1}{2}$ for all $z \in\left(-\frac{1}{3}, \frac{1}{12}\right)$.
(ii) It is evident that for $z=0$, the roots of $S^{*}:=\{s \in \mathbb{C}$ s.t. $p(s)=0\}=\{-1\}$. For
determining, more in general, all roots of $p(s)$ it is enough for the discriminant of the polynomial $p(s)$ given by

$$
\Delta^{*}=-4 z^{2}(z+27)
$$

to be non-negative. This is the case for $z \in\{0\} \cup(-\infty,-27)$

