STUDENT NUMBER.....

CONTROL SYSTEMS - 5/6/2018

[time 2 hours; no textbooks; no programmable pocket calculator]

1) Given

$$P(s) = \frac{1}{s(s-1)}$$

design a controller G(s) such that the feedback system $W(s) = \frac{PG(s)}{1+PG(s)}$

(i) is asymptotically stable (use the Nyquist criterion)

(ii) has zero steady state errors to ramp inputs $(e_1 = 0)$

and the open loop system PG(s) has

(iii) crossover frequency $\omega_t^* = 3$ rad/sec and phase margin $m_\phi^* \ge 30^\circ$. 2) Given

$$P(s) = \frac{s+5}{(s^2+1)(s-1)}$$

a) Draw the root locus using the Routh criterion to determine the exact picture on the imaginary axis

b) Determine, if any, a controller G(s) = K such that the feedback system $W(s) = \frac{PG(s)}{1+PG(s)}$ is asymptotically stable.

c) Determine a controller G(s) with dimension 2 (i.e. $G(s) = K \frac{(1+s_1)(1+s_2)}{(s+p_1)(s+p_2)}$) such that the feedback system $W(s) = \frac{PG(s)}{1+PG(s)}$ has zero steady state error to constant inputs and it is asymptotically stable with poles having negative real part ≤ -3 .

- 3) Given $P(s) = \frac{K}{s+1}$
 - (i) for any K > 0 calculate the forced output response y(t) with input $u(t) = 1 e^{t-1}$ if $t \in [0, 1)$, u(t) = t 1 if $t \in [1, 2)$ and u(t) = 1 if $t \ge 2$
 - (ii) has the system a well-defined output steady state response $y_{ss}(t)$? If yes, determine its value
 - (ii) is it possible to choose K so that the 5%-settling time of the output response y(t) is ≤ 0.01 s?