Control Systems - 3/11/2022

[time 150 minutes; no textbooks; no programmable calculators]

- 1) With $\mathbf{P}(s) = \frac{1}{1-10s}$ design a controller $\mathbf{G}(s)$ with minimal dimension such that we have for the feedback system $\frac{\mathbf{PG}(s)}{1+\mathbf{PG}(s)}$
 - (i) asymptotic stability (use the Nyquist criterion)
 - (ii) steady-state error response $\mathbf{e}_{ss}(t)$ to inputs $\mathbf{v}(t) = t$ such that $|\mathbf{e}_{ss}(t)| \le 0.1$
 - and for the open loop system $\mathbf{PG}(s)$

(iii) crossover frequency $\omega_t^* = 10 \text{ rad/sec}$ and phase margin $m_{\phi}^* \ge 40^\circ$.

2) Given $\mathbf{P}(s) = \frac{3}{(s-1)(s+10)}$

i) determine a one-dimensional controller $\mathbf{G}(s)$ such that the closedloop system $\frac{\mathbf{PG}(s)}{1+\mathbf{PG}(s)}$ has two complex conjugate poles with real part ≤ -0.5 and damping in [0.5, 1)

ii) determine a minimal dimensional controller $\mathbf{G}(s)$ such that the closed-loop system $\frac{\mathbf{PG}(s)}{1+\mathbf{PG}(s)}$ has steady-state error response $\mathbf{e}_{ss}(t) \equiv 0$ to inputs $\mathbf{v}(t) = \delta^{(-1)}(t)$ and poles with real part ≤ -1 . Draw the root locus of $\mathbf{PG}(s)$.

If $\mathbf{P}(s) = \frac{3}{(s-1)(s+a)}$, a > 0, and $\mathbf{G}(s)$ designed as in ii), for which values of a > 0 the closed-loop system $\frac{\mathbf{PG}(s)}{1+\mathbf{PG}(s)}$ maintains the property of a steady-state error response $\mathbf{e}_{ss}(t) \equiv 0$ to inputs $\mathbf{v}(t) = \delta^{(-1)}(t)$ and poles with real part ≤ -1 ?

3) Given the system

$$\dot{\mathbf{x}}_1 = -\mathbf{x}_1 + \mathbf{x}_2 \dot{\mathbf{x}}_2 = \mathbf{u} - \mathbf{x}_1 - \mathbf{x}_2, \ \mathbf{y} = \mathbf{x}_1$$

- (i) determine the forced output response to the input $\mathbf{u}(t) = \delta^{(-1)}(t)$
- (ii) determine the steady-state output response to the input $\mathbf{u}(t)$
- (iii) give an approximate value of the 5% settling time and maximal overshooting of the forced output response.