STUDENT NUMBER.....

CONTROL SYSTEMS - 27/10/2018

[time 2 hours; no textbooks; no programmable pocket calculator]

1) Given $P(s) = \frac{1}{s(s+1)}$ design a controller G(s) of dimension 2 such that the unit feedback system W(s) = PG(s)/(1 + PG(s)) is

- asymptotically stable (use Nyquist criterion)

- zero steady state error to constant inputs v(t)

- zero steady state output to constant disturbances d(t), additive in the input,

and the open loop system PG(s) has

- maximal crossover frequency ω_t with phase margin $m_{\phi} \ge 60^{\circ}$ (approximated Bode plots must be used for the design).

2) Given

$$P(s) = \frac{(s+1)^2}{(s-1)(s-2)(s-4)}$$

- design a first controller $G_1(s)$ such that the closed-loop system is asymptotically stable with all real poles.

- design a second controller $G_2(s)$ such that the closed-loop system is asymptotically stable with all real poles = -1.

Draw the root locus of $PG_2(s)$ using the Routh criterion to determine the exact picture on the imaginary axis.

3) Given

$$\dot{x}_1 = x_2 \dot{x}_2 = -k^2 x_1 - k x_2 + u, \ y = x_1$$
(1)

with $k \in \mathbb{R}$, find the forced output response y(t) and steady state output response $y_{ss}(t)$ to an input $u(t) = 1 + \sin t$ and find values of $k \in \mathbb{R}$ such that $|y(t) - y_{ss}(t)| \leq 0.05$ for all $t \geq 10^{-2} sec$.