

EuRoC Project

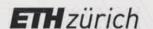
UAV control application for an European Challenge

Bartolomeo Della Corte Marco Ferro

What is EuRoC

Reconfigurable Interactive Manufacturing Cell

Shop Floor Logistics and Manipulation



Stages of the Challenge

Stage I – QUALIFYING: Simulation Contest

The simulation contests are ranked according to objective metrics (criteria and grading system). The best 45 contestants (3×15) are selected based on their scores in the tests, and they become **Perspective Challengers**.

Prospective challengers are given an opportunity to form teams with system integrators and end users and submit short proposals, of which the best 3×5 will be selected to become the official Challenger Teams (03/2015).

Stage II – REALISTIC LABS: Benchmarking, free-style and showcase

Round A (benchmarking + free-style).

Round B (showcase).

Challenger Teams will be ranked according to objective metrics (criteria and grading system). 3×2 Challenge Finalists will be selected for the Field Tests stage of each challenge (12/2016).

• Stage III – FIELD TESTS: Pilot Experiments

This last stage involves much engineering effort because the general solutions developed during the Realistic Labs stage will be customised for end users and tested on the field. A EuRoC Winner will be selected by the BoJ (12/2017).

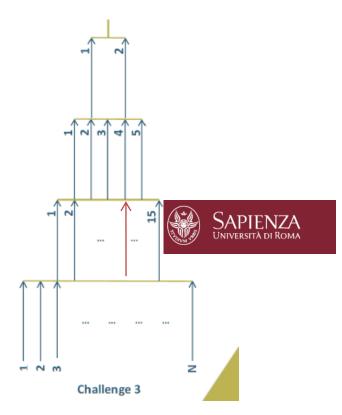
Challenge 3 Contestants

- 35 partecipants (9 italian Universities/Laboratories)
 - ACTLAB (Università di Parma)
 - ARS (Università del Salento)
 - CASY (Università di Bologna)
 - Laborics PSI (private)
 - PEGASUS (Scuola Superiore Sant'Anna)
 - Polibrì (*Politecnico di Milano*)
 - Robo-Team (Campus-Bio-Medico di Roma)
 - RomaUno (Università La Sapienza di Roma)
 - UNIPI (Università di Pisa)
- 21 of them submitted a solution

Challenge 3 Contestants

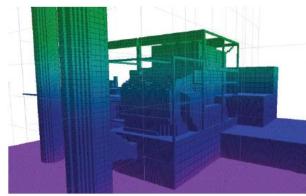
Road to Victory

The Challenge Chart



Rank	Team Name	Total Score
1	TUM Flyers	90.5
2	UNIZG-FER	82.5
2	Eiffel Team	82.5
4	NimbRo Copter	77.0
5	♣ RPG	75.0
6	Graz Griffins	74.5
7	MIRIAMM	73.5
8	Attempto Tuebingen	73.0
9	■ GRVC-CATEC	46.5
10	TU-Chemnitz Proaut	45.0
11	RomaUno	43.0
12	LEO	37.5
13	Polibrì	37.0
14	Unikorn	35.0
15	ACTLAB	25.0

Challenge 3: Plant Servicing and Inspection



- Type of robot: Hexacopter MAV
- Track 1: Vision-based localization and reconstruction
 - Task 1
 - Task 2
- Track2: State estimation, control and navigation
 - Task 3
 - Task 4

Task 3

- Subtask 3.1: simply keep hovering at the starting point
- Subtask 3.2: keep hovering with a constant wind applied
- Subtask 3.3: keep hovering with a wind gust applied
- ☐ Some **benchmarks** are defined in each subtask, in order to assign a **score** to the designed solution
- ☐ Contestants' solutions are designed under ROS framework (Robot Operating System)

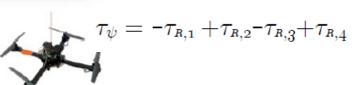
Outlines

- MAV System Analysis
- Designed Solution Description
- Simulations & Results

MAV System Analysis

- The robot architecture provided for the Challenge is an **Hexacopter MAV**
- Structure and model comparable to the well-known Quadcopter (six blades instead of four ...)
 - **Control inputs** are the same: **Thrust** + **torques** on RPY angles
 - **Motor velocities mapping** differs because of the number of blades:

Quadcopter



Hexacopter

$$T = f_1 + f_2 + f_3 + f_4$$

$$f_i = b \, \omega_i^2$$

$$\tau_{\varphi} = l(f_2 - f_4)$$

$$\tau_{\theta} = l(f_1 - f_3)$$

$$T = f_1 + f_2 + f_3 + f_4$$

$$\tau_{\theta} = diag \begin{pmatrix} \begin{bmatrix} b & \cdot l \\ b & \cdot l \\ d \\ b \end{bmatrix} \end{pmatrix} \cdot \begin{bmatrix} s & 1 & s & -s & -1 & -s \\ -c & 0 & c & c & 0 & -c \\ -1 & 1 & -1 & 1 & -1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} \omega_1^2 \\ \omega_2^2 \\ \omega_3^2 \\ \omega_4^2 \\ \omega_5^2 \\ \omega_6^2 \end{bmatrix}$$

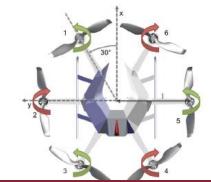
$$\tau_{R,i} = d \, \omega_i^2$$

$$\tau_{\theta} = l(f_1 - f_3)$$

$$s = \sin(30^\circ); \ c = \cos(30^\circ)$$

$$s = \sin(30^{\circ}); \ c = \cos(30^{\circ})$$

 $l = 0.215 \,\mathrm{m}$



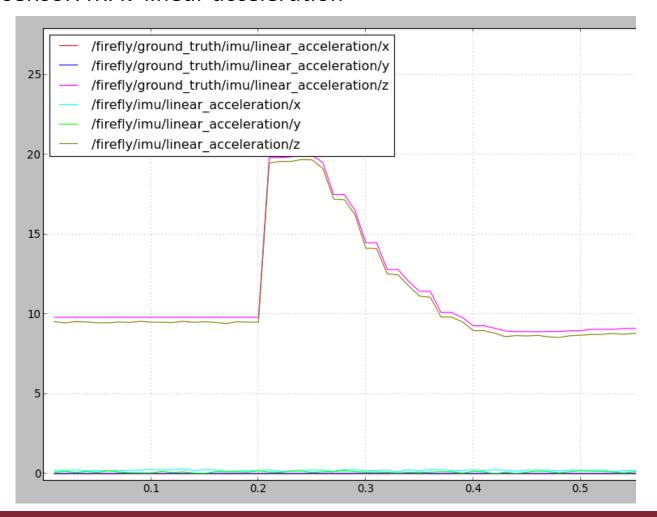
MAV Sensory Equipment

- The MAV model provided is equipped with two sensors:
 - A noisy IMU sensor providing:
 - MAV Orientation
 - MAV linear acceleration
 - MAV angular rate
 - A 6-DoF Pose sensor providing:
 - Sensor position
 - Sensor orientation

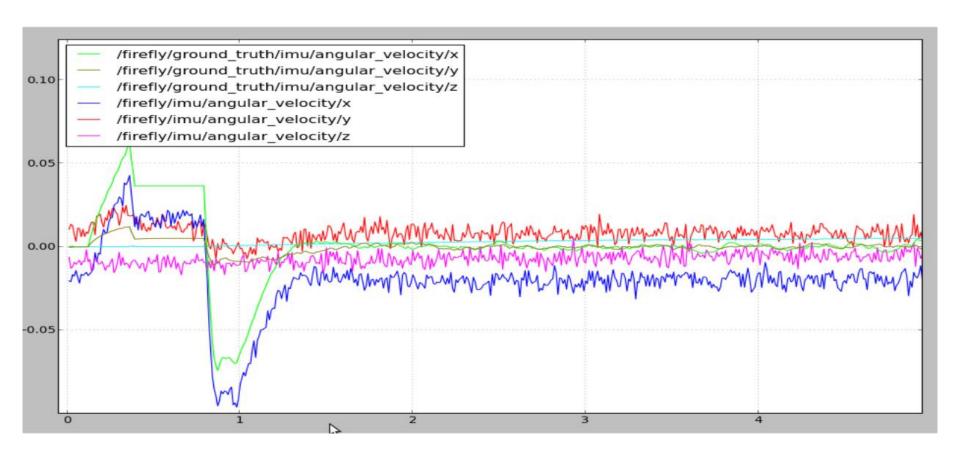
MAV and Sensor frames do **not** coincide!

Not a **real** sensor! It abstracts a visionbased localization approach

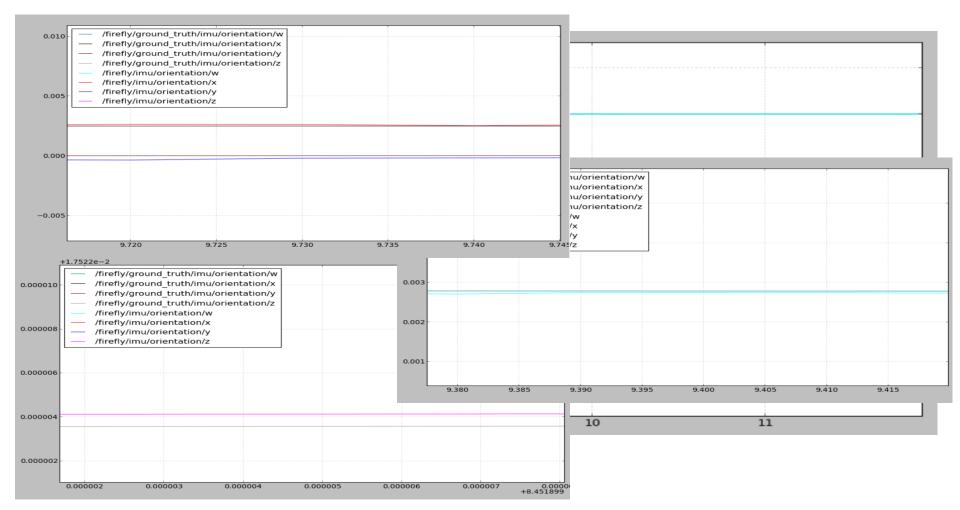
IMU sensor: MAV linear acceleration



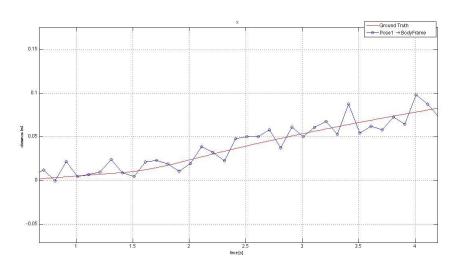
• IMU sensor: *MAV angular rate*

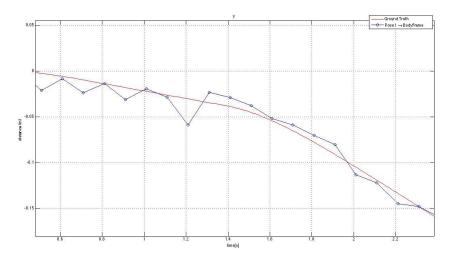


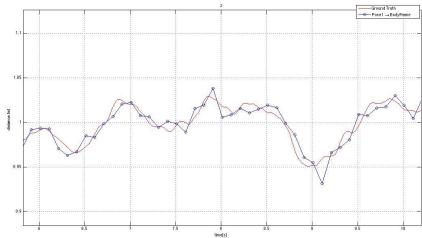
IMU sensor: MAV orientation



Pose Sensor





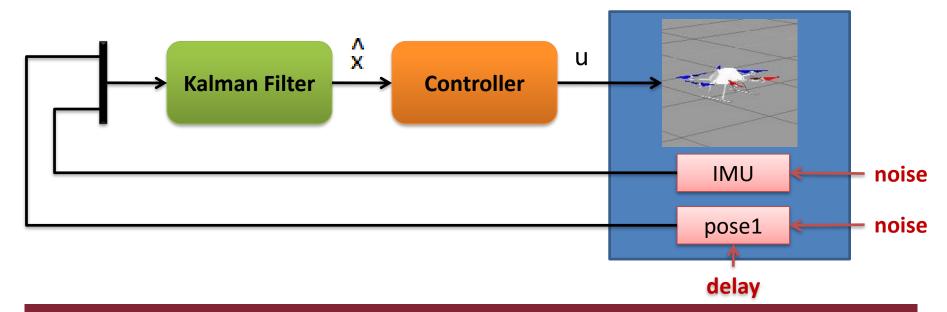


Outlines

- MAV System Analysis
- Designed Solution Description
- Simulations & Results

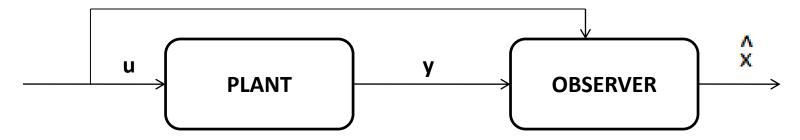
Filtering to reject noise

- The highly noisy nature of the sensor data prevents us to rawly use them in order to accomplish the assigned control tasks
- A filter is usually adopted in order to reject noise coming with corrupted data, so that the control modules are fed with more reliable inputs
- We choose to implement an Extended Kalman Filter



Kalman Filter

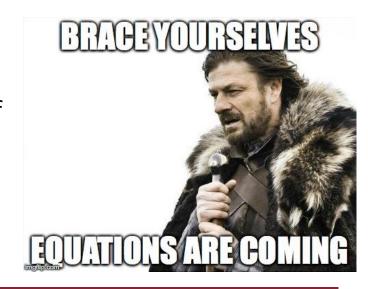
 A Kalman Filter is an observer that estimates the state of a dynamic system, if not directly available



Built in two steps:

Prediction step: *process dynamics* is used in order to generate an intermediate estimate of the state

Update step: the intermediate estimate is corrected according to the *measured output*



Extended Kalman Filter

 An Extended Kalman Filter (EKF) is an observer for a non-linear discretetime system with noise, with dynamics:

$$\begin{cases} \mathbf{x}_{k+1} = \mathbf{f}_k(\mathbf{x}_k, \mathbf{u}_k) + \mathbf{v}_k & \mathbf{v}_k \sim \mathcal{N}(0, \mathbf{V}_k) \\ \mathbf{y}_k = \mathbf{h}_k(\mathbf{x}_k) + \mathbf{w}_k & \mathbf{w}_k \sim \mathcal{N}(0, \mathbf{W}_k) \end{cases}$$

State and Covariance Prediction:

$$\frac{\hat{\mathbf{x}}_{k+1|k} = \mathbf{f}_k(\hat{\mathbf{x}}_k, \mathbf{u}_k)}{\mathbf{P}_{k+1|k} = \mathbf{F}_k \mathbf{P}_k \mathbf{F}_k^T + \mathbf{V}_k} \qquad \qquad \mathbf{F}_k = \frac{\partial \mathbf{f}_k}{\partial \mathbf{x}} \bigg|_{\mathbf{x} = \hat{\mathbf{x}}_k}$$

State and Covariance Update:

$$\hat{\mathbf{x}}_{k+1} = \hat{\mathbf{x}}_{k+1|k} + \mathbf{R}_{k+1}\nu_{k+1}$$

$$\mathbf{P}_{k+1} = \mathbf{P}_{k+1|k} - \mathbf{R}_{k+1}\mathbf{H}_{k+1}\mathbf{P}_{k+1|k}$$

$$\mathbf{H}_{k+1} = \frac{\partial \mathbf{h}_{k+1}}{\partial \mathbf{x}} \Big|_{\mathbf{x} = \hat{\mathbf{x}}_{k+1|k}}$$

innovation
$$u_{k+1} = \mathbf{y}_{k+1} - \mathbf{H}_{k+1} \hat{\mathbf{x}}_{k+1|k}$$
Kalman Gain $\mathbf{R}_{k+1} = \mathbf{P}_{k+1|k} \mathbf{H}_{k+1}^T (\mathbf{H}_{k+1} \mathbf{P}_{k+1|k} \mathbf{H}_{k+1}^T + \mathbf{W}_{k+1})^{-1}$

EKF in our problem

The state to be estimated for the hexacopter system is given by:

$$\mathbf{x} = [^{w}\mathbf{p}, ^{w}\mathbf{v}, \mathbf{b}_{a}]^{T}$$

where:

- w **p** is the MAV position in the world frame;
- $-w_{\mathbf{V}}$ is the MAV velocity in the world frame;
- \mathbf{b}_a is the accelerometer bias
- Initialization:

$$\mathbf{x}_{0} = \begin{bmatrix} \underbrace{0, 0, 0.08}_{w_{\mathbf{p}}}, \underbrace{0, 0, 0}_{w_{\mathbf{v}}}, \underbrace{0.2, 0.1, -0.3}_{\mathbf{b}_{a}} \end{bmatrix}^{T} \qquad \mathbf{H}_{k} = \begin{bmatrix} \mathbf{I}_{3 \times 3} & \mathbf{0}_{3 \times 6} \\ \mathbf{0}_{6 \times 3} & \mathbf{0}_{6 \times 6} \end{bmatrix}$$

$$\mathbf{P}_{0|0} = \mathbf{0}_{9 \times 9} \qquad \qquad \mathbf{W}_{k} = \begin{bmatrix} 0.0001 & 0 & 0 \\ 0 & 0.0001 & 0 \\ 0 & 0 & 0.0001 \end{bmatrix}$$

 $\mathbf{V}_k = diag(0.0000000016 * \mathbf{I}_{3\times3}, diag(0.000000016 * \mathbf{I}_{3\times3}), diag(0.00000016 * \mathbf{I}_{3\times3}))$

Prediction

 An IMU-based propagation model has been used: IMU linear acceleration and angular rate are used as system inputs in the prediction step (actually only linear acceleration)

$${}^w\hat{\mathbf{p}}_{k+1|k} = {}^w\hat{\mathbf{p}}_k + T_{imu} \ {}^w\hat{\mathbf{v}}_k + \frac{1}{2}T_{imu}^2(R(\mathbf{q})a + g)$$
 State Prediction

 $\hat{\mathbf{x}}_{k+1|k} = \mathbf{f}_k(\hat{\mathbf{x}_k}, \mathbf{u}_k)$

$${}^{w}\hat{\mathbf{v}}_{k+1|k} = {}^{w}\hat{\mathbf{v}}_{k} + T_{imu}(R(\mathbf{q})a + g)$$
$$\hat{\mathbf{b}}_{ak+1|k} = \hat{\mathbf{b}}_{ak}$$

$$a = a_{imu} - \hat{\mathbf{b}}_a$$

R(q) is the Rotation
matrix expressing
the orientation of
the body frame
wrt the world
frame

 \mathbf{F}_k non-zero entries

$$T_{imu} = 0.01s$$

$$\frac{\partial^{w} \hat{\mathbf{p}}_{k+1|k}}{\partial^{w} \hat{\mathbf{p}}_{k}} = \mathbf{I}_{3\times3}, \quad \frac{\partial^{w} \hat{\mathbf{p}}_{k+1|k}}{\partial^{w} \hat{\mathbf{v}}_{k}} = T_{imu} \mathbf{I}_{3\times3}, \quad \frac{\partial^{w} \hat{\mathbf{p}}_{k+1|k}}{\partial^{w} \hat{\mathbf{b}}_{ak}} = -\frac{1}{2} T_{imu}^{2} \mathbf{R}(\mathbf{q}),
\frac{\partial^{w} \hat{\mathbf{v}}_{k+1|k}}{\partial^{w} \hat{\mathbf{v}}_{k}} = \mathbf{I}_{3\times3}, \quad \frac{\partial^{w} \hat{\mathbf{v}}_{k+1|k}}{\partial^{w} \hat{\mathbf{b}}_{ak}} = -T_{imu} \mathbf{R}(\mathbf{q}), \quad \frac{\partial^{w} \hat{\mathbf{b}}_{ak+1|k}}{\partial^{w} \hat{\mathbf{b}}_{ak}} = \mathbf{I}_{3\times3},$$

Covariance Prediction

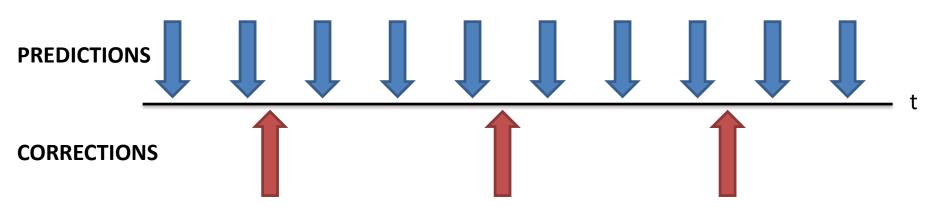
$$\mathbf{P}_{k+1|k} = \mathbf{F}_k \mathbf{P}_k \mathbf{F}_k^T + \mathbf{V}_k$$

Correction

 The Correction step is performed with data coming from the Pose Sensor, where

$$T_{pose} = 0.1s \quad (\neq T_{imu} = 0.01 \; !!!)$$

• The Prediction and Correction steps rates are clearly different: the result is that the filter applies a certain number of **predictions** before a new measurement arrives (and so, a **correction** is performed)

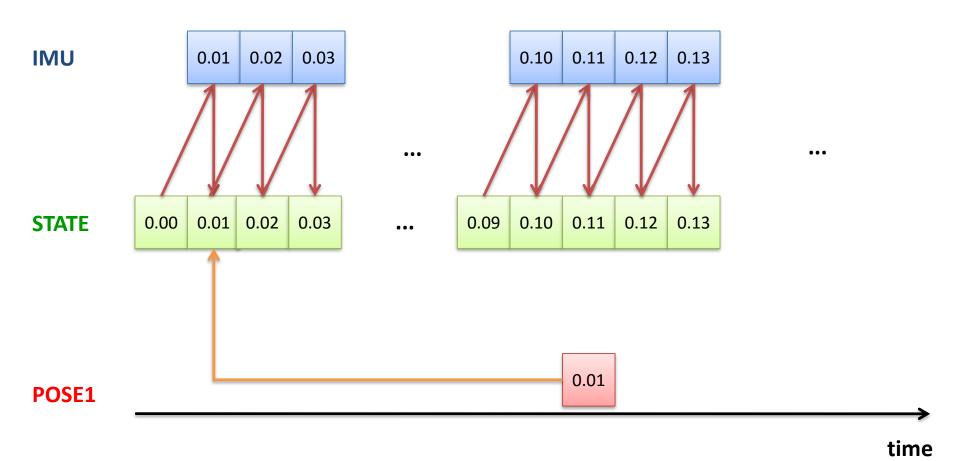


 The equations shown before (see State and Covariance Update) are then applied whenever a new Pose sensor message arrives

Filter Validation

- In this way, noise and low-rate issues can be handled in the sensors...
- ... but Pose Sensor is still delayed!!
- In fact, Pose Sensor messages contain a timestamp field referring to a previous time instant, so the corresponding correction has to be applied on a properly previous prediction
- This does not cause so many troubles while working off-line, since a simple timestamp comparison is enough in order to apply the correction to the proper intermediate estimate
- On the other hand, when everything needs to work on-line, the validation on the virtual environment Gazebo has to include a synchronization mechanism ...

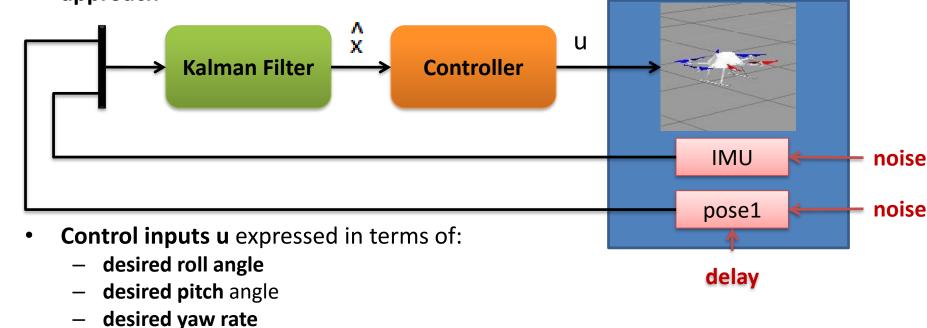
Synchronisation



From filter ... To control

- Data coming from the Kalman Filter module are more reliable to be managed than noisy sensor data
- These data are used in order to feed the Controller module that allows the MAV to behave in a desired way by computing proper control inputs

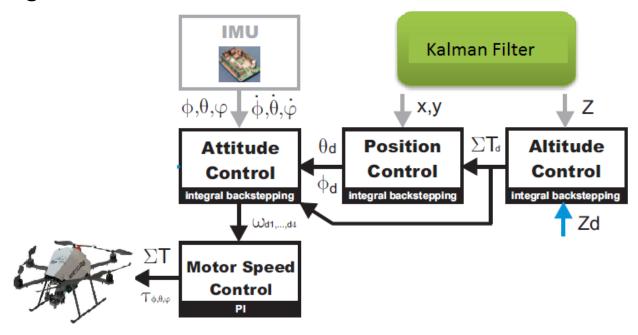
The chosen control paradigm for this application is an Integral Backstepping approach



Thrust

Integral Backstepping

- Integral Backstepping paradigm differentiates three control modules for altitude, position and attitude
- In our node:
 - Altitude and Position controller have been implemented
 - Attitude controller is an inner module of the MAV provided by the organizers



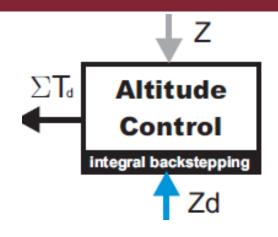
Altitude Controller

Altitude tracking error

$$e_z = z_d - z$$

Altitude speed tracking error

$$e_{\dot{z}} = c_z e_z + \dot{z}_d + \lambda_z \chi_z - \dot{z}$$



$$\chi_i = \int_0^t e_i(\tau) d\tau$$
$$c_z, c_{\dot{z}}, \lambda_z > 0$$

Thrust control input

$$T = \frac{m}{\cos\phi\cos\theta} = \left[g + \left(1 - c_z^2 + \lambda_z\right)e_z + \left(c_z + c_{\dot{z}}\right)e_{\dot{z}} - c_z\lambda_z\chi_z\right]$$

Position Controller

x- and y-tracking errors

$$e_x = x_d - x$$
$$e_y = y_d - y$$

Speed tracking errors

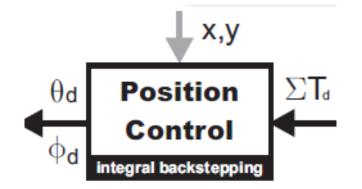
$$e_{\dot{x}} = c_x e_x + \dot{x}_d + \lambda_x \chi_x - \dot{x}$$

$$e_{\dot{y}} = cy e_y + \dot{y}_d + \lambda_y \chi_y - \dot{y}$$

desired roll and pitch angles control inputs

$$\theta_{d} = \frac{m}{T} \left[\left(1 - c_{x}^{2} + \lambda_{x} \right) e_{x} + \left(c_{x} + c_{\dot{x}} \right) e_{\dot{x}} - c_{x} \lambda_{x} \chi_{x} \right]$$

$$\phi_{d} = -\frac{m}{T} \left[\left(1 - c_{y}^{2} + \lambda_{y} y \right) e_{y} + \left(c_{y} + c_{\dot{y}} \right) e_{\dot{y}} - c_{y} \lambda_{y} \chi_{y} \right]$$



Attitude Controller

IMU

 $\phi, \theta, \varphi \perp \phi, \dot{\phi}$

Attitude

Motor Speed

Wd1....d4

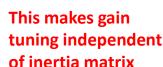
- Attitude Controller has been used as provided in the Simulation VM
- Inputs: $T, \phi_d, \theta_d, \psi_d$

Parameter Initialization

 K_d : angular rate gain

I: inertia matrix

 K_p : attitude gain $b = 8.54858 \cdot 10^{-6} \left[\frac{kg \cdot m}{s^2} \right]$ $d = 1.3677 \cdot 10^{-7} \left[\frac{kg \cdot m^2}{s^2} \right]$



This makes gain tuning independent of inertia matrix
$$\longrightarrow \begin{bmatrix} K_p \leftarrow K_p/I \\ K_d \leftarrow K_d/I \end{bmatrix}$$

$$A = \begin{bmatrix} s & 1 & s & -s & -1 & -s \\ -c & 0 & c & c & 0 & -c \\ -1 & 1 & -1 & 1 & -1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} : \text{ allocation matrix}$$

$$u = \begin{bmatrix} \tau_{\phi} \\ \tau_{\theta} \\ \tau_{\psi} \\ T \end{bmatrix} \quad K = diag \begin{pmatrix} \begin{bmatrix} b \cdot l \\ b \cdot l \\ d \\ b \end{bmatrix} \end{pmatrix} \quad u = KA\omega^{2} \rightarrow \omega^{2} = (KA)^{-1}u = (KA)^{-1} \begin{bmatrix} I & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a_{\tau} \\ T \end{bmatrix}$$

$$\omega^{2} = A^{T}(AA^{T})^{-1}K^{-1}\bar{I}a_{\tau} = \tilde{A} \begin{bmatrix} a_{\tau} \\ T \end{bmatrix}$$

$$u = KA\omega^2 \to \omega^2 = (KA)^{-1}u = (KA)^{-1} \begin{bmatrix} I & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a_{\tau} \\ T \end{bmatrix}$$

$$\omega^2 = A^T (AA^T)^{-1} K^{-1} \bar{I} a_\tau = \tilde{A} \begin{bmatrix} a_\tau \\ T \end{bmatrix}$$

Attitude Controller

Compute Angular Acceleration

1.
$$\psi \to R(\mathbf{q}) . \text{get_yaw}()$$

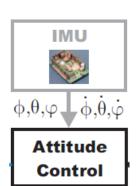
2.
$$R_d = R(\psi, \vec{z})R(\phi_d, \vec{x})R(\theta_d, \vec{y})$$

3.
$$e_R = \frac{1}{2} \left(R_d^T R - R^T R_d \right) \longrightarrow e_{angle} = \begin{bmatrix} e_R(3,2) \\ e_R(1,3) \\ 0 \end{bmatrix}$$

4.
$$\omega_d = \begin{bmatrix} 0 \\ 0 \\ \dot{\psi}_d \end{bmatrix}$$

5.
$$e_{\omega} = \omega - R^T R_d \omega_d$$

6.
$$a_{ au} = -K_p e_{angle} - K_d e_{\omega} + \omega imes \omega$$



Outlines

- MAV System Analysis
- Designed Solution Description
- Simulations & Results

Provided Infrastructure for Challenge 3

- Two virtual machines (running Ubuntu 12.04) are provided to each Contestant:
 - A Simulation VM, containing the virtual environment (Gazebo) for simulations.
 - A Contestant VM, containing the Contestant's solution for the assigned tasks.
- The VMs communicate via Client/Server Protocol:
 - The Simulation VM acts as a Server and must not be modified
 - The Contestant VM acts as a Client submitting the solution to the Server
- ROS is installed on both VMS

simclient int main() { //Solution goes here } simserv

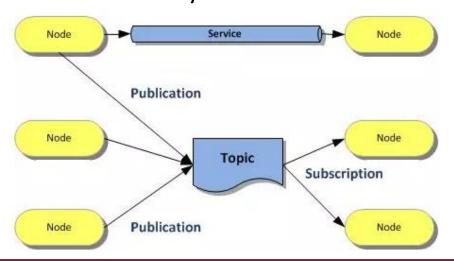
ROS in a nutshell

- ROS framework is an Operating System for robots (a meta-operating system)
 - standard OS functionalities offered:
 - Hardware abstraction
 - Processes handling and message-passing mechanism
 - •
 - Development environments provided, with client API libraries:
 - C++
 - Python
 - Java
 - Lisp

further info: www.wiki.ros.org

ROS in a nutshell (2)

- Processes running under ROS are called nodes
- Nodes communicate through message-passing mechanism
- A message is a data structure with some designed typed fields (integer, float, boolean, array, ...)
- Nodes can write a message and publish it on a topic, or it can subscribe to a topic in order to read the corresponding message
- A special node, called *roscore*, acts as a **master node** and needs to be run first before any other node.



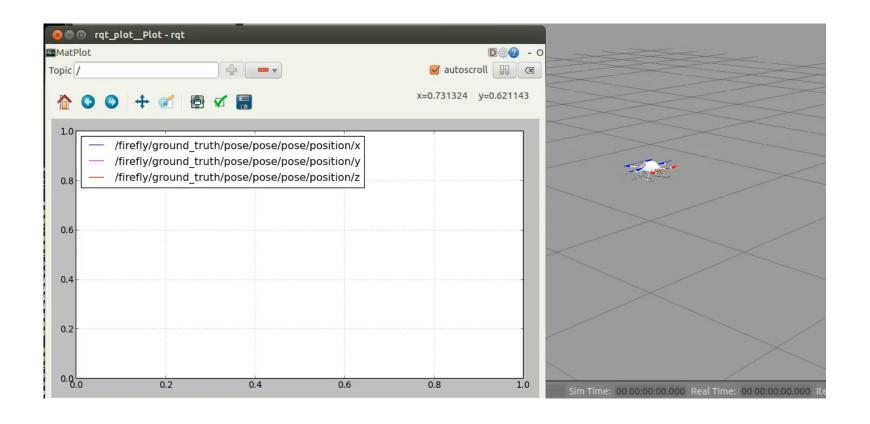
ROS Virtual Machines Communication

- ROS usually works on a single machine; but so ...
- ... How can we make VMs to communicate between them?
- EuRoC partners have set a "network bridging" mechanism between the two machines, so that the roscore master node of the Server machine is shared with the Client Machine
- On the Contestant VM:
 - i. <host machine's IP> eurocsimserv
 - ii. <Contestant VM adapter 3 IP> eurocsimclient
 - i. export ROS_MASTER_URI=http://eurocsimserv:11311
 - ii. export ROS_HOSTNAME=eurocsimserv

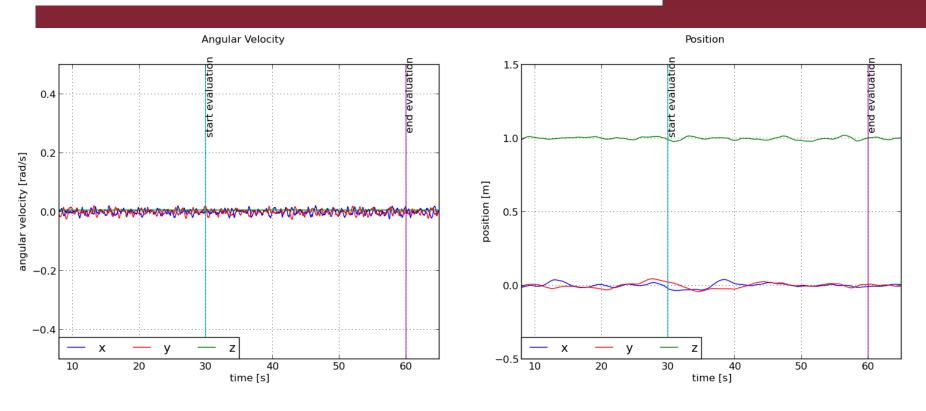
Launch files

- The source code is the same for each subtask...
- ... But virtual scenarios change!
- Some common parameters need to be modified so that each subtask can be properly satisfied (mainly control gains and flags)
- These parameters may be set by defining a launch file for each subtask
- Solution node can then be run through the ROS command *roslaunch*

Task 3.1: results



Task 3.1: results



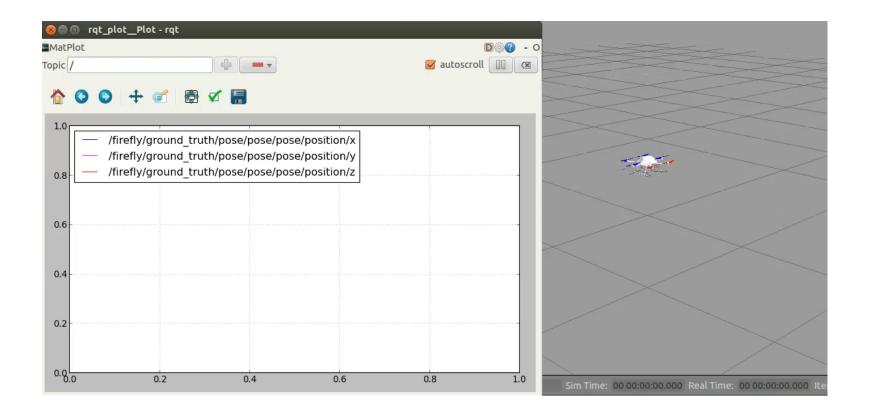
Position RMS error: 0.027 m

Angular velocity RMS error: 0.014 rad/s

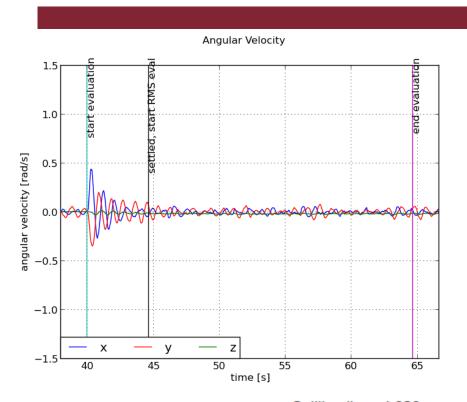
Scores: 3.0, 4.5

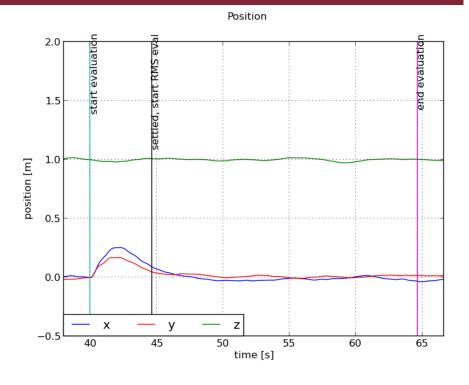
Total Score for Task 3.1 is: 7.5

Task 3.2: results



Task 3.2: results





Settling time: 4.630 s

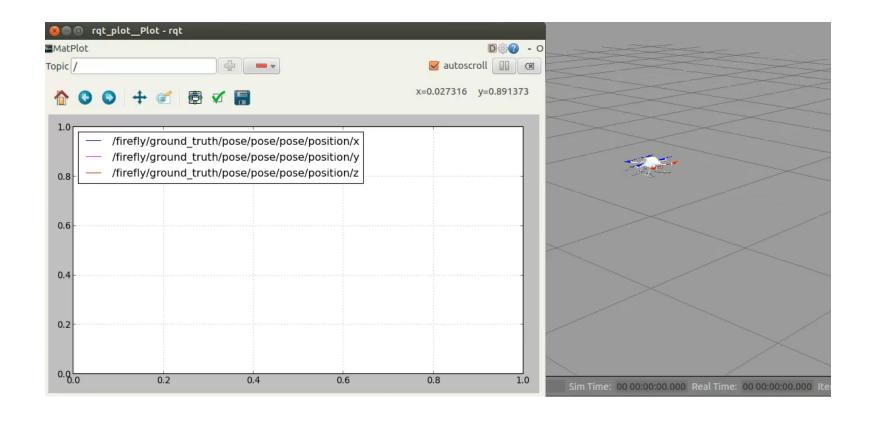
Position RMS error: 0.031 m

Angular velocity RMS error: 0.041 rad/s

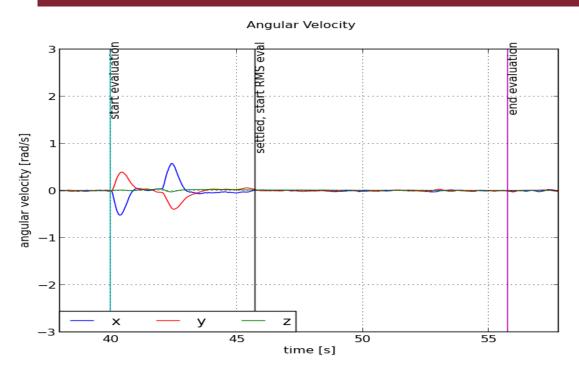
Scores: 1.0, 1.0, 1.0

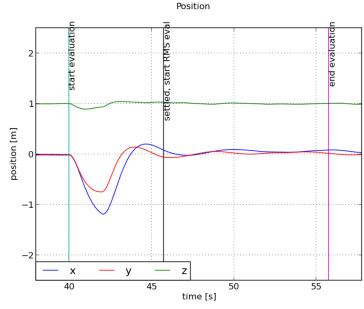
Total Score for Task 3.2 is: 3.0

Task 3.3: results



Task 3.3: results





Settling time: 5.760 s

Position RMS error: 0.070 m

Angular velocity RMS error: 0.017 rad/s

Scores: 2.0, 2.0, 3.0

Total Score for Task 3.3 is: 7.0

Task 3.3: results

Questions?

