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It is a well-known fact that in carrier wave' transmission
it is necessary to provide for the efficient transmission and re-
ception not only of the carrier frequency itself but also for a band
of frequencies of width depending on the frequency and char-
acter of the signal itself. This necessity is becoming more and
more a serious consideration as the severity of wave length regu-
lation and the necessity of sharp selective tuning are increased.
In view of these facts a great deal of inventive thought has been
devoted to the problem of narrowing the band of transmission
frequencies. Some of the schemes which are directed to this end
are very ingenious; all, however, are believed to involve a funda-
mental fallacy. It is the purpose of this note to discuss briefly the
general problem of modulation and to analyze the more ingenious
and plausible schemes which have been advanced to solve this
problem.

A pure modulated wave may be mathematically defined by
the expression

f(t) Acos (o (1)
Here f(t) is the low frequency signal, o/2 ;r is the carrier fre-

quency and A is an amplitude factor which fixes the magnitude
of the transmitted wave.

The pure modulated wave is often defined in words as "a
carrier wave of constant frequency whose amplitude is propor-
tional to the signal wave." Properly interpreted this definition
is correct; however, the inference which is sometimes made, that
the resultant wave is of constant frequency is erroneous, as may
easily be shown.

*Received by the Editor, January 6, 1922.
11t is to be understood that the term carrier wave is employed in its

generic sense to cover radio as well as carrier wave wire transmission in both
of which the carrier wave plays the sdtne role.

2See "Carrier Wave Telephony and Telegraphy," by Colpitts and Black-
well, "Journal of the American Institute of Electrical Engineers," April, 1921
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Let the signal wave f(t) be represented, as we assume in tele-
phone theory, by a plurality of sinusoidal terms, thus

m

f (t)= ajcos (pjt+t/j) (2)

Substitution in (1) gives for the pure modulated wave:
m

A aj cos [ ((o-pj) t- j]

m (3)
± 1A > aj cos [((o+±p) t+flj]

It follows at once that the frequencies transmitted lie between
(to+pm)/27t and ((o-pm)'/2 ; that is the width of the bandis
2 pm/2 -r. For example let us take a carrier wave of 100,00O
cycles per second, and modulate this wave with telephone sig-
nals which we shall assume contain frequencies up to 2,500 cycles
per second. The pure modulated wave then contains frequencies
lying between 102,500 and 97,500 cycles per second and a band
of 5,000 cycles must be transmitted.

It has, however, been known for several years2 that it is not
necessary to transmit the pure modulated wave which contains
a band of frequencies of twice the signal wave range of fre-
quencies and that theoretically perfect transmission can be had
by transmitting only one "side band" and suppressing the other.
This may be explained as follows: Referring to the expression
(3) for the pure modulated wave, suppose that all frequencies
below3 that of the carrier (o/2 ,. are filtered out so that the trans-
mitted wave is

IA aj cos ((o+ pj) t+ Oj (4)

Let the receiving stations be provided with a local gentrator
of frequency (o/2-, which is combined in the demodulator with
the received wave. If the locally generated wave is represented
by B cos (ot, the demodulated wave is

1AB cos (ot aj cos ((O +pj) t+j2

which is equivalent to
3A precisely similar argument holds if all the frequencies above the carrier

frequency (o29r are suppressed.
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1AB aj coS (pi t+Qoi)

+ 4AB aj cos (2 (o+pj) t+dj

The first expression is simply the signal wave f (t) multiplied
1

by the factor IAB while the second expression is of double
4

radio frequency which is entirely suppressed in the audio fre-
quency circuits.

In the system of modulation discussed above it will be
observed that the amplitude of the carrier wave is varied by and
in accordance with the low frequencies signal wave and that this
process inherently requires the transmission of a band of fre-
quencies at least equal to the range of essential frequencies in
the signal itself.4 In order to eliminate this necessity which is
inherent in all actual systems of modulation it has been pro-
posed a number of times to employ an apparently radically
different system of modulation which may be termed frequency
modulation as distinguished from amplitude modulation, in the
belief that the former system makes possible the transmission
of signals by a narrower range of transmitted frequencies. This
belief is erroneous; the suggestion is, however, quite ingenious,
and the reasoning on which the supposed advantage is based is.
very plausible, and indeed requires some mathematical analysis
before its incorrectness can be satisfactorily established. The
system of frequency modulation will now be explained and
analyzed in terms of the specific physical system in which the
idea was first called to the attention of the writer.

Suppose that we have an ideal non-dissipative oscillation
circuit of inductance L and capacity C. Such a circuit is of
course ideal and unrealizable, but the analysis of the actual
vacuum tube oscillator, as regards frequency modulation, may
be safely based on a consideration of the ideal circuit. This cir-
cuit when once energized, will continue to oscillate at frequency
(o/2;r when (I) = 1/V/LC. Now suppose that the capacity (or in-
ductance) is varied in accordance with an audio frequency sig-
nal. For the present we shall simplify the discussion by assum-
ing that the signal is a pure tone of frequency p/2 7r, and that the
instantaneous value of the capacity is Co(1-2 h sin pt) where h
is an amplitude factor proportional to the signal intensity. We

41t should be noted that after either "side band" is suppressed, the re-
sulting wave does not fall within the definition of a pure modulated wave of
equation (1).
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shall later consider the general case where the signal is repre-
sented by f (t). Assuming that h is small compared with unity
we can write

1VLC -VLCO (1+h sin pt)

=o (l+h sin pt)

From the foregoing reasoning it has frequently been concluded
that the oscillation circuit generates a continuously varying
frequency of instantaneous value

L5L0 (1+h sin pt)
so that the generated frequency varies between the limits
(Oo (1 -h)/2 ;r and (o0 (1 +h)/2 ;r. According to this theory, if
2 hwo0 is made less than p the range of frequencies transmitted
2h(Ao/2 ir will be smaller than p/2 ,., which is the minimum range
required in amplitude modulation.

The foregoing gives, very briefly, the essential reasoning
underlying the idea of frequency modulations. We shall now
analyze the scheme more closely: The differential equation of
the circuit may be written as

L d21 +1I 0dt2 C

d2I 1
dt2 +LC (1+2hsinpt)I=O (5)
d2I

_-+(02I =

Now if (o is treated as a constant, a particular solution is

I=A cosot

If we now substitute for to the expression

VC (1+h sin pt) =(o (1+hsinpt)

we get
I =A cos [wo0 (1 +h sin pt) t] (6)

which is interpreted as representing a wave of instantaneous
frequency

'00 (1+h sin pt)
2;

Both the solution of the equation and the interpretation of
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this solution are incorrect. Equation (5) by a simple transfor-
mation of variables is reducible to the form

dX2IdI +(a+16qcosx)I=O
which is the canonical form of Mathieu's Equation (see Whit-
taker and Watson, "Modern Analysis," page 402), and it is easily
shown from the theory of this equation that the solution of (5)
is the real part of

eiw, t an einlpt 7
-<SD

Consequently the solution is a series of the form

2bn cos [ (Xoo+n p) t+On] (8)

The frequencies present in the wave form an infinite series
spaced at the interval p/2;r of the signal frequency. They may
be tabulated as

(io

(tio+P (Qo p
(lo+2 p (Oo 2 p
(00+3 p (o0 -3 p

(oO+n p (oo-np
It follows at once that the transmission of the signal by fre-

quency modulation requires the transmission of a band offrequencies
at least 2p/2 7r in width; that is a band of width equal to twice that
of the signal itself.

If the solution (7) is substituted in the differential equation
(5), we get the following system of difference equations for the
determination of the constants.

-i (2 np(oa +n2 p2) an+h (o2(an -1-an+l) = 0 (9)
In the practically important case where p is so small com-

pared with (oo that np may be neglected in comparison with (o,
this is satisfied by

An = (i) -n Jn (h (olt)p) ( 10)
where Jn (h woo/p) is the Bessel function of order n and argument
h wo/p. In this case the series sums up to

I=Acos (wot- pcosPt) (11)
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The ratio of the term of frequency (0wo+p) to the fundamental of
frequency wo is Ji (h wo/p)/Jo (h to,/p), which in case h (oi/p is
less than unity is approximately equal to h (o/2 p. This system
of modulation, therefore, discriminates against high frequencies
and therefore inherently introduces distortion.

In analyzing this system of frequency modulation consider-
ation has been limited to the case of a signal consisting of a pure
tone of frequency p/2,.. In the more general case where the sig-
nal must be represented by an arbitrary f (t), as is the case in
telephonic transmission, a general solution can only be gotten
when f (t) is periodic and analyzable into a Fourier series. In
this case the differential equation of the problem is reducible to
Hill's equation (Whittaker and Watson, "Modern Analysis,"
page 406), and the theory of this equation shows that the fre-
quencies present in the wave are exactly the same as those given
above if p/2 , is the fundamental frequency of f (t).

However if we introduce the approximations indicated by
physical considerations, a much simpler and more instructive
approximate solution is obtainable without analyzing f (t).
Let the instantaneous capacity be represented by Co(I - 2h f (t));
then assuming 2h f (t) small compared with unity the differential
equation of the problem is

dt2 +w" (1+2 hf (t)) I= 0dt2
Assuming that the solution is the real part of ei"@o t4 (t) and sub-
stituting in the differential equation we get

i 2 toow0 (t) +P (t)+2 hw002f (t)> (t) =0.
Now if f (t) is a relatively slowly varying function compared with
the carrier wave, the term 4" (t) may be neglected and we get

4 (t) =A ei wohff (t) d t
whence

I-A cos [wo (t+hff (t) dt)] (12)
If (o0 hff (t) dt is small compared with unity, as it would be in
practice, this gives approximately

I=A cos tot -0o hAff (t) dtsinwoot
The second term is a modulated wave, but the amplitude instead
of being proportional to the signal wave is proportional to its
integral. Consequently this type of modulation inherently dis-
torts without any compensating advantages whatsoever.

The foregoing solutions, tho unquestionably mathematically
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correct, are somewhat difficult to reconcile with our physical
intuitions, and our physical concepts of such "variable frequency"
mechanisms as, for example, the siren. Upon closer analysis it
is seen, however that the difficulty arises in connection with what
we mean by frequency, and can be cleared up satisfactorily, it is
believed, by the following generalized concept and definition of
frequency.

Suppose we have a function sin (QI (t)) where f2 (t) is any
specified function of time: Its derivative with respect to time is
Q' (t) cosQ72(t) where Q2' (t) = d/dtQ.(t). We define the generalized

trequency of such a function as equal to -Q' (t). This defini-2 i
tion, while formally arbitrary, has considerable physical signi-
ficance, and is believed to be a useful concept. In the case where

(t)=ot it agrees with the usual definition of frequency wt)/2 r.
Furthermore, if we apply this definition to formulas (11) and (12)
the generalized frequencies are respectively (oo(1+ h sin p t) and
(fo (1 +hf (t)), which agree with our physical intuitions. It agrees
also with the fact that in the case of the siren the mathematical
analysis of which differs in no essential way from that of the
"variable frequency" oscillator just discussed, the generalized
frequency, as defined above, corresponds with the "instantaneous
frequency" which the ear apperceives. This may be shown
as follows:

In the neighborhood of time t= r, Qi (t) may be expanded as

t T ~(t -T)2 ftQ()Q(T) + !Q(T) + 2 Q (T) +

Now the function sin [Ql (t)] alternates when the function QI (t)
changes by the amount 7r; or otherwise stated, the interval
between zeros corresponds to the time intervals during which
QI (t) changes by the amount 7r. From the foregoing expansion
this interval is approximately 7r/1' (t) in the neighborhood of
the time t = r. That is to say, the rate of alternation of the function
sin [Ql (t)] is approximately the same at any time t, as that of the
function sin (o t, where (e= l' (t). In this sense and this sense
only do "variable frequency mechanisms" generate a contin-
ously varying frequency over the range of frequencies corre-
sponding to the extreme values of Ql' (t).

Exactly the same conclusions are reached by the analysis of
another theoretically possible scheme of frequency modulation
which suggests itself. This is to vary the speed of a radio fre-
quency alternator in accordance with the signal so that its in-
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stantaneous angular velocity is representable by
(o (1+hf (t))

A superficial consideration of this scheme would lead to the
erroneous conclusion that the frequency generated is

' (1+hf (t)) and for a sinusoidal signal varies between

'4 (1-h) and (1 +h). A mathematical analysis shows,

however, that it differs in no essential way from the arrange-
ment analyzed above and that the frequency band which
must be transmitted is at least equal to that required in am-
plitude modulation.

The foregoing discussion is immediately applicable to the
analysis of the systlm of continuous wave radio telegraphy which
employs the so-called "spacing wave." In its essentials this
system merely employs "frequency modulation" instead of "am-
plitude modulation" in the sense employed above and formula
(12) is directly applicable. It follows therefore at best, as regards
the necessary range of frequencies, the "spacing wave" system
is inferior to that in which the dot and dash correspond to modu-
lation of amplitude of a constant frequency carrier. Superiority,
however, has been claimed for the former on the alleged ground
that, since "the amplitude is constant," transient disturbances
are minimized. This claim is seen to be quite invalid when the
real significance of "frequency modulation" is analyzed, and no
such superiority exists.

SUMMARY: The transmission system of "frequency modulation" (trans-
mission by variation of the frequency of the radiated wave) is mathematically
analyzed, and the width of the band of frequencies occupied by this method
of transmission at a given speed is compared with the width of the correspond-
ing band for transmission by amplitude variation. It is proved that the fre-
quency modulation system using a spacing or compensating wave is inferior
to the amplitude variation system both as to the width of the frequency band
occupied and as to distortion of signal wave form.
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