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Abstract

In the last years, several proposals have been pre-
sented concerning graphical query languages work-
ing on diagrammatic representations of semantic data
models. Such proposals are mainly based on two dif-
ferent user interaction modalities, i.e., to allow the
user to specify either a path or a view on the database
schema . In this paper we analyze these two strate-
gies, showing that they are characterised by com-
plementary advantages and disadvantages; then we
present a new graphical query language combining
the advantages of both the approaches.

1 Introduction

A central problem in the database area concerns the
development of tools that allow non expert users to
understand and easily extract information from a
database. A key issue, in order to build a bridge
between the end user and the data, is to represent
the database by means of a semantic data model
and to define a query language for it; we call this
kind of query languages semantic query languages.
In this way we obtain full independence not only
from the physical implementation of the database but
also from the logical model. Moreover, in a seman-
tic data model ([17, 21]) the relationships among ob-
jects are explicitly represented, and not ”embedded”
in obscure attribute equivalences, as in the relational
model.

Recently, a noticeable effort has been spent in the

definition and the experimentation of semantic query
languages, ranging on a wide variety of data models
and on different query language expressiveness (see,
e.g., [14, 5, 4, 10, 2, 16]). All of the available proposals
adopt one between two opposite strategies. The first
one, that we call path-based, is seated on the idea
of constructing the query by specifying a path on
the schema; the second one, that we call view-based,
allows for defining a view on the schema.

The two approaches are characterised by comple-
mentary advantages and disadvantages; in order to
overcome them, we present a query language which
adopts a new strategy for user interaction. Roughly
speaking our proposal allows for specifying in an in-
tegrated fashion both paths and views, capturing the
advantages of the two strategies.

Among the available data models, we have chosen
the Entity Relationship model (ER); however, our
proposal is general enough to be extended to other
types of graph-based data models.

The paper is organized as follows. In section 2 we
recall the main features of semantic query languages,
analyzing the differences between the path-based and
the view-based approaches. In section 3 we introduce
our hybrid approach, giving some examples. In sec-
tion 4 the new query language is formally character-
ized. Concluding remarks point out open research
problems in the area.



2 Semantic Query Languages

The growth of the class of database users, including
more and more non-expert and casual users, has mo-
tivated the development of graphical query languages
that are the main component of friendly interfaces for
accessing databases. A number of proposals are con-
cerned with the usage of either a semantic or object
data model as a means for representing the infor-
mation content of the database. The availability of
graphical representations of such models results in
the natural building of systems in which the user in-
teracts visually with a diagram representing the un-
derlying semantic schema. In most of the above cases,
the graphical representation of the semantic model is
a graph, and the user interaction is defined in terms
of a suitable set of graphical primitives whose seman-
tics is expressed by means of a formal, internal, query
language (a general analysis on that is in [7]).

Through the selection of a single concept and the
manipulation of its characteristics (attributes) the
user is provided with the basic selection and pro-
jection operators. Usually, during this phase, con-
text sensitive interaction mechanisms free the user
from being acquainted with the syntax of the under-
lying query language, therefore avoiding syntax mis-
takes. By selecting pairs of adjacent concepts, i.e., ex-
ploiting the graphical representation of relationships
among classes, the user can simply specify queries in-
volving the join operator, being unaware of the logical
implementation of such relationships. Through this
second mechanism the expressive power of the graph-
ical query language reaches the one of the conjunctive
queries [8]. To specify a set of adjacent concepts can
be seen as the basic building block of the user in-
teraction in building a query, and the way in which
the user is allowed to do that in the proposals avail-
able in the existing proposals can be reduced to two
main paradigms of interaction: path-based (see for
instance, [14, 13, 15, 19, 20, 2]) or view-based (see
for instance, [26, 5, 11, 18, 12, 16, 7]).

To enhance the expressive power of the query lan-
guage several strategies are available. The most com-
mon one is based on the idea of combining two or
more queries through the set-oriented operators of
union, intersection, and difference, thus reaching the

relational completeness. Moreover, several proposals
allow for specifying queries involving linear recursion,
giving the query language the expressive power of
relational algebra augmented by a transitive closure
operator.

It is worth noting that, while the selection of ad-
jacent concepts is performed through the direct ma-
nipulation [23] of the graph, languages more expres-
sive than conjunctive queries are based on additional
non-graphical operators, like icons, special words,
etc. (see [6]), therefore not strictly related to the vi-
sual operations performed by the user on the graph.
Moreover, such languages use conjunctive queries as
the basic building blocks for expressing more complex
queries. Thus, in the following, we will concentrate
on conjunctive queries.

The semantics given to the selection of linked con-
cepts can be easily characterised by restricted logi-
cal calculus formulae, in which only the existential
quantifier and the usual propositional operators are
available. The way in which the existentially quan-
tified variables are given a scope, under the light of
the kind of query the user wants to express, has not
been investigated in the literature; a study close to
the one presented here is in [25], but there the focus
was uniquely on universal quantifiers.

The following subsections will describe the implicit
assumptions made by the two paradigms of interac-
tion (view-based and path-based) showing how they
manage existentially quantified variables and their
scope.

2.1 The path-based approach

In the path-based approach, the user specifies a
path among the classes and the relationships of the
schema, expressing selection and projection condi-
tions. Roughly speaking, it corresponds to an or-
dered sequence of joins between the pairs <class,
relationship> constituting the path, followed by a fi-
nal selection and projection1. The explicit presence
of the relationships prevents the user from looking

1Because the attribute projection does not affect the issues
the paper concentrates on, in the following we will ignore this
activity. On the other hand, we consider selection, neglecting
the way in which it is specified by the user



for concepts like ”foreign keys” and the system can
perform the correct the join operations.
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Figure 1: The example of query Q1

The path-based approach is particularly useful
when the query needs to involve the same class more
than once. In that case, the user (and the system)
can distinguish the different occurrences of the class
by simply considering its position in the path. For
instance, consider the ER schema of Figure 1 and
assume the user query is ”Q1: Find out all the
possible tuples <student, language, teacher>.” The
user specifies the path <person, wants to learn,
language, teaches, person>, distinguishing
teachers from students looking at the different
position of the entity person in the path. More
formally:

Q1 = {<p1, l, p2> |∃p1, p2 ∈
person ∧ ∃l ∈ language ∧ <p1, l>∈
wants to learn ∧ <p2, l>∈ teaches}

Note that, according to the structure of the query
it is possible to get in the result teachers teaching
themselves (in the case in which a teacher wants to
learn a language s/he is teaching). To avoid that
unlikely situation it is necessary to add the condition
p1 6= p2.

The above example shows that the path-based ap-
proach allows for existentially quantifying an un-
bounded number of variables for each class, specify-
ing their scope, i.e., the relationship(s) in which the
variables must appear. Each time the user path in-
volves a class, say c, a new variable is existentially
quantified for that class; such a variable is required
to appear in the incoming and in the outcoming re-
lationships of the class c in the path. If the path
involves n times a class, as in query Q1, n different
variables are quantified.

Specifying two different variables for the entity
person is very useful for expressing query Q1, but
the above approach exhibits its limits when the user
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Figure 2: Second example ER schema

has to select a class twice because of the topological
structure of the schema, as shown in Figure 2.

If the user wants to know the whole set of <client,
part, supplier> belonging to a specified order (say
1021) s/he has to specify the (unnatural) path
<client, c-o, order, s-o, supplier, s-o, order,
p-o, part>, with the condition that both the first
and the second occurrence of order are the same.
More formally:

Q2 = {<c, o1, o2, s, p> |∃c ∈ client ∧ ∃o1, o2 ∈
order ∧ ∃s ∈ supplier ∧ ∃p ∈ part ∧ <c, o1>∈
c-o ∧ <s, o1>, <s, o2>∈ s-o ∧ <p, o2>∈ p-o ∧ o1 =
o2 ∧ o1.Order# = 1021}

Putting the condition o1 = o2 presents two major
drawbacks: (1) it confuses the user that does not sup-
pose s/he is handling two different orders and (2) it
requires an additional mechanism for relating differ-
ent occurrences of the same concept in the path.

The problem is due to the fact that the user touches
the entity order twice (thus quantifying two differ-
ent variables for that class) because this is the only
way to reach through a connected path the entity
part from client involving the entity supplier as
well.

In most of the proposed graphical query languages
the user is allowed to specify multiple paths start-
ing from a single concept (see, e.g., [22]) relating
them through set-oriented operators. Following this
approach, the above query can be expressed stat-
ing three paths from the entity order, one reach-
ing client, one reaching supplier, and the last one
reaching part. As a matter of fact, however, also
this strategy is not natural.

The above example helps us in pointing out the
drawbacks which with we are dealing. The problem
is not related to the expressiveness of the language



(it is possible to express the query) but it comes out
of the unnatural way in which the query has to be
expressed.

2.2 The view-based approach

The view-based approach shows complementary ad-
vantages and disadvantages with respect to the path-
based one. In this case, the user specifies a view
and the query corresponds to an unordered sequence
of ”natural joins”. As an example, the query cor-
responding to the view of Figure 1 coincides with
the natural join of the two relationships wants to
learn, teaches on all the shared entities. In
this case the two relationships share both person
and language, thus the query corresponding to
that view furnishes as answer all the pairs <person,
language> where the person teaches and wants to
learn the related language. In other words, we are
giving the following semantics to a view: existentially
quantify a variable for each entity and assume that
the variable is involved in all the adjacent relation-
ships. More formally the semantics of the query as-
sociated with the view of Figure 1 is the following:

Q3 = {<p, l> |∃p ∈ person ∧ ∃l ∈
language ∧ <p, l>∈ wants to learn∧ <p, l>∈
teaches}

Using the view-based strategy, if a class has to be
involved twice or more in the query it is necessary to
duplicate the class. Referring to query Q1, to obtain
the desired result, it is necessary to duplicate the en-
tity person, giving rise to the (possibly confusing)
view of Figure 3.

LANGUAGE

Wants
to

learn
Name

Teachs

PERSON_1
Name
SSN
Age

PERSON_2
Name
SSN
Age

Figure 3: The query Q1 in the view-based approach

The semantics of the query is the following:

Q′1 = {<p1, l, p2> |∃p1 ∈ person 1 ∧
∃p2 ∈ person 2 ∧ ∃l ∈ language∧ <p1, l>∈
wants to learn ∧ <p2, l>∈ teaches}

Conversely, to compute the second query of section
2.1, the user must select exactly the view of Figure
2, with the associated semantics:

Q′2 = {<c, o, s, p> |∃c ∈ client ∧∃o ∈ order ∧∃s ∈
supplier ∧ ∃p ∈ part ∧ <c, o>∈ c-o ∧ <s, o>∈
s-o ∧ <p, o>∈ p-o ∧ o.Order# = 1021}
that corresponds to the natural join of the relation-
ships c-o, s-o, and p-o on the shared entity order.

It is worth pointing out that, when the adopted
data model supports reflexive relationships, ambigu-
ity in evaluating the query using the view-based ap-
proach can easily arise. We will clarify this statement
through an example, based on the ER schema of Fig-
ure 4.
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Figure 4: Disambiguating reflexive relationships

Using the path-based approach, the path <car,
property, person, marriage (through the hus-
band role), person> plus the selection condition
person[1].age≥ 252 will give all the cars owned
by married men older than 25 together with their
wives; conversely, the path <car, property, per-
son, marriage(through the wife role), person>
plus the condition person[1].age≥25 will give all the
cars owned by married women older than 25 together
with their husbands. Both paths, in fact, cause the
existential quantification of two variables for the en-
tity person; the former specifies that the person in-
volved in the relationship property and in the condi-
tion age≥25 is the husband, the latter the wife. More
formally, the semantics of the first path is:

Q3 = {<c, p1, p2> |∃c ∈ car ∧ ∃p1, p2 ∈
person ∧ <c, p1>∈ property ∧ <p1, p2>∈
marriage ∧ p1.age≥ 25}
while the semantics of the second path is:

Q4 = {<c, p1, p2> |∃c ∈ car ∧ ∃p1, p2 ∈
person ∧ <c, p1>∈ property ∧ <p2, p1>∈
marriage ∧ p1.age≥ 25}

2We denote with concept[i] the occurrence i of the concept
in the path



where we have assumed that the pairs belonging
to the relationships marriage have the form of
<husband, wife>.

Let us consider, in the view-based approach, the
query corresponding to the view of Figure 4 plus the
condition person.age≥25. Because of the presence
of the reflexive relationships we have now to quantify
two variables for the entity person and the prob-
lem is to determine which of them is involved in
the property relationship and is affected by the
person.age≥25 condition. Obviously, there is no
way to guess the right answer, and a piece of ad-
ditional information is needed. We can, for instance,
assume that the marriage relationship is oriented in
the sense person-husband-marriage-wife-person, thus
giving to the query the meaning associated with the
first of the two above paths. Thus, to fully support
the view-based approach, we have to assume that
there is an implicit order of the occurrences of the
same entity in a reflexive relationship and, to the best
of our knowledge, no semantic data model supports
this kind of information. Note that the relationship
roles do not help us to disambiguate the query: they
just allow us to distinguish the multiple occurrences
of an entity within a relationship and not for deter-
mining their scope in the query.

Perhaps the above problems have led to the de-
velopment of view-based semantic query languages
in which reflexive relationships are not allowed (see,
e.g.,[26, 5, 7]).

In order to include reflexive relationships we need
to slightly modify the semantics of the view-based ap-
proach. In particular, we have to consider more than
one variable existentially quantified for an entity if it
is involved in one or more reflexive relationships. The
number of variables depends on the arities of the re-
flexive relationships involving that entity. More pre-
cisely, given an entity e, on which r1, . . . , rk reflexive
relationships are defined , with arities a1, . . . , ak, we
have to consider 1 +

∑k
i=1(ai− 1) existentially quan-

tified variables for e. Moreover, we assume that, for
each entity involved in a reflexive relationship rela-
tionship, has been stated which is the first role. As
an example, let us consider the view of Figure 5 in
which the arrows denote the roles that must be con-
sidered as the first ones in the relationships.

PERSON
Name
SSN
Age

Bridge
game

Chess
game

white

black

North

South

West

East

Figure 5: Reflexive relationships on the same entity

Using the proposed semantics, the query will re-
turn all the persons playing both bridge games (as
North) and chess games (as white) together with the
other three bridge players and their black chess antag-
onists. In fact, we have existentially quantified five
variables for the entity person (one, plus three for the
bridge game and one for the chess game), binding the
two relationships only on the first occurrence, i.e., the
North and white player. More formally:

Q5 = {<p1, p2, p3, p4, p5> |∃p1, p2, p3, p4, p5 ∈
person ∧ <p1, p2, p3, p4>∈ bridge game
∧ <p1, p5>∈ chess game}

The adopted strategy in evaluating reflexive rela-
tionships is only an arbitrary (but very reasonable)
choice among a set of more complex ones: as an ex-
ample, we can assume that all the variables existen-
tially quantified for an entity involved by the reflex-
ive relationships must be considered (both in rela-
tionships and conditions), giving to view on Figure 4
the meaning of all the cars owned by a person older
than 25 married with another person older than 25
that owns a car as well. Note that, in this case, no
ambiguity arises during the evaluation of the query.
Nevertheless, we strongly believe that to require only
one of the variables existentially quantified for an en-
tity involved by reflexive relationships is a member of
all the incoming relationships and that it is affected
by the selection conditions is a very natural choice
and, in the case of multiple reflexive relationships in-
volving the same entity with different arities, it is
the only reasonable one. As an example, consider-
ing again the view of Figure 5, another (unnatural)
approach should be as follows:

1. fully order each reflexive relationship;

2. consider a number of variables corresponding to



the highest arity of the reflexive relationships;

3. for each relationship bind as many variables as
the arity of the relationship.

Following this approach and assuming the order
<North, South, West, East> for the bridge game
relationship, the query will result in all the pairs of
chess players that also play bridge games together,
the white as North and the black as South plus their
West an East antagonists. The above example shows
that in principle it is possible to bind the relation-
ships on a ranging number of variables giving to the
query a totally non intuitive meaning.

In the following we will adopt the semantics we
have chosen in evaluating query Q5; we want to point
out, however, that this choice does not affect the fol-
lowing discussion and that the results we will show
are valid for any different semantics we give to the
view-based approach.

3 Combining views and paths

In this section we introduce our proposal, i.e., an in-
teraction strategy based on a combination of the two
strategies discussed in the previous section. We first
give an intuitive semantics of the new approach, then
we show how the user interaction with a visual inter-
face which is based on it looks like.

3.1 The hybrid approach

The above comparison between the path-based and
the view-based approach shows that although they
share the same expressive power, none of them is
well suited for expressing in a natural way all possible
queries. In order to overcome this problem we intro-
duce a new query language strategy, that we call hy-
brid approach. Roughly speaking, it allows the user to
specify a view and a set of paths starting from it, hav-
ing the form <e0, r1, e1, . . . , rk, ek>, where e0 belongs
to the view and any other entity in the path may or
may not belong to the view. The semantics of the
hybrid approach corresponds to specify suitable exis-
tential quantified variables according to the semantics
chosen for the view-based approach plus additional

variables corresponding to the entities appearing in
each path (except the first one). The scope of the
variables coming from the view is the one adopted in
the view-based approach; the scope of the variables
coming from the paths are the incoming and outcom-
ing relationships in the path itself. For instance, the
query Q1 can be expressed in the hybrid approach
by selecting the view {person, wants to learn,
language} and specifying the path <languages,
teaches, person>.

As a more complex example, assume that, referring
to Figure 2 the user query is ”Q6: Find all the parts
belonging to the orders involving one supplier who
appears in one of the orders of John Smith.” Note
that in this query we are dealing twice with the entity
order: the first one we look at it to find out all the
suppliers of John Smith, the second one to find out all
the parts sold by one of the suppliers of John Smith.
To express that query using the hybrid approach, the
user selects the view { client, c-o, order, s-o,
supplier} (with the condition Client.Name=”John
Smith”), thus finding all the John Smith’s orders and
the related suppliers. Afterwards s/he specifies the
path <supplier, s-o, order, p-o, part> reaching
all the orders of the John Smith’s suppliers with the
associated parts. Considering the view we have three
existentially quantified variables, one for client, one
for order, and one for supplier. The scope of those
variables are the relationships c-o and s-o. Consid-
ering the path, we have a variable for order and a
second variable for part, whose scopes are s-o and
p-o, respectively. More formally:

Q6 = {<c, o, s, o1, p> |∃c ∈ client ∧ ∃o, o1 ∈
order ∧ ∃s ∈ supplier ∧ ∃p ∈ part ∧ <c, o>∈
c-o ∧ <s, o>∈ s-o ∧ <s, o1>∈ s-o ∧ <o1, p>∈
p-o ∧ c.name = ”John Smith”}

The above query gives us the feeling of the strategy
underlying the hybrid approach: the user can first
focus the attention on the fragment of the schema
(view) containing the data answering her/his query
and, afterwards, s/he concentrates on data needing a
navigation on the schema.



3.2 Visual user interaction

A real system, working with the approach discussed
in the previous section is under development. The
system is an extension of QBD∗ [2, 22], initially de-
signed under the path-based paradigm. Using the
new system, the user is allowed to construct a view
and several paths starting from it. Obviously, it is
possible that one of the two query components (view
or path) is missing, and in this case the hybrid ap-
proach is equivalent to the one corresponding to the
unique component of the query.

Here we report the way in which the user interacts
with the new version of QBD∗ to express queries in
a hybrid fashion.

The user interacts with ER schemata and s/he is
provided with two simple mouse-based operations:
(1) the selection of a portion of the screen and (2)
the selection of a point of the screen.

The first operation allows for constructing a view:
each time the user selects a portion of the screen all
the entities belonging to that portion are added to
the view. Multiple selections of the same concept are
ignored and the system helps the user in building a
view without disconnected components.

Through the selection of a point the user specifies
a single concept to be included in a path. The system
checks that all the paths have an entity belonging to
the view previously defined as the initial concept and
that the last select concept is linked to the previous
one.

If the view has not been defined, the system as-
sumes that it coincides with the first entity in the
first path and all the consequent paths must start
from that entity.

During the query construction, the user is provided
with an intuitive feedback on the variables existen-
tially quantified on the schema, together with their
scope. In particular, little colored circles represent
the quantified variables for a certain entity and col-
ored lines are associated with each circle, graphically
denoting the scope of that variable. In figure 6 the
feedback corresponding to the query Q6 is shown.

PART

Part#

CLIENT
Name

Order#
ORDER

S-O

C-O P-O

SUPPLIER

Supplier#

Figure 6: Feedback provided in the hybrid environ-
ment

4 The Graphical Query Lan-
guage

In this section we formally characterise the syntax
and the semantics of the proposed hybrid query lan-
guage. To this end, we first provide a syntax and a se-
mantics for the ER model. Obviously there does not
exists a real DBMS directly based on the ER model
and a correspondence with a logical model (e.g., re-
lational) must be stated. The problem is not new in
the literature, and in [2] a solution particularly suited
for the hybrid approach can also be found. So, in the
following, we will concentrate exclusively on the ER
model, neglecting the underlying logical model.

4.1 Syntax and semantics for the ER
model

In what follows we use the term concept to denote
an entity, a relationship, or a generalisation hierarchy
[3]. We represent an ER schema as a set consisting
of:

• entities, each one characterized by a distinct
name n belonging to the set EN;

• relationships, with structure
R(<name>,<role:name>,<role:name>,
[<role:name>]*), where <name> is the name
of the relationship belonging to the set RN
and <role:name> denotes an involved entity
together with its role. We define the function
Role(r, e) as that which gives all the existing
roles between the relationship r and the entity
e and the function FirstRole(r, e) as that which
gives the role that must be considered first in



evaluating a reflexive relationship3. We define
the function Adj(r) as that which gives all
the entities adjacent to the relationship r and
the function Nadj(r) as that which gives the
number of the entities adjacent to r, including
repetitions, and with Count(r, e) the number of
times the relationships r involves the entity e;

• hierarchies, with structure
H(<name>,[<name>]+), where the first
name denotes the superset entity, and the
others denote the subset entities;

• attributes, with structure
ATT(<name>,[<name>]+) where the first
name is either an entity or a relationship name
and the other ones represent the set of attributes
associated with it.

The set oriented semantics of an ER schema is de-
fined as follows.

Let D be a universe of printable, atomic objects,
representing the values of the attributes; let O be
a universe of unprintable, atomic objects, repre-
senting object identifiers; let L be a set of labels
useful to denote tuple components; and let R be
a set of labels useful to denote relationship roles.
Let FE1, FE2, . . . , FEn be sets of functions between
(L×O)i and D, characterized by an increasing arity
of the function domain. More precisely, a function
f belonging to FEi maps elements of (L × O)i into
elements of D : f : (L × O)i → D and we say that f
is of rank i. Let FR1, FR2, . . . , FRn be sets of func-
tions between (L×R ×O)i and D, characterized by
an increasing arity of the function domain. More pre-
cisely, a function f belonging to FRi maps elements of
(L×R×O)i into elements of D: f : (L×R×O)i → D
and we say that f is of rank i.

The interpretation of an entity is denoted with
m(name), and is a set of tuples of the form <l1 :
o1, l2 : o2, . . . , lk : ok>, where li ∈ L and oi ∈ O
for i=1. . . k. The interpretation of a relationship is
denoted with m(name), and is a set of tuples of the
form <l1 : r1 : o1, l2 : r2 : o2, . . . , lk : rk : ok>, where

3If the function is applied to a non reflexive relationship
it returns to the unique role existing between the relationship
and the entity

li ∈ L, ri ∈ R and oi ∈ O for i=1. . . k and we say
that k is the rank of the concept. An attribute of
an entity of rank k is a function belonging to the set
FEk. An attribute of a relationship of rank k is a
function belonging to the set FRk.

4.2 ER Query

The aim of this section is to define the syntax and the
semantics of a query on an ER schema s (ERQ(s) in
what follows). The definition of an ERQ(s) is based
on the hybrid approach introduced in section 3.1. An
ERQ(s) is defined as follows:

ERQ(s) ::=<atomic query> [<entity name>
{, <set operator>, <atomic query>}∗]
set operator::= <∪| ∩ |−>

An atomic ER query is defined as a view on the
schema plus a set of paths starting from it:

<atomic query>::=<view(s)> [, <path(view(s))>]∗

<view(s)>::=<c entity name>+<c rel name>+

<path(view(s))>::=<c entity name> [, <role>,
<c rel name>,<role>, <c entity name>]+

<c entity name>::=<entity name> [, <p>][, <f>]
<c rel name>::=<rel name> [, <p>][, <f>]
<entity name>::= an entity
<rel name>::= a relationship
<p>::= a set of attributes
<f>::= a logical formula

where view(s) is a syntactically correct subschema of
s in which each concept is associated with the op-
tional parts [,p] [,f], where p is a subset of the at-
tributes of c and f is a logical formula based on the
attributes of c. Moreover, each path(view(s)) starts
from an entity belonging to view(s).

In order to define the semantics of an atomic query
we need some preliminary definitions.

Let InvoV (involving through view) be a function
from the set of entity names EN and an atomic query
to the powerset of the relation names 2RN defined as
follows:

InvoV (e, aq) = {r|r ∈ RN ∧ view(s) ∈ aq ∧ e ∈
view(s) ∧ count(r, e)> 0 ∧ r ∈ view(s)}



In words, relationship r belongs to InvoV(e,aq) if it
belongs to view(s) and involves e.

Let Invo be a function from the set of entity
names EN and an atomic query to the powerset of
the relation names 2RN defined as follows:

InvoV (e, aq) = Invo(e, aq)∪{r|r ∈ RN ∧ view(s) ∈
aq ∧ e ∈ view(s) ∧ count(r, e)> 0 ∧
∃path(view(s)) =<e, role1, r, . . .>)}

Therefore, a relationships r involving e belongs
to Invo(e,aq) if it belongs to InvoV(e,aq) or if it
is the starting relationship of one of the paths
associated with view(s) starting from e.

Now we can define the semantics of an atomic
query.

1. For each entity e ∈ view(s), ex-
istentially quantify k variables
v1, vr1,2, . . . , vr1,count(r1,e), . . . , vrn,2,
. . . , vrn,count(rn,e) where k = 1 +∑n

i=1(count(ri, e) − 1) and {r1, . . . , rn} =
InvoV R(e, aq). The scope of v1 is
FirstRole(ri, e) with ri ∈ Invo(e, aq), plus
the logical formula f defined on the attributes
of e and the logical formulas stated on the
attributes of all the relationships belonging to
InvoV(e,aq); the scope of vri,2, . . . , vri,count(ri,e)

is the set Role(ri, e)−FirstRole(ri, e) of the re-
flexive relationship ri belonging to InvoV(e,aq)
plus the logical formula stated on the attributes
of ri.

2. For each path(view(s)):

(a) for each entity in the path ei (i>1)
<. . . , ri−1, rolei−1, ei, . . .> existentially
quantify a variable ; the scope of this new
variable are rolei−1, rolei, plus the logical
formulas associated with the attributes of
ei, ri−1, and ri;

(b) for each relationship ri having Nadj(ri)> 2:

i. for each e ∈ Adj(ri) − {ei, ei+1} ex-
istentially quantify Count(ri, e) vari-
ables whose scope is Role(ri, e);

ii. existentially quantify Count(ri, ei)− 1
variables whose scope is Role(ri, ei) −

rolei ;
iii. existentially quantify Count(ri, ei+1)−

1 variables whose scope is
Role(ri, ei+1)− rolei+1.

3. The above two steps will produce a set of tuples
of instances of all the involved entities. The final
result is built by applying to each instance the
functions corresponding to the attributes speci-
fied in the corresponding <p> part.

Step 1 provides for the quantification of the vari-
ables for the entities belonging to the view; the scope
of those variables is the set of the roles of the rela-
tionships belonging to the view plus the roles in first
position of all the paths starting from the view.

Step 2(a) provides for the quantification of the vari-
ables for the entities belonging to the paths (but the
first one); the scope of those variables are the incom-
ing and the outcoming roles in the path.

Step 2(b) is a refinement of step 2(a): because of
the path can cross relationships with arity greater
than two a path can produce ”dangling roles”. Step i
looks for dangling roles involving entities not belong-
ing to the path; step ii and iii look for dangling roles
involving in a reflexive way entities in the path.

5 Conclusion and further re-
search

In this paper we have analyzed the two main strate-
gies adopted by the new generation of semantic query
languages, namely the path-based and the view-based
approaches. The comparison showed us that neither
of them is suitable for handling in a natural way all
the useful types of existential quantifications needed
for expressing conjunctive queries. As an attempt to
overcome the drawbacks of the two approaches we
formally defined a new strategy of querying, namely
the hybrid approach, combining the advantages of
both.

The proposal presented in this paper for the ER
model can be easily extended to any graphical query
language supporting the notion of class and relation-
ship, enhancing the friendliness of the way in which



the query is expressed and, in some case, also the ex-
pressive power of the language itself. As an example,
it has been reported by several authors [9, 24] the
lack of expressive power of the object oriented query
language presented in [18] based on the view-based
approach; the inclusion in that environment of the
hybrid strategy discussed in this paper could easily
solve the problem.

Finally, considering the implementation of a sys-
tem based on the hybrid approach, we are actually
modifying the QBD* environment [2, 22], based on
the path-based strategy, in order to extend it to the
hybrid approach allowing to test, through usability
experiments, the effectiveness of this new strategy.
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