Exercise 1 Given the following \mathcal{ALC} TBox:

\[
\begin{align*}
A & \sqsubseteq B \sqcup C \\
B & \sqsubseteq \exists r.D \\
C & \sqsubseteq \forall r.\neg D \\
B \sqcap E & \sqsubseteq C \\
C \sqcap E & \sqsubseteq \exists r.F \\
F & \sqsubseteq D
\end{align*}
\]

(a) tell whether the concept A is satisfiable with respect to T, and if so, show a model for T where A is satisfiable, otherwise explain your answer;

(b) tell whether the concept $B \sqcap E$ is satisfiable with respect to T, and if so, show a model for T where $B \sqcap E$ is satisfiable, otherwise explain your answer;

(c) tell whether the concept $A \sqcap E$ is satisfiable with respect to T, and if so, show a model for T where $A \sqcap E$ is satisfiable, otherwise explain your answer;

(d) given the ABox $A = \{C(a), r(a, b)\}$, tell whether the knowledge base $\langle T, A \rangle$ entails the assertion $\neg D(b)$, explaining your answer.

Exercise 2 Given the following ASP program P:

\[
\begin{align*}
r(X,Y,Z,W) & : - p(X,Y), q(Z,W). \\
s(X,Z) & : - p(X,Y), r(Y,Z,W,V). \\
t(X,Y) & : - q(X,Y), s(Z,W), \text{not } r(X,Y,Z,W). \\
t(X,Y) & : - r(X,Y,Z,W), \text{not } s(X,Y). \\
u(X,Y) & : - s(X,Y), \text{not } t(X,Y). \\
v(X,Y) & : - t(X,Y), u(X,Y), \text{not } t(Y,X). \\
p(a,b) & : p(b,c). \\
q(a,b) & : q(c,a).
\end{align*}
\]

(a) tell whether P is stratified;

(b) compute the answer sets of P.

Exercise 3 We want to formalize knowledge about persons and kinship relationships. In particular, we want to formalize the following statements:

1. every employee is a person;
2. every manager is a person;
3. employee and manager are disjoint classes;
4. every project is either a research project or an industrial project;
5. the property “is manager of” has domain manager and range employee;
6. the property “is manager of” is a subproperty of the property “works with”.

(a) Choose the most appropriate knowledge representation language for expressing the above knowledge among the following ones: \mathcal{ALC}, Datalog, Datalog with constraints, ASP, OWL, DL-LiteR, EL, RL, RDFS, motivating your choice;

(b) express the above knowledge in the formalism chosen at the previous point.

Exercise 4

(a) Write an RDF/RDFS model representing the following statements about URIs Person, HasParent, HasMother, HasFather, Man, Woman, City, livesIn, Ann, Bob, Jane, Mary, Paul, Sandy, Rome, Milan,

1. Person, Man, Woman, and City are classes;
2. Man and Woman are subclasses of Person;
3. HasParent, HasMother, HasFather, livesIn, are properties;
4. IsMother and HasFather are subproperties of HasParent;
5. HasParent has domain Person and range Person;
6. **HasMother** has domain **Person** and range **Woman**;
7. **HasFather** has domain **Person** and range **Man**;
8. **livesIn** has domain **Person** and range **City**;
9. Jane is a woman;
10. Jane has father Bob;
11. Paul is the son of Ann;
12. Mary and Bob are the children of Paul and Sandy;

(b) Write SPARQL queries corresponding to the following requests: (b1) return all the uncles of Bob (i.e., the men who have the same parents as one of Bob’s parents); (b2) return all the aunts of Mary (i.e., the women who have the same parents as one of Mary’s parents) and optionally the city where they live; (b3) return all the grandchildren of Paul.

Exercise 5

Given the **RL** knowledge base \(\langle T, A \rangle\), where \(T\) is the following TBox:

\[
F \sqcap A \sqsubseteq D \\
C \sqcap A \sqsubseteq B \\
r \sqsubseteq u \\
s \sqsubseteq u \\
u^{-} \sqsubseteq t \\
\exists t . T \sqsubseteq E \\
\exists t . E \sqsubseteq A \\
\exists s . \top \sqsubseteq F \\
\exists r . \top \sqsubseteq C
\]

and \(A\) is the following ABox:

\[
s(a_7, a_5), \ s(a_5, a_3), \ s(a_1, a_4), \ r(a_7, a_1), \ r(a_5, a_8), \ r(a_3, a_2), \ r(a_4, a_6)
\]

1. compute the materialization of the ABox \(A\) with respect to the TBox \(T\);
2. tell whether the concept assertion \(D(a_4)\) is entailed by \(\langle T, A \rangle\);
3. write a Datalog program corresponding to the above TBox.