
 Automatic
Composition of

Services
Fabio Patrizi

DIS
Sapienza - University of Rome

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

2

Overview

  Introduction to Services
  The Composition Problem
  Two frameworks for composition:

  Non data-aware services
  Data-aware services

  Conclusion & Research Direction

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

3

Services

Service 1

Service 2

Service 3

Service 4

•  Given, modular, decoupled blocks
•  Possibly distributed
•  Interacting
•  Possibility to compose!

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

4

Services (2)

  Examples:
  A (typical) set of web services over a network
  A set of interacting autonomous agents

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

5

The composition Problem

  Instance:
  A set of available services
  A (non available) goal service

  Solution:
  An automaton which “mimics” the goal service, by

delegating goal interactions to available services

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

6

Service composition

Service 1

Service 2

Service 3

Service 4

Community

(G
oa

l S
er

vi
ce

)

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

7

Modeling Services

  Focus on behavior (vs in/out description)

  High-level descriptions (e.g.,WSDL, BPEL,
process algebra) abstracted as
  Finite Transition Systems (cf.[vanBreugel&Koshkina,06])

  Classification: Det, Ndet, Data, No-data

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

8

Services as TSs

¬passengers | drive

passengers | stop

load_unload

recharge

go_ahead

Guarded

NDet With Data/Messages

searchPrice(x,p) ?carId(x)

!price(p)

Combination

?studId(id) chkStat(id,s)

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

9

A Composition framework
for

Non data-aware services

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

10

The “Roman” Model[Berardi & al., ‘03, ’05]

  Focus on service behavior
  Atomic actions (abstract conversations)
  Asynchronous composition
  Extendible to NDet services (not here)
  Deterministic Goal service

R.Hull,
SIGMOD’04

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

11

The “Roman” Model (2)

  A Community of services over a shared alphabet A
  A (Virtual) Goal service over A

Community

Goal Service

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

12

The “Roman” Model (3)

Composite Service Goal Service REQUIREMENTS:

1.  If a run is executed by the Goal service, it
is executed by the “composed” service

2.  If the Goal service is in a final state, all
available services do

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

13

The “Roman” Model (4)

Composite Service

input_french

input_french

output_italian

output_italian

input_french

output_italian

IN GENERAL:
Not just a TS’ labeling, but a

function of community histories!

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

14

Orchestrators

Orchestrators are functions of
community histories:

for each history and current action,
select the “right” available service

Can be thought of as TSs,
possibly infinite state

HOW TO COMPUTE
ORCHESTRATORS?

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

15

Propositional Dynamic Logic

PDL[Fischer&Ladner, 79; Kozen&Tiuryn, 90;…]:
 Á ! P | ¬Á | Á1ÆÁ2 | hriÁ | [r]Á

  Formulae interpreted over Kripke structures
  PDL-SAT: find a structure satisfying ©

  EXPTIME in the size of ©

THEOREM[Berardi & al. ’03]:
A PDL formula © can be built which

is SAT iff an orchestrator exists

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

16

Encoding as PDL-SAT

|©| is polynomial in the size of services

i-th available service

additional domain-
independent conditions

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

17

Finding orchestrators (2)

Finding an orchestrator in the Roman
Model is EXPTIME-complete
  Membership:

  Reduction to PDL-SAT[Berardi & al. ‘03]
  Hardness:

  By reducing existence of an infinite computation in
LB ATM (EXPTIME-hard) [Muscholl & Walukiewicz ‘07]

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

18

Finding orchestrators

  THEOREM: If an orchestrator exists then
there exists one which is finite state[Berardi et al. ‘03]

  Size at most exponential in the size of
services S0,…,Sn,Sg

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

19

PDL Drawbacks

1.  Only finite state orchestrators
2.  Actual tools (e.g., Pellet@Univ. of Maryland) not

effective:
  Extracting models, thus orchestrators, not a

trivial task: for efficiency reasons, only
portions of the model are stored during
tableaux construction

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

20

Service Composition
Via

Simulation

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

21

Simulation Relation

Given TS1 and TS2
s1 4 s2 iff:

1.  “s1 final” implies “s2 final”
2.  For each transition s1 !a s’1 in TS1, there exists

a transition s2 !a s’2 in TS2 s.t.
 s’1 4 s’2

TS1 is simulated by TS2 iff s01 4 s02

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

22

Simulation Relation, informally

c

b

a

a c

b

TS2

a
c

b

TS1

TS2 behaviors “include” TS1’s

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

23

Composition via Simulation
PDL Encoding contains the idea of simulation.

The composition problem can be reduced to search for
a simulation of the target service by the available
services’ asynchronous product [Berardi et al., ‘07]

St 4 S1­…­Sn ?

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

24

Composition via Simulation (2)

Community

X

Asynchronous product

Target Service
Compute

Simulation

(if any)

Largest Simulation Relation

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

25

Composition via Simulation (3)

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

26

Orchestrators from Simulation

  Computing simulation is P in # of states
  # of states is Sn

  Complexity refinement (wrt PDL-Sat):

O(Sn+1)
Exponential in number of services

  EXPTIME, thus still optimal wrt worst-case

max
of states

of available
services

We get ALL orchestrators!

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

27

Orchestrators from Simulation
(2)

Orchestrator Generator •  ALL orchestrators
•  Just-in-time composition
•  Can deal with failures

Community

Largest Simulation Relation

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

28

b

a
a
c

TS2
b

a
a

c,b

TS2

Extension: ND-Simulation

  Non-det services (but det target)

  Generalization: ND-simulation
  Simulation preserved regardless of ND action

outcomes

a
b TS1

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

29

ND-Orchestrator

a

a

service 1

service 2

Target service

a

b

b

b

Observe
actual state

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

30

Tools for computing (ND-)
orchestrators

  Effective techniques & synthesis tools
developed by the verification community:
  TLV [Pnueli & Shahar 96]

  Based on symbolic OBDD representation
  Conceptually based on simulation technique

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

31

Application Scenarios

  Web service composition[Berardi et al., ‘07]
  An implementation from BPEL specifications @

DIS
  Distributed agents in a common environment,

with failures(work in preparation)

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

32

“Unfortunately”…
… many services deal with data …

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

33

Dealing with data

Examples:
  Agents need to exchange messages (e.g.,

position, battery level,…)
  Web services take input messages (e.g.,

users subscribing a service) and return
output messages (e.g., pricelist)

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

34

Dealing with data (2)

REMARK:
Infinitely many messages

may give raise to infinitely many states

PROBLEM:
Finite-state property no longer holds

We expect to get undecidability

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

35

COLOMBO[Berardi & al., VLDB‘05]

A general framework for web services with
messages

  Basic results in data-aware composition
  Asynchronous, Deterministic, finite-state

services with messaging
  Messages from infinite domains
  (Key-based) Access to a database through

atomic processes (i.e., parametric actions)

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

36

COLOMBO (2)

DB:
PEOPLE(ssn, name,surname, income)
STUDENTS(id,ssn,exams,age,grant)

studentData

getIncome

checkEligibility

AS1 studId

assignGrant

id

ssn

ssn
inc

id

id

elig

studSsn

AS3 studId

AS2 studSsn

studInc

AS4 studId

studElig

id
ssn

Data from infinite
domains:

 Dom=, Dom·, Bool;

•  “Atomic” (transationally)
•  Stateless
•  Can read, insert, delete or
modify single tuples

•  Guarded automata
•  Deterministic
•  Messaging

•  Invoke atomic processes
•  Designed to interact with a client

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

37

Atomic processes
getIncome

 I:ssn; O:inc

Effects:

 inc := PEOPLE3(ssn)

checkEligibility

 I:id; O:eligibility

Effects:

 if (STUDENT4(id) == true)

 then eligibility := true

 else eligibility := false

assignGrant

 I:id

Effects:

 either

 modify STUDENT4(id, false)

 or

 no-op

Interface specification

Conditional effects
- over local variables / accessed values

Nondeterministic effects
(Finite branching)

- due to incomplete abstract model

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

38

Available services

AS1

? studSsn(ssn) getIncome(ssn,inc)

inc < 1000 | ! msg(“accepted”)

From client / service

To client / service

From / to same atomic process

State:
automaton state

+
variable configuration

inc >= 1000 | ! msg(“rejected”)

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

39

Synchronization
1.  Wait for incoming messages (length-1 queues)
2.  Execute a fragment of computation
3.  After sending a message, either:

  Terminate (in a final state) or
  Go to 1.

  Client starts by sending a message
  Available services wait

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

40

System Execution

S4

DB

AP1

AP2

AP3

S3

S2 S1

C DB’ C’

S’1 S’’1

Linkage:
set of inter-service

communication
channels

(one-to-one only)

No external
modifications

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

41

Execution Tree

A system:
S=h C, { S1,…,Sn }, L i

Infinite tree evolution:
  Nodes are snapshots of service + DB states
  Edges are labeled by:

  Ground messages
  Process invocations
  DB states (pre / post transition)

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

42

Execution Tree (2)

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

43

Execution Trees’ “Essence”

Project the Execution Tree onto:
  Messages to/from client
  Atomic process invocations
  Effects on DB

REMARK: internal messages collapse!

S4

DB

AP1

AP2

AP3

S3

S2 S1

C DB C

S’1 S1

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

44

System Equivalence

DB C DB C

Two systems are equivalent iff they have
isomorphic essences!

(Equivalent in terms of what is observable)

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

45

The Composition Problem in
COLOMBO

G C C

S4

S3

S2

S1

C M

GOAL:
•  Messages

•  Atomic processes

MEDIATOR:
•  Messages only

SERVICES (including CLIENT):
•  Only messages from/to mediator

COMPOSITION PROBLEM:
Build a linkage and a

“(p,q)-bounded” mediator such that
the obtained system is equivalent

to the goal

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

46

Solving the Composition
Problem in COLOMBO

  IDEA
  Reduce to the finite case

  OBSTACLES:
  Infinite messages and initial DB yield infinite

properties (e.g., send-ground-message)
  RESTRICTIONS needed

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

47

Restrictions

  Bounded # of new values introduced by the
client (wrt to initial DB state)

  Bounded # of DB lookups, depending on # of
new values the client introduces

  REMARK: number of new values are finite,
actual values still infinite

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

48

Symbolic representation

  Values are referred to by symbols
  Relevant features of symbols

  Relationships with
  All other symbols (wrt ·, =)
  Constants occurring in guards

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

49

Symbolic Value
Characterization

7 11 9

9 5 7

Relevant
constants:

{4,15}

r23 r22 r21

r13 r12 r11

svc = {r11>r12, r11<r13, r11<r21,
r11<r22, r11=r23, r11>4, r11<15,…}

12 14 13

13 8 12

Relevant
constants:

{4,15}

INTUITION:
Under restrictions, a bounded number of
symbols is sufficient to represent all executions

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

50

Symbolic execution tree
Finite set of

symbolic DB classes

Finite set of symbols
yields finite
branchings

Finite set of states!

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

51

From Infinite to Finite
Each actual enactement has a

symbolic counterpart!

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

52

Solution Technique & Issues
  (p,q)-bounded mediator:

  At most p states and q variables
  Reduction to PDL-Sat, with underconstrained

variables
  To be guessed
  Represent existence of links and mediator behavior

  Upper bound double-EXPTIME in p,q, size of target
and community services:
  Expect to get rid of p,q

  Derivable from target and available services’ structure?
  Complexity can be refined with a more efficient encoding?

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

53

Conclusion & Future
Directions
  Good understanding of “behavioral” composition:

  Optimal technique for deterministic scenarios
  Ongoing extension to nondeterministic contexts w/ failures

  Starting point for data-aware services:
  General framework and first results, but severe restrictions

  Relax key-based access assumption?
  Remove, or derive, mediator bounds?
  Investigate over decidability bounds

  Flexible solutions
  PDL technique returns only one solution, what about simulation?

  Reasoning about infinite state systems
  Abstraction (cf., e.g., [Pnueli & al, VMCAI 05], [Kesten&Pnueli, 00])

UC San Diego, CA - 2/8/2008 Fabio Patrizi - Automatic composition of
services.

54

Thanks For Your Attention!

  Questions?

