Automatic Synthesis of a Global Behavior from Multiple Distributed Behaviors

Sebastian Sardina
Department of Computer Science
RMIT University
Melbourne, Australia

ssardi na@s.rmt.edu. au {f abi

Abstract

We consider the problem of synthesizingeam of lo-

cal behavior controllergo realize a fully controllable
target behavior from a set of available partially con-
trollable behaviors that execute distributively within a
shared partially predictable, but fully observable, en-
vironment. Available behaviors stand for existing dis-
tributed components and are represented with (finite)
nondeterministic transition systems. The target behav-
ior is assumed to be fully deterministic and stands for
the collective behavior that the system as a whole needs
to guarantee. We formally define the problem within a
general framework, characterize its computational com-
plexity, and propose techniques to actually generate a
solution. Also, we investigate the relationship between
the distributed solutions and the centralized ones, in
which a single global controller is conceivable.

I ntroduction

A novel synthesis problem (De Giacomo & Sardina 2007)
was recently proposed in which fally controllable tar-

get behavior module is automatically synthesized from a li-
brary of availablgartially controllablebehaviors executing
within a sharedartially predictable but fully observable,
environment. The available behaviors stand for existing ac
cessible devices or components whereas the target behavio
represents the desired but non-existing (virtual) compbne
The question then was: can a central system (always) guar-
antee a specifideterministicoverall behavior by (partially)
controlling the available devices or components in a step-
by-step manner, that is, by instructing them on which action
to execute next and observing, afterwards, the outcome in
the device used as well as in the environment? Such syn-
thesis problem can be recast in a variety of forms within
several sub-areas of Al, including planning (Meulestu

al. 1999), agent-oriented programming (Georgeff & Lansky
1987; Firby 1989), plan coordination (Katz & Rosenschein
1993), web-service composition (Mcllraith & Son 2002;
Berardiet al. 2005), and others.

It is not hard to see that the above problem is of partic-
ular interest in settings where the existing components are
distributed and independentand thus, not accessible as a
whole. For example, a RoboCup soccer team includes mul-
tiple players acting on their own, possibly exchanging mes-
sages with each other (Bredenfeldal. 2006). Robot ecolo-
gies (Tilden 1993; Saffiotti & Broxvall 2005), the develop-
ment of autonomous microrobot groups consisting of many

r

Fabio Patrizi and Giuseppe De Giacomo

Dipartimento di Informatica e Sistemistica
Universita di Roma “La Sapienza”
Roma, Italy
0. patrizi, degi acomp}@li s. uniromal.it

heterogeneous members exhibiting collective behavior and
intelligence, also offers an excellent domain in which eoor
dination and task distribution towards obtaining a glokel b
havior could be of great benefit. In all those cases, however,
the set of available behaviors cannot be taken &israry
accessible from a central system—no central entity can be
assumed in such applications. In fact, the most one could
realistically allow under these distributed scenarioifis

sort of local control on the existing behavior devices, to-
gether with some kind of communication among such local
controller modules. Because of this, the techniques devel-
oped by De Giacomo & Sardina (2007) aret suitable for
these fully distributed scenarios, since their proposéatso
tion requires a central coordination system, referred thas
schedulerthat is able to access every existing behavior.

So, in this paper, we study thikstributed synthesis prob-
lemin which a team ofocal behavior controllerds auto-
matically obtained in order to guarantee a global distedut
behavior starting from a set of distributed behaviors actin
over a shared partially predictable but fully observabhd-en
ronment. A local controller is able to control the operation
of the single behavior it is attached to as well as to broad-
cast messages into a shared channel. In addressing the dis-
tributed problem, we not only need to envision a new type of
(distributed) solution, but we also have to enrich the sgtti
considerably. For instance, in a fully distributed contéxt
is unrealistic to assume that only one behavior will act at
each step, and hence, many concurrent actions have to be
allowed.

The main technical contributions of this paper are three-
fold. First, we formally define and solve the distributed-syn
thesis problem in the general case where behaviors and the
environment are represented as arbitrary (nondeternainist
transition systems with a finite number of states. We char-
acterize the computational complexity of the problem, and
show that when there is a solution, there is one that is finite.
Second, we study the intrinsic relation between centrdlize
solutions and distributed ones, and proved that there is no
loss when we assume a distributed setting: every coordina-
tion that can be done with a centralized controller can be
done with a team of local controllers, and vice-versa. Third
we show how to obtain the smallest finite controllers.

The setting

Based on (De Giacomo & Sardina 2007), let us start by
defining the formal abstract framework for our problem.

Environment We assume a shared observable environ-
ment, which provides an abstract account of the observable
effects and preconditions of actions (akin to an action the-
ory). In giving such an account, we take into consideration
that, in general, we have incomplete information about the
actual effects and preconditions of actions. Thus, we allow
the observable environment to bendeterministién gen-
eral. In that way, the incomplete information on the actual
world shows up as nondeterminism in our formalization.
Formally, anenvironment = (A, E, ¢, d¢) is charac-

terized by the following four entitie’:

A is a finite set of shared actions;

E'is afinite set of possible environment states;

ep € F is the initial state of the environment;

0 CE x 2@4 x FE is the transition relation among states:
dg (e, A, ') holds when the environmentay evolvérom
statee to statee’ when the set of actiond are all (con-
currently) executed.

Note that our notion of environment shares a lot of simi-
larities with the so-called “transition system” in actiant
guages (Gelfond & Lifschitz 1998). One can think of using
those languages to compactly represent the environment.

Behavior A behavior is essentially a program for an agent
or the logic of some available device. Such a program how-
ever leaves the selection of the set of actions to perforrh nex
to the agent itself. More precisely, at each step the program
presents to the agent a choice of available sets of (concur-
rent) actions; the agent selects one of such sets; the action
in the selected set are executed concurrently; and so on.
Obviously, behaviors are not intended to be executed on
their own, but they are executed in the environment (cf.
above). Hence, we equip them with the ability of testing
conditions (i.e., guards) on the environment when needed.
Formally, abehaviorB = (5, so, G, di, F') over an envi-
ronment€ = (A, E, ep, d¢), is characterized by the follow-
ing entities:
e Sis afinite set of behavior states;
e 5o € S is the single initial state of the behavior;

e (G is a set of guards over the environmént.e., a set of
boolean functions of the form: E — {true, false};

e i C SxGx 264 x S is the behavior transition relation;

o finally, i C S is the set of states of the behavior that can
be considered final, that is, the states in which the behav-
ior can stop executing, but does not necessarily have to.

The size of a behavior is its number of states, |& = | S]|.
Observe that, in general, behaviors amndeterministic
in the sense that they may allow more than one transition
with the same sefl of actions and compatible guards eval-
uating to the same truth valde.As a result, the central
system, when making its choice of which action to execute
next, cannot be certain of which choices it will have later on
since that depends on what transition is actually executed—
nondeterministic behaviors are only partially controléab
We say that a behavids = (S5, so, G, 05, F'), over the
environment€, is deterministicif there is no environment

We use abbreviation;' to denote2* — {()}.
2Note that this kind of nondeterminism is oflavilishnature—
the actual choice is out of the behavior control.

{send}

C1,C2 hoto} {track}
{track} -
m frechdd} O{photo} e @
f\{"‘»O{track} /\f‘@ {track, sen
>{frﬁﬁhdd} T {track,photo}J

20 ¢ {send}
{send}
: {send
O

€0

{f(ggehdd} {track} {photo} {track, freehd
(a) Behaviors (b) Environment (c) Target

Figure 1: A camera surveillance scenario.

statee of £, and no setl of actions, for which there exist two
distinct transitiongs, g1, 4, s1) and(s, g2, A, s2) in 05 such
thats; # so andg; (e) = g2(e) = true. Notice that given a
state in a deterministic behavior and a legal set of activas,
always know exactly which ithenext state of the behavior.
In other words, deterministic behaviors are fully contble
through the selection of the set of actions to perform next,
while this is not the case for nondeterministic ones.

The system A systemS = (Bi,...,B,,&) is formed
by an environmen€ and n predefined nondeterministic
behaviorsB; over £, called theavailable behaviors A
system configuratiois a tuplec = (sq, ..., s,, e) denoting
a snapshot of the system: behaviyrwith i € {1,...,n},
is in states; and the environmerdt is in statee.

Example 1 [The scenario] Consider a site surveilled by two
identical cameras;; and Cs, whose behaviors are repre-
sented in Fig. 1(a)—edges are labeled by expressions of the
formg : A, whereg stands for the guard andlfor the set of
actions (we omiy when it is equal to the boolean function
true). They are capable of either tracking objects or taking
photos—actiongackandphoto, respectively—but not both

at the same time. Each time a photo is taken, it is stored in
a local buffer which may become full. Since such situation
is unpredictable (i.e., there is no way to state whether the
next photo will fill the buffer), actiorphoto is modeled as

a non-deterministic action leading the camera in statiéf

no space is available on local buffer. A camera can empty its
buffer by performing asend action, which sends the buffer
content to a remote device (e.g., a hard drive). Of course, a
send action can only be performed when space is available
on such device. Otherwise, the camera may ask the device
for additional space by performing actigmeehdd.

The environmenty keeps information about the remote
storage device. Its possible evolutions are represented in
Fig. 1(b): e stands for the state where there is space avail-
able on the device and stands for the state where no space
is left.

The target behaviofl’ (Fig. 1(c)) requires the ability
to perform actions while keeping objects tracked—a task
which could not be carried out by a single camera. In or-
der to preserve local buffers and/or remote device from go-
ing out of memory, a conservative strategy is adopted: after
taking a photo, (i) the remote device is asked for additional
space; and (ii) @end action is performed to empty the local
buffer.

Behavior History A behavior historyh; for a given be-

havior B (S, s0,G, 0, F) over an environment

(A, E, eq,d¢), is any finite sequence of the for(m®, ¢°) -

Al (stiely. .- (st et AR (84 ef), for somel > 0,

suchthatforalD <k </¢and0 <j </¢-—1:

s = 5o ands® € S;

e’ = ¢g ander € E;

Ak C 4,

(87,9, AL i1y € §, for someg such thatg(e?)

true, that is, behavioB8 canevolve from its current state

s’ to states’*! w.r.t. the (current) environment stat&

o (¢7,A,e7t1) € ¢, for some set of actiond such that
AT+l C A, thatis, the environment can evolve from its
current state’ to the new state‘**.

The setH denotes the set of all behavior histories For

Traces Given abehavioB = (S, so, G, d, F) and an envi-
ronment€ = (A, E, eg, dg), we define theraces ofB on&

as the sequences of of the form= (¢!, A!) - (g2, A2) - - -,
whereg’ € G andA? C A, such that there exists a behaivor
history (s%,e°) - A! - (s',e!) - A2... for B over& where
g'(et 1) = trueforalli > 1.

If the tracet = (g', A')---(g¢*, A?) is finite, then there
exists a finite behavior histors®, 0) - A ... A® . (s, ef)
with s¢ € F.

Thetraces of the deterministic behaviaee of particular
interest: any initial fragment of a trace leads to a singiest
in the behavior. Thus, the deterministic behavior itseli ca
be seen as a specification of a (possibly infinite) set of frace

System history Assume a syster§ = (B1,...,8,,E&).
A system historys an alternating sequence of system con-

figurations and actions of the fori = (s¥,...,s% €?) -
[Aiv s ’A’}L] ! (S}v) 5711761) e (Sfilv) 5£7176Z71) !
[AS, ... AL] - (s, ..., 8!, "), for somel > 0, such thaf

hd (89760)"’411 ! (Szlvel) o
forall: e {1,...,n};

e at each stepk < {0,...,¢ — 1}, we have that
(eF, U, AR k1) € g, that is, the environment can
make a Ilegal transition according to the set of actions ex-
ecuted inall behaviors.

The length of a history:, denoted ag:|, is the number of
system configurations ih. The setH denotes the set of all
system histories.

(57N e) AL (56) € H,

Behavior Controllers We study two different mecha-
nisms for managing and controlling the available behav-
iors. The first one involves a central component, called the
centralized controllerand extends the notion stheduler
from (De Giacomo & Sardina 2007). The centralized con-
troller has the ability of activating-resuming zero, one, o
more of the available behaviors by instructing each of them

to execute some set of actions among those that are allowedhave infinite states.

in their current state (taking into account the environment

®In some cases it may be sensible to require fyat, A} = 0
for everyk € {1,...,¢} (e.g., some RoboCup scenarios, re-
sources).

It also has the ability of keeping track (at runtime) of the-cu

rent state of each available behavior. The second mechanism
involves a decentralized team lofcal behavior controllers

one for each behavior. At any point in time, each behav-
ior controller can activate, stop, and resume the behawior i

is attached to as well as broadcast messages and access the
whole set of broadcasted messages.

Centralized Controller

We first focus on the synthesis of a centralized controller.
This is essentially an extension of the work in (De Giacomo
& Sardina 2007) so as to allow for multiple (concurrent) ac-
tions at every step. In (De Giacomo & Sardina 2007), in
contrast, only one action at the time was executed and the
centralized controller was essentially a scheduler aswjgn
such action to one of the available behaviors.

Specifically, we are interested in the following problem:
given a systen$ = (Bi,..., By,) and adeterministidoe-
havior, called thearget behavior3, over £, synthesize a
centralized controllerP such that the target behavior is re-
alized by suitably assigning actions to execute to the avail
able behaviors

Let us formally define our synthesis problem. Let the
system beS = (B1,...,B,,&), where€ = (A, E, e, d¢)
is the environment an8; = (S, si0, Gi, 0;, F;), with i €
{1,...,n} are the available behaviors. Let the target behav-
ior be By = (S0, so0, %0, Fo). A centralized controlleiis a
function P : H x 24 — (24)" that, given a system history
h € 'H and a (non-empty) set of requested actidnS .4 to
perform, returns the set of actions to be performed by each
behavior such thatl is fully realized. Observe that some
behaviors may not execute any action and thus remain still.
It may also happen that several behaviors execute the same
action. Variants can be easily defined where an action is ex-
ecuted by exactly one behavior. The results presented here
would also hold for such variants.

One can define when a centralized controller realizes the
target behavior—a solution to the problem—by extending
the definition found in (De Giacomo & Sardina 2007) of
when acentralized controllerP realizes a trace. We omit
this definition for lack of space. Recall that since the targe
behavior is a deterministic transition system, its behaigio
completely characterized by the set of its traces. Thus, a
centralized controller” realizes the target behavid, if it
realizes all its traces (see (De Giacomo & Sardina 2007)).

The techniques proposed in (De Giacomo & Sardina
2007), based on a polynomial reduction of the problem
to satisfiability of a Propositional Dynamic Logic formula
(Harel, Kozen, & Tiuryn 2000), can be extended to deal
with our new notion of centralized controlletsAs a con-
sequence, we have the following result.

Theorem 2 Checking the existence of a centralized con-
troller that realizes a target behavid®, relative to a system
S = (By,...,B,,E)is EXPTIME-complete.

Observe that, in general, a centralized scheduler can
However, the next theorem shows
that if a centralized controller that realizes the target be

havior does exist, then there exists one withfimite

“To avoid an exponential blowup, special care has to be put in
encoding the problem into PDL satisfiability.

number of states. To ground the id€asye defne a ¢ W
finite (state) centralized cpntrollarelatlve to a systen$ = V@ {0560 s dhsem)/ @ Ut TR T o
(B1,...,B,,&) as atuple’ = (X, oo, Nnexts nexta, where: €l ade ek phete)

RER R

e Y is thefinite set of states of the controller;
e 0 € X is the single initial state of the controller;
[

nexta: ¥ x Sy x ... x S, x E x 24 — (24)" is the
controller output, which instructs each available behavio
to execute a given set of actions given its current state, the
current states of the behaviors and the environment and
requested actions;

e nexts: ¥ x 51 x...x S, x Ex 24— Yis the transition
function_of the controller which states what is the next
state of? after having observed the state of the behaviors Figure 2: Centralized controller for the example scenario.
and the environment, and the set of requested actions.

It is possible to univocally define, by induction on the Distributed Controllers
structure of histories, themducedcentralized controller (of Next we turn to the case in which a centralized controller is

the general form above): executing the finite controller in : et
O not implementable and we have to rely on distributed con-
tsgies)gsftiwnaﬁgﬁ“”\ﬁ;iﬁ;ﬁ%‘l‘ﬁ? tlfwseIg?sl:icr\?:?igﬁrl;té?\:\llzre.n':;r trollers. The main difficulty here is that such controllers
finite controlllaer aBr/{d its induced one have no access to the complete history, but only to the local
. e history of the behavior they are controlling. To overcome
b Thhe foll%wmg re?ult thotlﬁs }‘pr_tflnlte é:olntroller?, a?ggir' such a difficulty we allow distributed controllers to commu-
€ Shown Dy resorting to the Tinite modetl property o " nicate through message broadcasting. This is essential to
Theorem 3 If there exists a centralized controller that ~Make them able to cooperate in order to realize the target
realizes a target behaviorB, relative to a system behavior.
(Bi,...,Bn, &), then there exists one which is finite. Messages We assume to have a set of possible messages
In fact one can give a tighter bound on the number of /! (more precisely, message types) that can be broadcasted.
states required by the finite controller. That is, we do not put a priori limits to the information that
the distributed controllers can exchange. Later, we wil se
Theorem 4 If there exists a finite centralized controller that a finite set of messages is sufficient.

that realizes a target behavioB; relative to a system . .
g 0 y Extended Local Behavior History We extend the no-

(By,...,Bn, &), then there exists one witk| < |B,| and ; f local histor . :
with a function nexts that is independent of the states of ton of local histories to incorporate messages fram

{track, freehdd}})/

(e %{freehdd} {track})

B, B, ie. nexts ¥ x B x 24 ¥ An extended behavior historyt for a given a behav-
’ " ior B = (S,s0,G,4, F) and relative to an environment
Observe that such bound on the number of states of the con-¢ — (A E, 80,55) is any finite sequence of the form

troller is tight. Indeed, it is easy to find cases in which éher (0 0 MOY- AL (st el, MY) .- (s871 ef =1, ML) AL
exists no controller with less states than the target behavi g’ of e ; ' : .
Finally, we observe that the PDL reduction technique (» M?) such that the followmg constraints hold:

mentioned above, as the one in (De Giacomo & Sardina ® (s°,€%)-A'-(s',e!) .- (s*71 1) AL (s e) € Hp,
2007), can be used to actually generate a finite centralized that is, we get a behavior h|story fat When the set of
controller. In fact, from a finite model of the PDL for- broadcasted messages are projected out;

mula, one can easily extract tfiaite centralized controller e MY =(andM* C M, forallk € {0,...,¢}.
by definingnextaandnextson the basis of the truth-values of — gpserve that the behavior itself puts no constraints on the
the propositions in the model. In addition, one can apply the ' aq5ages that are broadcasted at each step. However, we'll

\?v?tgsgl;r?itr:?r?] gle(\i/r']sﬁ%fgg (-)r\tlfgéi?el)l r?t?n?ﬁ e:[(r) (%estt:tgts)ntroller see that the local controller will. The sHtg denotes the set
: of all extendedocal behavior histories foB.

Example5 [Centralized controller] Wrt the surveillance Local Controllers A local controller is a module that can

scenario presented in Example 1, FSIZ of Fig. 2 rep- be (externally) attached to a behavior in order to contsol it
resents the centralized controller which realizes the tar- operation. It has the ability of activating-resuming its1€0

get behaviorl'. In the figure,nextaand nextsare repre- yqjled behavior by instructing it to execute a set of acion
sented togheter as edges labelled with pdjfe, where Also, the controller has the ability of broadcasting messag

I = (s1,89,¢,4) andO = (A;, Ay), with the following after observing how the attached behavior evolved w.Et. th
meaning:s; is the current state of cameta i € {1,2}; cis delegated set of actions, and to access all messages broad-

the current state of environmelt A is the set of actions to 55teq by the other local controllers at every step. Latidy,
be performed and; is the set of actions assigned to camera cqnrolier has full observability on the environment.

G e{1,2}. Formally, alocal behavior controllerfor behavior is a
pair of functionsC = (P, B) of the following form:

SOther representations for the controller are also posditlgh
none can be exponentially more succinct than the one adbpted PHE x 24 — 24, B:Hf x 24 x § — 2M,

FunctionP states what actiond’ C A to delegate to the at-

tached behavior at local extended behavior histgfywhen
actionsA were requested. Functidhstates what messages,

if any, are to be broadcasted under the same circumstancesS = (B, . .

and the fact that the attached behavior has just moved ® stat
s after executing actiond’. We attach one local controller
C, to each available behavid#; in systems.

In general, local controllers can have
states, however, as for central controllers,
be particularly interested in finite state ones.
finite (state) local behavior controlleffor a behavior B,
and relative to environmegtand a set of messagad, is a

tupleC = (3, M, 0o, nextsnexta nextn), such that:

infinite
we will
A

Y is thefinite set of states of the controller;

M C M is afinite set of messages;
e 0y € X is the single initial state of the controller;

nexta: ¥ x S x F x 2M x 24 _, 24 js the action out-
put of the controller, which observes the state of the con-
trolled behavior, the state of the environment, the mes-

sages broadcasted, the actions requested for execution,

and delegates some of these to its controlled behavior;
nextm: ¥ x S x E x 2M x 24 x § — 2M is the mes-

Local Controller Synthesis A distributed controlleris a
set of local controllers, one for each available behavibe T
problemwe are interested in is the following: given a system
., B,), a set of messagest and adetermin-
istic target behavioB3, over&, synthesize a distributed con-
troller, i.e., a team of: local controllers, such that the target
behavior is realized by concurrently running all behaviors
under the control of their respective controllers

More precisely, letM be a set of messages, and let the
system beS = (B1,...,B,,&), where€ = (A, E, e, ds)
andB; = (S;, si0, Gi, 0, F;), fori € {1,...,n}. Let the
target behavior b&, = (So, s0, do, Fo). Since the target
behavior is a deterministic transition system, its behaigio
fully characterized by the set of its traces, that is, by #te s
of infinite action sequences that are faithful to its traoss,
and of finite sequences that in addition lead to a final state.

So, given a traceé = (g', A!) - (¢2, A%)--- of the tar-
get behavior, we say that distributed controller7
(C1,...,Cy,) realizes the tracet iff for all ¢ and for all

extended system histories’ € H{, (H{, is defined
below) such thatg**!(e) = true in the last environ-
ment statee’ of hf, we have thatExt, r(h¢, A**t1) is
nonempty, wher&xt, (h, A) is the set of |h| + 1)-length
extended system histories of the form- [A;,..., A,] -

sage output of the controller, which observes the state of ,_|n|+1 [B[+1 |h|+1 7 rlRl+1 .
the controlled behavior, the state of the environment, the (5777 M) such that.
messages broadcasted, the actions requested, and the statg (8\1’”7 s S‘f[el MMy is the last configuration ih;

of the controlled behavior resulting from executing the se-

lected subset of these actions, and states what messagesf

if any, are to be broadcasted by the controller;

nexts: ¥ x S x E x 2M x 24 — ¥, states what is the
next state o after having observed the state of the con-
trolled behavior, the state of the environment, the mes-
sages broadcasted, and the actions requested.

As with finite central controllers, one can univocally de-
fine theinducedlocal controller of a finite local controller
such that running the finite local controller in the system
amounts to execute its induced version. Once again, we blur
the two notions in the following.

Extended System History We now extend system histo-
ries to include messages framt. Assume then a system
S = (By,...,B,,&). An extended system history an

n

= |J,_; 4i, that is, the requested set of actioAss
fulfilled by putting together all the actions executed by
every behavior.
Pi(h|;, A) = A; foralli € {1,...,n}, thatis, the local
controllerC; instructed behaviaB; to execute actiond,;;

° (s‘ih|7g,Ai,s‘ih|+1) € 4; with g(el”l) = true, that is,

behaviorB; can evolve from its current staﬁéh‘ to state
I"+1 \w r.t. the (current) environment staté!:

3
(elPl) A, el +1) € §¢, that is, the environment can evolve
from its current state!”! to statee!”/*1;

MIMFY =\ B;(h|i, A, s/"IF1), that is, the set of
broadcasted messages is the union of all messages broad-
casted by each local controller.

S

The setH} - of all histories that implement the firstac-

alternating sequence of system configurations and actions tions of trace and is prescribed by is defined as follows:

50

of the formht = (s9,...
(st,..., sk et, M1). ..
[Af, .., AL (s

L
1
%)
1

e, MO) - [AL,.

1
» S . aAn] !
—1 SZ71 .

(s17h . sh et MY
st ef, M) such that:

yee s Sy
[A}, ... AL] ,shoel). ..

51 see el)AL AL (8T, 85, ef)En,

that is, we get a system history after projecting out all

broadcasted messagkt';

e M°=(andM* C M,forallk € {0,...,¢}.

(s1,..., sk

L] Hto_’T = {(5107 -+ 5n0, €0, {})}’

o M5 = Upreps | Exto(hF, A1), for everyk > 0;

In addition, as before, if a trace is finite and ends after
m actions, and all along all its guards are satisfied, we
have that all histories irt{}"; end with all behaviors in
a final state. Finally, we say thatdistributed controller
7 = (Cy,...,Cy) realizes the target behavids, if it real-
izes all its traces (recall tha, is deterministic).

In order to understand the above definitions, let us observe

Notice that messages are shared by the local history of eachthat, intuitively, the team of local controllers realizesace
available behavior: they all see the same messages. Theif, as long as the guards in the trace are satisfied, they can
setH* shall denote the set of all extended system histories. globally perform all actions prescribed by the trace (each

Also, if bt € H™T is as above, theh™|; denotes the corre-
sponding extended locptojected historyv.r.t. behavioi3;,

thatis,(s?, e M) AL (st et, M1) ... AL. (st e, MY).

of the local controllers instructs its behavior to do some of
them). In order to do so, each local controller can use the
history of its behavior together with the (global) messages

(e, *,{co}, {t.p}.co)/({p}, {ca})
(c1,* {co}, {t,p}, co)/({p}, {co})
s+ {erd, {tp} o)/ ({t}, {co})

(co,eq, {}, {t},c1)/

i
c deg

{co, *; {e1}, {t.p}, c1)/({t}, {e1

co, x. {e1} {t, £}, ea)/({f}, {ead)

(a) Behavior Controller fo€y

(co,*,{c1}, pt.c1)/{{t}. {c1})

co,x, {c1 b, {t, f},co)

{f}.{eo}

(b) Behavior Controller forCs

Figure 3: Distributed controllers for the example scenario
Notationt, f, s andp is used to abbreviate actionsack,
free, send andphoto, respectively.

tionship is that in going from centralized controllers tg-di
tributed ones we do not lose generality, as the following the
orem shows.

Theorem 7 LetS = (B4,...,B,,&) be a system and let
By be the target behavior. Then, there exists a distributed
controller that realized3; iff there exists a centralized con-
troller that realizess3.

The crux of the proof of this theorem (omitted here for space
reasons) is that, through the suitable use of messages, one
can emulate the ability of accessing the states of each of the
available behaviors, given that in the distributed casésuc
states are not directly observable. Interestingly, theoforo
shows that it is sufficient for the set of messagesto be
finite.

As an immediate consequence of Theorem 7 and Theo-
rem 2, we get a computational complexity characterization
of the synthesis problem in the distributed case as well.

Theorem 8 Checking the existence of a distributed con-
troller that realizes a target behavid®, relative to a system
S =(By,...,B,,E)is EXPTIME-complete.

Next, we turn our attention to the relationship betwéen
nite central controllers anfinite distributed controllers, i.e.,
teams of finite local controllers. The main result we get is
the following.

Theorem 9 If there exists a finite central controllg? that
realizes3, relative to a systens = (By,...,5,,¢&), then
there is a finite distributed controllef = (C4,...,C,) that
realizesB3, relative t0S.

PROOE AssumeP = (X, 0, nextsnextg realizess,
relative toS. We define the finite state local controller
C; = (i, M, pio, nexts, nexta, nextm) as follows:

o ¥, =13

that have been broadcasted so far. In some sense, implicitly ¢ A — {¢“j:8 |seS;, j={1,....,n}};

through such messages, each local controller gets informa-, o '

tion on the global system history in order to take the right * 2 — 70 B . B N .
decision. Furthermore, at each step, each local controller ® NeXt@a(, si,e, {1 = s17,..., “n 1 5,7}, A) = A; iff
broadcasts messages. Such messages will be used in the next NeX&, 51, -, s, e, A) = [A1, .o, Aiy o Al

step by all behavior controllers to choose how to proceed.

Example 6 [Distributed controllers] Figures 3(a) and 3(b)
represent, respectively, distributed controllers for esas
C1 andCy of Example 1. For space reasons, actions are
identified by their name’s first letter. Similarly to the cen-
tralized case (Example M)exta nextmandnextsare repre-
sented togheter as edges labelled with pBir3, where, this
time, I = (s,e, Mycc, A, 8"y andO = (A, Mseni(s')), with
the following meaning:s is the current state of the camera
the distributed controller is attached t61(is attached to
DC1); e is the current state of environmelt M,... is the
set of messages the distributed controller received; the
set of actions to be performedt is the set of actions the
distributed controller assigns to its associated caméris;
the state of the camera after performing assigned actions
and, lastly,M,.,:(s") is the set of messages the controller
broadcasts.

Distributed vs Centralized Controllers

We now investigate the relationship between central con-
trollers and distributed ones. The main result on this rela-

e nextm(o,s,e, M, A, s") = “i:5";
e nexts(o, s;, e, {“1 7

S1 yeeny
nextgo, s1, . .

[43

n

Sn” } , A)

.y S, e,.A). O
From the above theorem, we get the analog of Theorem 3
for distributed local controllers.

Theorem 10 Ifthere exists a distributed controll&r realiz-
ing a target behavioB5, relative to a syster(i3s, .. ., B,,, €)
and a set of messagéd, then there exists one that is finite.

As a matter of fact, the construction in the proof of Theo-
rem 9, gives as a way of actually obtaining a distributed con-
troller: generate a finite centralized controller realigthe
target behavior, apply the construction above to get tha tea
of finite local controllers. Interestingly, if we start froen
minimal finite centralized controller satisfying the sizmne
dition in Theorem 4, then what we get is indeed a team of
“optimal” finite local controllers in the following senséi)
the number of states of the local controller3s| < |By|
— observe that this bound is tight; it is easy to find cases in
which we do need3,| number of stategji) the total number
of different messages in the solution is bounded by the size

of the available behaviofg\1| < |Bi| + --- + |B,| —again
this bound is tight, since it is easy to find cases in which
with less thanB | + - - - + | B,,| messages we lose the ability
of generating a distributed controller, even when a central
ized one existg(iii) the size of each message is bounded by
logn - log|B;|, and at each point there are at modtroad-

We close the paper by pointing out that the context in
which the distributed synthesis problem has been tackled in
this paper can be seen as “ideal™. (i) there exists a shared
and fully reliable messaging channel with no a priori size
bound; (ii) the environment is shared and fully observable
by every local behavior controller; and (iii) behaviors are

casted messages of such size; this gives us bounds on theallowed to synchronize at every step just before the next ac-
channel required for the messages exchange — again suchtion to be performed. In several practical cases, howetver, i

bounds are tight, one cannot do better than this in general.
We now look at the reverse relationship, that is, how we
can get a central controller from a distributed one.

Theorem 11 If there exists a finite distributed controller
7 = (Cy,...,Cy) that realizes the target behavid, rela-
tive to a systen$ = (B, ..., B,, &), then there is a finite
central controllerP that rgalizes@o relative toS.

PROOE Let(C; = (X;, M, 0,0, nexts, nexta, nextm), for

i € {1,...,n}. We define the finite state central controller
P = (X%, 00, nextsnexty relative to systens as follows:

e Y =231 X X Xp;

e o= (P10,---,Pn0);

o nextd (o1, ...,0n),81,.--,8n, €, A) =
[nexta (o1, s1,e, M, A),...,nexta,(on, sn, e, M, A)];

e next§(o1,...,0n),81,-..,5n,€6 A4 =

(nexts (o1, s1,¢e, M, A),...,nexts, (o, sn,e, M, A)). O

Looking at the construction used in the theorem above,
we get other interesting bounds: while the central corgroll
obtained from the local controllers is in general of the size
the Cartesian product of the states of local controllertyén
case where the local controllers are @ilinimal (i.e., their

states and state transitions correspond to those of the tar-

get behavior), the obtained central controller can be dhrun
to the same number of states (of the target) by projecting
out states that are not reachable from the initial stgteln
addition, if one starts from einimal central controller (as

in Theorem 4), generates the corresponding team of local
controllers using the construction for Theorem 9, and finall
generates back a central controller using the construofion
Theorem 11, one gets back the original central controller.

Conclusion

In this paper, we studied the distributed version of the syn-
thesis problem introduced in (De Giacomo & Sardina 2007).

As a result, the solutions proposed here are palatable to a

much wider range of cases, including those where we have
multiple independent agents and a centralized solution, as
that in (De Giacomo & Sardina 2007), is not conceivable.
We observe that the kind of problems we dealt with are
special forms of reactive process synthesis, both for the ce
tralized (Pnueli & Rosner 1989) and distributed (Pnueli &
Rosner 1990) cases. The main distinction is, apart from
the specific formal settings, the kind of design specifica-
tion to be realized (a target behavior in our case). It is
well known that, in general, distributed solutions are much
harder to get than centralized ones (Pnueli & Rosner 1990;
Kupferman & Vardi 2001). This is not the case in our ap-
proach since we allow for equipping local controllers with

autonomous message exchange capabilities, even if such ca-

pabilities are not present in the behaviors that they cantro
Such a capability is at the core of the reason why one can
always get a distributed controller from a centralized one.

would be necessary to address variations of this ideal con-
text. For instance, in distributed settings where behavdaoe
geographically far apart, one should consider behavior con
trollers with local (partial) observability of the envirorent

or even consider different environments all together. Also
when communication is limited and unreliable, robust solu-
tions in which a behavior can be “replaced” upon failure are
desired. Finally, in cases with diverse devices acting at ve
different rates, more asynchronous accounts are of irtteres
These and other variations remain for future study.

Acknowledgments

This work was funded by the European FET basic research
project FP6-7603 Thinking Ontologies (TONES) and the
Australian Research Council and Agent Oriented Software
under the grant LP0560702. The authors would also like to
thank the anonymous reviewers for their comments.

References

Berardi, D.; Calvanese, D.; De Giacomo, G.; Hull, R.; and Me-
cella, M. 2005. Automatic composition of transition-based
mantic web services with messaging.Rroc. VLDB 2005

Bredenfeld, A.; Jacoff, A.; Noda, |.; and Takahashi, Y.,.et306.
RoboCup '05: Robot Soccer WC,I¥0lume 4020 o NCS

De Giacomo, G., and Sardina, S. 2007. Automatic synthesis of
new behaviors from a library of available behaviors.Pimc. of
IJCAI 2007 1866-1871.

Firby, J. R. 1989 Adaptive Execution in Complex Dynamic Do-
mains Ph.D. Dissertation, Yale University. Technical Report
YALEU/CSD/RR 672.

Gelfond, M., and Lifschitz, V. 1998. Action languag&3ectronic
Transactions of Al (ETAI2:193-210.

Georgeff, M. P., and Lansky, A. L. 1987. Reactive reasonimi) a
planning. InProc. of AAAI 1987677-682.

Harel, D.; Kozen, D.; and Tiuryn, J. 200@ynamic Logic The
MIT Press.

Katz, M. J., and Rosenschein, J. S. 1993. The generation and
execution of plans for multiple agent€omputers and Atrtificial
Intelligencel2(1):5-35.

Kupferman, O., and Vardi, M. Y. 2001. Synthesizing disttéul
systems. IrProc. of LICS 2001389.

Mcllraith, S., and Son, T. C. 2002. Adapting Golog for pragra
ming the semantic web. IRroc. of KR 2002482—493.

Meuleau, N.; Peshkin, L.; Kim, K.-E.; and Kaelbling, L. P.90
Learning finite-state controllers for partially obsenaknviron-
ments. InProc. of UAI 1999427-436.

Pnueli, A., and Rosner, R. 1989. On the synthesis of a reactiv
module. InProc. of POPL 1989179-190.

Pnueli, A., and Rosner, R. 1990. Distributed reactive systare
hard to synthesize. IRroc. of FOCS 1990746-757.

Saffiotti, A., and Broxvall, M. 2005. PEIS ecologies: Amkien
intelligence meets autonomous roboticsPhoc. of the Int. Conf.

on Smart Objects and Ambient Intelligen2&5-280.

Tilden, M. W. 1993. The evolution of functional robo-ecaiesg;
ARS Electronic®3:195-200.

