
Automatic Synthesis of a Global Behavior from Multiple Distributed Behaviors

Sebastian Sardina
Department of Computer Science

RMIT University
Melbourne, Australia

ssardina@cs.rmit.edu.au

Fabio Patrizi and Giuseppe De Giacomo
Dipartimento di Informatica e Sistemistica

Università di Roma “La Sapienza”
Roma, Italy

{fabio.patrizi,degiacomo}@dis.uniroma1.it

Abstract

We consider the problem of synthesizing ateam of lo-
cal behavior controllersto realize a fully controllable
target behavior from a set of available partially con-
trollable behaviors that execute distributively within a
shared partially predictable, but fully observable, en-
vironment. Available behaviors stand for existing dis-
tributed components and are represented with (finite)
nondeterministic transition systems. The target behav-
ior is assumed to be fully deterministic and stands for
the collective behavior that the system as a whole needs
to guarantee. We formally define the problem within a
general framework, characterize its computational com-
plexity, and propose techniques to actually generate a
solution. Also, we investigate the relationship between
the distributed solutions and the centralized ones, in
which a single global controller is conceivable.

Introduction
A novel synthesis problem (De Giacomo & Sardina 2007)
was recently proposed in which afully controllable tar-
get behavior module is automatically synthesized from a li-
brary of availablepartially controllablebehaviors executing
within a sharedpartially predictable, but fully observable,
environment. The available behaviors stand for existing ac-
cessible devices or components whereas the target behavior
represents the desired but non-existing (virtual) component.
The question then was: can a central system (always) guar-
antee a specificdeterministicoverall behavior by (partially)
controlling the available devices or components in a step-
by-step manner, that is, by instructing them on which action
to execute next and observing, afterwards, the outcome in
the device used as well as in the environment? Such syn-
thesis problem can be recast in a variety of forms within
several sub-areas of AI, including planning (Meuleauet
al. 1999), agent-oriented programming (Georgeff & Lansky
1987; Firby 1989), plan coordination (Katz & Rosenschein
1993), web-service composition (McIlraith & Son 2002;
Berardiet al. 2005), and others.

It is not hard to see that the above problem is of partic-
ular interest in settings where the existing components are
distributedand independent, and thus, not accessible as a
whole. For example, a RoboCup soccer team includes mul-
tiple players acting on their own, possibly exchanging mes-
sages with each other (Bredenfeldet al. 2006). Robot ecolo-
gies (Tilden 1993; Saffiotti & Broxvall 2005), the develop-
ment of autonomous microrobot groups consisting of many

heterogeneous members exhibiting collective behavior and
intelligence, also offers an excellent domain in which coor-
dination and task distribution towards obtaining a global be-
havior could be of great benefit. In all those cases, however,
the set of available behaviors cannot be taken as alibrary
accessible from a central system—no central entity can be
assumed in such applications. In fact, the most one could
realistically allow under these distributed scenarios is some
sort of local control on the existing behavior devices, to-
gether with some kind of communication among such local
controller modules. Because of this, the techniques devel-
oped by De Giacomo & Sardina (2007) arenot suitable for
these fully distributed scenarios, since their proposed solu-
tion requires a central coordination system, referred to asthe
scheduler, that is able to access every existing behavior.

So, in this paper, we study thedistributed synthesis prob-
lem in which a team oflocal behavior controllersis auto-
matically obtained in order to guarantee a global distributed
behavior starting from a set of distributed behaviors acting
over a shared partially predictable but fully observable envi-
ronment. A local controller is able to control the operation
of the single behavior it is attached to as well as to broad-
cast messages into a shared channel. In addressing the dis-
tributed problem, we not only need to envision a new type of
(distributed) solution, but we also have to enrich the setting
considerably. For instance, in a fully distributed context, it
is unrealistic to assume that only one behavior will act at
each step, and hence, many concurrent actions have to be
allowed.

The main technical contributions of this paper are three-
fold. First, we formally define and solve the distributed syn-
thesis problem in the general case where behaviors and the
environment are represented as arbitrary (nondeterministic)
transition systems with a finite number of states. We char-
acterize the computational complexity of the problem, and
show that when there is a solution, there is one that is finite.
Second, we study the intrinsic relation between centralized
solutions and distributed ones, and proved that there is no
loss when we assume a distributed setting: every coordina-
tion that can be done with a centralized controller can be
done with a team of local controllers, and vice-versa. Third,
we show how to obtain the smallest finite controllers.

The setting

Based on (De Giacomo & Sardina 2007), let us start by
defining the formal abstract framework for our problem.

Environment We assume a shared observable environ-
ment, which provides an abstract account of the observable
effects and preconditions of actions (akin to an action the-
ory). In giving such an account, we take into consideration
that, in general, we have incomplete information about the
actual effects and preconditions of actions. Thus, we allow
the observable environment to benondeterministicin gen-
eral. In that way, the incomplete information on the actual
world shows up as nondeterminism in our formalization.

Formally, anenvironmentE = (A, E, e0, δE) is charac-
terized by the following four entities:1

• A is a finite set of shared actions;
• E is a finite set of possible environment states;
• e0 ∈ E is the initial state of the environment;
• δE ⊆ E × 2A∅ × E is the transition relation among states:

δE(e, A, e′) holds when the environmentmay evolvefrom
statee to statee′ when the set of actionsA are all (con-
currently) executed.

Note that our notion of environment shares a lot of simi-
larities with the so-called “transition system” in action lan-
guages (Gelfond & Lifschitz 1998). One can think of using
those languages to compactly represent the environment.

Behavior A behavior is essentially a program for an agent
or the logic of some available device. Such a program how-
ever leaves the selection of the set of actions to perform next
to the agent itself. More precisely, at each step the program
presents to the agent a choice of available sets of (concur-
rent) actions; the agent selects one of such sets; the actions
in the selected set are executed concurrently; and so on.

Obviously, behaviors are not intended to be executed on
their own, but they are executed in the environment (cf.
above). Hence, we equip them with the ability of testing
conditions (i.e., guards) on the environment when needed.

Formally, abehaviorB = (S, s0, G, δB, F) over an envi-
ronmentE = (A, E, e0, δE), is characterized by the follow-
ing entities:

• S is a finite set of behavior states;
• s0 ∈ S is the single initial state of the behavior;
• G is a set of guards over the environmentE , i.e., a set of

boolean functions of the formg : E → {true, false};
• δB ⊆ S × G× 2A∅ × S is the behavior transition relation;
• finally, F ⊆ S is the set of states of the behavior that can

be considered final, that is, the states in which the behav-
ior can stop executing, but does not necessarily have to.

The size of a behavior is its number of states, i.e.,|B| = |S|.
Observe that, in general, behaviors arenondeterministic

in the sense that they may allow more than one transition
with the same setA of actions and compatible guards eval-
uating to the same truth value.2 As a result, the central
system, when making its choice of which action to execute
next, cannot be certain of which choices it will have later on,
since that depends on what transition is actually executed—
nondeterministic behaviors are only partially controllable.

We say that a behaviorB = (S, s0, G, δB, F), over the
environmentE , is deterministicif there is no environment

1We use abbreviation2A
∅ to denote2A − {∅}.

2Note that this kind of nondeterminism is of adevilishnature—
the actual choice is out of the behavior control.

C1, C2

c2

c1

{photo}

{track}
c0

{photo}

{freehdd}

e0 : {send}

e0 : {send}

{freehdd}

{track}

(a) Behaviors

e1

E

{photo}
{track}
{send}

e0

{send} {freehdd}

{track} {photo}

(b) Environment

t3 t2

t1

{track}

{track, send}

T
{track, photo}

{track, freehdd}

t0

(c) Target

Figure 1: A camera surveillance scenario.

statee of E , and no setA of actions, for which there exist two
distinct transitions(s, g1, A, s1) and(s, g2, A, s2) in δB such
thats1 6= s2 andg1(e) = g2(e) = true. Notice that given a
state in a deterministic behavior and a legal set of actions,we
always know exactly which isthenext state of the behavior.
In other words, deterministic behaviors are fully controllable
through the selection of the set of actions to perform next,
while this is not the case for nondeterministic ones.

The system A systemS = (B1, . . . ,Bn, E) is formed
by an environmentE and n predefined nondeterministic
behaviorsBi over E , called theavailable behaviors. A
system configurationis a tuplec = (s1, . . . , sn, e) denoting
a snapshot of the system: behaviorBi, with i ∈ {1, . . . , n},
is in statesi and the environmentE is in statee.

Example 1 [The scenario] Consider a site surveilled by two
identical cameras,C1 andC2, whose behaviors are repre-
sented in Fig. 1(a)—edges are labeled by expressions of the
form g : A, whereg stands for the guard andA for the set of
actions (we omitg when it is equal to the boolean function
true). They are capable of either tracking objects or taking
photos—actionstrackandphoto, respectively—but not both
at the same time. Each time a photo is taken, it is stored in
a local buffer which may become full. Since such situation
is unpredictable (i.e., there is no way to state whether the
next photo will fill the buffer), actionphoto is modeled as
a non-deterministic action leading the camera in statec2 iff
no space is available on local buffer. A camera can empty its
buffer by performing asend action, which sends the buffer
content to a remote device (e.g., a hard drive). Of course, a
send action can only be performed when space is available
on such device. Otherwise, the camera may ask the device
for additional space by performing actionfreehdd.

The environmentE keeps information about the remote
storage device. Its possible evolutions are represented in
Fig. 1(b): e0 stands for the state where there is space avail-
able on the device ande1 stands for the state where no space
is left.

The target behaviorT (Fig. 1(c)) requires the ability
to perform actions while keeping objects tracked—a task
which could not be carried out by a single camera. In or-
der to preserve local buffers and/or remote device from go-
ing out of memory, a conservative strategy is adopted: after
taking a photo, (i) the remote device is asked for additional
space; and (ii) asend action is performed to empty the local
buffer.

Behavior History A behavior historyhB for a given be-
havior B = (S, s0, G, δ, F) over an environmentE =
(A, E, e0, δE), is any finite sequence of the form(s0, e0) ·
A1 · (s1, e1) · · · (sℓ−1, eℓ−1,) ·Aℓ · (sℓ, eℓ), for someℓ ≥ 0,
such that for all0 ≤ k ≤ ℓ and0 ≤ j ≤ ℓ − 1:

• s0 = s0 andsk ∈ S;
• e0 = e0 andek ∈ E;
• Ak ⊆ A;
• (sj , g, Aj+1, sj+1) ∈ δ, for someg such thatg(ej) =
true, that is, behaviorB canevolve from its current state
sj to statesj+1 w.r.t. the (current) environment stateej;

• (ej , A, ej+1) ∈ δE , for some set of actionsA such that
Aj+1 ⊆ A, that is, the environment can evolve from its
current stateeℓ to the new stateeℓ+1.

The setHB denotes the set of all behavior histories forB.

Traces Given a behaviorB = (S, s0, G, δ, F) and an envi-
ronmentE = (A, E, e0, δE), we define thetraces ofB onE
as the sequences of of the formt = (g1, A1) · (g2, A2) · · · ,
wheregi ∈ G andAi ⊆ A, such that there exists a behaivor
history (s0, e0) · A1 · (s1, e1) · A2 · · · for B overE where
gi(ei−1) = true for all i ≥ 1.

If the tracet = (g1, A1) · · · (gℓ, Aℓ) is finite, then there
exists a finite behavior history(s0, e0) · A1 · · ·Aℓ · (sℓ, eℓ)
with sℓ ∈ F .

Thetraces of the deterministic behaviorsare of particular
interest: any initial fragment of a trace leads to a single state
in the behavior. Thus, the deterministic behavior itself can
be seen as a specification of a (possibly infinite) set of traces.

System history Assume a systemS = (B1, . . . ,Bn, E).
A system historyis an alternating sequence of system con-
figurations and actions of the formh = (s0

1, . . . , s
0
n, e0) ·

[A1
1, . . . , A

1
n] · (s1

1, . . . , s
1
n, e1) · · · (sℓ−1

1 , . . . , sℓ−1
n , eℓ−1) ·

[Aℓ
1, . . . , A

ℓ
n] · (sℓ

1, . . . , s
ℓ
n, eℓ), for someℓ ≥ 0, such that:3

• (s0
i , e

0) ·A1
i · (s

1
i , e

1) · · · (sℓ−1

i , eℓ−1) ·Aℓ
i · (s

ℓ
i , e

ℓ) ∈ HBi

for all i ∈ {1, . . . , n};
• at each stepk ∈ {0, . . . , ℓ − 1}, we have that

(ek,
⋃n

i=1
Ak+1

i , ek+1) ∈ δE , that is, the environment can
make a legal transition according to the set of actions ex-
ecuted inall behaviors.

The length of a historyh, denoted as|h|, is the number of
system configurations inh. The setH denotes the set of all
system histories.

Behavior Controllers We study two different mecha-
nisms for managing and controlling the available behav-
iors. The first one involves a central component, called the
centralized controller, and extends the notion ofscheduler
from (De Giacomo & Sardina 2007). The centralized con-
troller has the ability of activating-resuming zero, one, or
more of the available behaviors by instructing each of them
to execute some set of actions among those that are allowed
in their current state (taking into account the environment).

3In some cases it may be sensible to require that
Tn

i=1
Ak

i = ∅
for every k ∈ {1, . . . , ℓ} (e.g., some RoboCup scenarios, re-
sources).

It also has the ability of keeping track (at runtime) of the cur-
rent state of each available behavior. The second mechanism
involves a decentralized team oflocal behavior controllers,
one for each behavior. At any point in time, each behav-
ior controller can activate, stop, and resume the behavior it
is attached to as well as broadcast messages and access the
whole set of broadcasted messages.

Centralized Controller
We first focus on the synthesis of a centralized controller.
This is essentially an extension of the work in (De Giacomo
& Sardina 2007) so as to allow for multiple (concurrent) ac-
tions at every step. In (De Giacomo & Sardina 2007), in
contrast, only one action at the time was executed and the
centralized controller was essentially a scheduler assigning
such action to one of the available behaviors.

Specifically, we are interested in the following problem:
given a systemS = (B1, . . . , Bn, E) and adeterministicbe-
havior, called thetarget behaviorB0 over E , synthesize a
centralized controllerP such that the target behavior is re-
alized by suitably assigning actions to execute to the avail-
able behaviors.

Let us formally define our synthesis problem. Let the
system beS = (B1, . . . ,Bn, E), whereE = (A, E, e0, δE)
is the environment andBi = (Si, si0, Gi, δi, Fi), with i ∈
{1, . . . , n} are the available behaviors. Let the target behav-
ior beB0 = (S0, s00, δ0, F0). A centralized controlleris a
functionP : H× 2A → (2A)n that, given a system history
h ∈ H and a (non-empty) set of requested actionsA ⊆ A to
perform, returns the set of actions to be performed by each
behavior such thatA is fully realized. Observe that some
behaviors may not execute any action and thus remain still.
It may also happen that several behaviors execute the same
action. Variants can be easily defined where an action is ex-
ecuted by exactly one behavior. The results presented here
would also hold for such variants.

One can define when a centralized controller realizes the
target behavior—a solution to the problem—by extending
the definition found in (De Giacomo & Sardina 2007) of
when acentralized controllerP realizes a tracet. We omit
this definition for lack of space. Recall that since the target
behavior is a deterministic transition system, its behavior is
completely characterized by the set of its traces. Thus, a
centralized controllerP realizes the target behaviorB0 if it
realizes all its traces (see (De Giacomo & Sardina 2007)).

The techniques proposed in (De Giacomo & Sardina
2007), based on a polynomial reduction of the problem
to satisfiability of a Propositional Dynamic Logic formula
(Harel, Kozen, & Tiuryn 2000), can be extended to deal
with our new notion of centralized controllers.4 As a con-
sequence, we have the following result.

Theorem 2 Checking the existence of a centralized con-
troller that realizes a target behaviorB0 relative to a system
S = (B1, . . . ,Bn, E) is EXPTIME-complete.

Observe that, in general, a centralized scheduler can
have infinite states. However, the next theorem shows
that if a centralized controller that realizes the target be-
havior does exist, then there exists one with afinite

4To avoid an exponential blowup, special care has to be put in
encoding the problem into PDL satisfiability.

number of states. To ground the ideas,5 we define a
finite (state) centralized controllerrelative to a systemS =

(B1, . . . ,Bn, E) as a tupleP̂ =(Σ, σ0, nexts, nexta), where:

• Σ is thefiniteset of states of the controller;
• σ0 ∈ Σ is the single initial state of the controller;
• nexta : Σ × S1 × . . . × Sn × E × 2A → (2A)n is the

controller output, which instructs each available behavior
to execute a given set of actions given its current state, the
current states of the behaviors and the environment and
requested actions;

• nexts: Σ×S1× . . .×Sn×E×2A → Σ is the transition
function of the controller which states what is the next
state ofP̂ after having observed the state of the behaviors
and the environment, and the set of requested actions.

It is possible to univocally define, by induction on the
structure of histories, theinducedcentralized controller (of
the general form above): executing the finite controller in
the system amounts to execute its induced controller. For
sake of simplicity, we shall blur the distinction between a
finite controller and its induced one.

The following result holds for finite controllers, and can
be shown by resorting to the finite model property of PDL:

Theorem 3 If there exists a centralized controller that
realizes a target behaviorB0 relative to a system
(B1, . . . ,Bn, E), then there exists one which is finite.

In fact one can give a tighter bound on the number of
states required by the finite controller.

Theorem 4 If there exists a finite centralized controller
that realizes a target behaviorB0 relative to a system
(B1, . . . ,Bn, E), then there exists one with|Σ| ≤ |B0| and
with a function nexts that is independent of the states of
B1, . . . ,Bn, i.e., nexts: Σ × E × 2A → Σ.

Observe that such bound on the number of states of the con-
troller is tight. Indeed, it is easy to find cases in which there
exists no controller with less states than the target behavior.

Finally, we observe that the PDL reduction technique
mentioned above, as the one in (De Giacomo & Sardina
2007), can be used to actually generate a finite centralized
controller. In fact, from a finite model of the PDL for-
mula, one can easily extract thefinite centralized controller
by definingnextaandnextson the basis of the truth-values of
the propositions in the model. In addition, one can apply the
construction devised for Theorem 4 so as to get a controller
with a minimal (in the above sense) number of states.

Example 5 [Centralized controller] Wrt the surveillance
scenario presented in Example 1, FSMCC of Fig. 2 rep-
resents the centralized controller which realizes the tar-
get behaviorT . In the figure,nextaand nextsare repre-
sented togheter as edges labelled with pairsI/O, where
I = 〈s1, s2, e, A〉 andO = 〈A1, A2〉, with the following
meaning:si is the current state of cameraCi, i ∈ {1, 2}; e is
the current state of environmentE; A is the set of actions to
be performed andAi is the set of actions assigned to camera
Ci, i ∈ {1, 2}.

5Other representations for the controller are also possible, tough
none can be exponentially more succinct than the one adoptedhere.

〈c0, c0, e0, track〉/
CC

〈c0, c1, ∗, track, photo〉/

cc1 cc2cc0

〈c
2
, c

1
,
e 0

, {
tr

a
ck

,
se

n
d
}
〉/

cc3

〈{
tr

a
ck

}
, {

se
n
d
}
〉

〈c
1
, c

2
, e

0
,
{
tr

a
ck

, s
en

d
}
〉/

〈{
tr

a
ck

}
, {

se
n
d
}
〉

〈c
1
,
c 1

, e
0
, {

tr
a
ck

,
se

n
d
}
〉/

〈{
tr

a
ck

}
, {

se
n
d
}
〉

〈c1
, c2

, ∗
, {

track, freehdd}
〉/

〈{
tr

ack}
, {

freehdd}
〉

〈c1
, c0

, ∗
, {

tr
ack, freehdd}

〉/

〈{
freehdd}

, {
track}

〉

〈c0
, c1

, ∗
, {

tr
ack, freehdd}

〉/

〈{
track}

, {
freehdd}

〉

〈{track}, {photo}〉

〈c1, c0, ∗, {track, photo}〉/
〈{photo}, {track}〉

〈c1, c1, ∗, {track, photo}〉/
〈{track}, {photo}〉

〈c2, c1, ∗, {track, freehdd}〉/
〈{freehdd}, {track}〉

〈track, track〉

Figure 2: Centralized controller for the example scenario.

Distributed Controllers
Next we turn to the case in which a centralized controller is
not implementable and we have to rely on distributed con-
trollers. The main difficulty here is that such controllers
have no access to the complete history, but only to the local
history of the behavior they are controlling. To overcome
such a difficulty we allow distributed controllers to commu-
nicate through message broadcasting. This is essential to
make them able to cooperate in order to realize the target
behavior.

Messages We assume to have a set of possible messages
M (more precisely, message types) that can be broadcasted.
That is, we do not put a priori limits to the information that
the distributed controllers can exchange. Later, we will see
that a finite set of messages is sufficient.

Extended Local Behavior History We extend the no-
tion of local histories to incorporate messages fromM.
An extended behavior historyh+

B for a given a behav-
ior B = (S, s0, G, δ, F) and relative to an environment
E = (A, E, e0, δE), is any finite sequence of the form
(s0, e0, M0) ·A1 · (s1, e1, M1) · · · (sℓ−1, eℓ−1, M ℓ−1) ·Aℓ ·
(sℓ, eℓ, M ℓ) such that the following constraints hold:

• (s0, e0) ·A1 · (s1, e1) · · · (sℓ−1, eℓ−1) ·Aℓ · (sℓ, eℓ) ∈ HB,
that is, we get a behavior history forB when the set of
broadcasted messages are projected out;

• M0 = ∅ andMk ⊆ M, for all k ∈ {0, . . . , ℓ}.
Observe that the behavior itself puts no constraints on the
messages that are broadcasted at each step. However, we’ll
see that the local controller will. The setH+

B denotes the set
of all extendedlocal behavior histories forB.

Local Controllers A local controller is a module that can
be (externally) attached to a behavior in order to control its
operation. It has the ability of activating-resuming its con-
trolled behavior by instructing it to execute a set of actions.
Also, the controller has the ability of broadcasting messages
after observing how the attached behavior evolved w.r.t. the
delegated set of actions, and to access all messages broad-
casted by the other local controllers at every step. Lastly,the
controller has full observability on the environment.

Formally, alocal behavior controllerfor behaviorB is a
pair of functionsC = (P, B) of the following form:

P : H+

B × 2A → 2A; B : H+

B × 2A × S → 2M.

FunctionP states what actionsA′ ⊆ A to delegate to the at-
tached behavior at local extended behavior historyh+

B when
actionsA were requested. FunctionB states what messages,
if any, are to be broadcasted under the same circumstances
and the fact that the attached behavior has just moved to state
s after executing actionsA′. We attach one local controller
Ci to each available behaviorBi in systemS.

In general, local controllers can have infinite
states, however, as for central controllers, we will
be particularly interested in finite state ones. A
finite (state) local behavior controllerfor a behavior B,
and relative to environmentE and a set of messagesM, is a
tupleĈ = (Σ,M̂, σ0, nexts, nexta, nextm), such that:

• Σ is thefiniteset of states of the controller;

• M̂ ⊆ M is afiniteset of messages;
• σ0 ∈ Σ is the single initial state of the controller;

• nexta: Σ × S × E × 2M̂ × 2A → 2A is the action out-
put of the controller, which observes the state of the con-
trolled behavior, the state of the environment, the mes-
sages broadcasted, the actions requested for execution,
and delegates some of these to its controlled behavior;

• nextm: Σ × S × E × 2M̂ × 2A × S → 2M̂ is the mes-
sage output of the controller, which observes the state of
the controlled behavior, the state of the environment, the
messages broadcasted, the actions requested, and the state
of the controlled behavior resulting from executing the se-
lected subset of these actions, and states what messages,
if any, are to be broadcasted by the controller;

• nexts: Σ × S × E × 2M̂ × 2A → Σ states what is the
next state of̂C after having observed the state of the con-
trolled behavior, the state of the environment, the mes-
sages broadcasted, and the actions requested.

As with finite central controllers, one can univocally de-
fine theinducedlocal controller of a finite local controller
such that running the finite local controller in the system
amounts to execute its induced version. Once again, we blur
the two notions in the following.

Extended System History We now extend system histo-
ries to include messages fromM. Assume then a system
S = (B1, . . . ,Bn, E). An extended system historyis an
alternating sequence of system configurations and actions
of the form h+ = (s0

1, . . . , s
0
n, e0, M0) · [A1

1, . . . , A
1
n] ·

(s1
1, . . . , s

1
n, e1, M1) · · · (sℓ−1

1 , . . . , sℓ−1
n , eℓ−1, M ℓ−1) ·

[Aℓ
1, . . . , A

ℓ
n] · (sℓ

1, . . . , s
ℓ
n, eℓ, M ℓ) such that:

• (s0
1, . . . , s

0
n, e0) · [A1

1, . . . , A
1
n] · (s1

1, . . . , s
1
n, e1) · · ·

(sℓ−1

1 , . . . , sℓ−1
n , eℓ−1)·[Aℓ

1, . . . , A
ℓ
n]·(sℓ

1, . . . , s
ℓ
n, eℓ)∈H,

that is, we get a system history after projecting out all
broadcasted messagesM i;

• M0 = ∅ andMk ⊆ M, for all k ∈ {0, . . . , ℓ}.

Notice that messages are shared by the local history of each
available behavior: they all see the same messages. The
setH+ shall denote the set of all extended system histories.
Also, if h+ ∈ H+ is as above, thenh+|i denotes the corre-
sponding extended localprojected historyw.r.t. behaviorBi,
that is,(s0

i , e
0, M0) ·A1

i · (s
1
i , e

1, M1) · · · ·Aℓ
i · (s

ℓ
i , e

ℓ, M ℓ).

Local Controller Synthesis A distributed controlleris a
set of local controllers, one for each available behavior. The
problem we are interested in is the following: given a system
S = (B1, . . . , Bn, E), a set of messagesM and adetermin-
istic target behaviorB0 overE , synthesize a distributed con-
troller, i.e., a team ofn local controllers, such that the target
behavior is realized by concurrently running all behaviors
under the control of their respective controllers.

More precisely, letM be a set of messages, and let the
system beS = (B1, . . . ,Bn, E), whereE = (A, E, e0, δE)
andBi = (Si, si0, Gi, δi, Fi), for i ∈ {1, . . . , n}. Let the
target behavior beB0 = (S0, s00, δ0, F0). Since the target
behavior is a deterministic transition system, its behavior is
fully characterized by the set of its traces, that is, by the set
of infinite action sequences that are faithful to its transitions,
and of finite sequences that in addition lead to a final state.

So, given a tracet = (g1, A1) · (g2, A2) · · · of the tar-
get behavior, we say thata distributed controllerT =
(C1, . . . , Cn) realizes the tracet iff for all ℓ and for all
extended system historieshℓ ∈ Hℓ

t,T (Hℓ
t,T is defined

below) such thatgℓ+1(eℓ) = true in the last environ-
ment stateeℓ of hℓ, we have thatExtt,T (hℓ, Aℓ+1) is
nonempty, whereExtt,T (h, A) is the set of(|h| + 1)-length
extended system histories of the formh · [A1, . . . , An] ·

(s
|h|+1

1 , . . . , s
|h|+1
n , e|h|+1, M |h|+1) such that:

• (s
|h|
1 , . . . , s

|h|
n , e|h|, M |h|) is the last configuration inh;

• A =
⋃n

i=1
Ai, that is, the requested set of actionsA is

fulfilled by putting together all the actions executed by
every behavior.

• Pi(h|i, A) = Ai for all i ∈ {1, . . . , n}, that is, the local
controllerCi instructed behaviorBi to execute actionsAi;

• (s
|h|
i , g, Ai, s

|h|+1

i) ∈ δi with g(e|h|) = true, that is,

behaviorBi can evolve from its current states|h|i to state

s
|h|+1

i w.r.t. the (current) environment statee|h|;
• (e|h|, A, e|h|+1) ∈ δE , that is, the environment can evolve

from its current statee|h| to statee|h|+1;
• M |h|+1 =

⋃n

i=1
Bi(h|i, A, s|h|+1), that is, the set of

broadcasted messages is the union of all messages broad-
casted by each local controller.

The setHk
t,T of all histories that implement the firstk ac-

tions of tracet and is prescribed byT is defined as follows:

• H0
t,T = {(s10, . . . , sn0, e0, {})};

• Hk+1

t,T =
⋃

hk∈Hk
t,T

Extt,T (hk, Ak+1), for everyk ≥ 0;

In addition, as before, if a trace is finite and ends after
m actions, and all along all its guards are satisfied, we
have that all histories inHm

t,T end with all behaviors in
a final state. Finally, we say that adistributed controller
T = (C1, . . . , Cn) realizes the target behaviorB0 if it real-
izes all its traces (recall thatB0 is deterministic).

In order to understand the above definitions, let us observe
that, intuitively, the team of local controllers realizes atrace
if, as long as the guards in the trace are satisfied, they can
globally perform all actions prescribed by the trace (each
of the local controllers instructs its behavior to do some of
them). In order to do so, each local controller can use the
history of its behavior together with the (global) messages

〈c1, ∗, {c1}, {t, p}, c0〉/〈{t}, {c0}〉
dc1

1 dc1
2

dc1
0

dc1
3

〈{t}, c1〉

〈c1, ∗, {c0}, {t, p}, c2〉/〈{p},{c2}〉

〈c1, ∗, {c0}, {t, p}, c0〉/〈{p},{c0}〉

〈c0, ∗, {c1}, {t, p}, c1〉/〈{t}, {c1}〉

〈c1
, ∗

, {
c2

}, {
t, f}, c1

〉/〈
{t}

,{
c1

}〉

〈c1
, ∗

, {
c0

}, {
t, f}, c1

〉/〈
{f},{

c1
}〉

〈c0
, ∗

,{
c1

}, {
t, f}, c1

〉/〈
{t}

,{
c1

}〉

〈c2, ∗, {c1}, {t, f}, c2〉/〈{f}, {c2}〉

〈{
t}

,
{
c 1

}
〉

〈c
1

,
e 0

,
{
c 1

}
,
{
t,

s
}
,
c 1

〉/

〈{
t}

,
{
c 1

}
〉

〈c
2

,
e 0

,
{
c 1

}
,
{
t,

s
}
,
c 0

〉/

〈{
s
}
,
{
c 0

}
〉

〈c
1

,
e 0

,
{
c 2

}
,
{
t,

s
}
,
c 1

〉/

〈c0, e0, {}, {t}, c1〉/

(a) Behavior Controller forC1

〈c
1

,
e 0

,
{
c 2

}
,
{
t,

s
}
,
c 1

〉/

dc2
1 dc2

2
dc2

0

dc2
3

〈c0, e0, {}, {t}, c1〉/
〈{t}, c1〉

〈c1
, ∗

,{
c0

}, {
t, f}, c1

〉/〈
{f},{

c1
}〉

〈c1, ∗, {c1}, {t, p}, c2〉/〈{p},{c2}〉

〈c1, ∗, {c0}, {t, p}, c2〉/

〈c1, ∗, {c0}, {t, p}, c0〉/〈{p},{c0}〉

〈c1, ∗, {c1}, {t, p}, c0〉/〈{p}{c0}〉

〈c0, ∗, {c1}, {t, p}, c1〉/〈{t}, {c1}〉

〈c1
, ∗

, {
c2

}, {
t, f}, c1

〉/〈
{t},{

c1
}〉

〈c0
, ∗, {c1

}, {t, f}, c1
〉/〈{t}, {c1

}〉

〈{t}, {c2}〉

〈c2, ∗, {c1}, {t, f}, c2〉/〈{f}, {c2}〉

〈c
1

,
e 0

,
{
c 1

}
,
{
t,

s
}
,
c 1

〉/

〈c
2

,
e 0

,
{
c 1

}
,
{
t,

s
}
,
c 0

〉/
〈{

s
}
,
{
c 1

}
〉

〈{
s
}
,
{
c 0

}
〉

〈{
t}

,
{
c 1

}
〉

(b) Behavior Controller forC2

Figure 3: Distributed controllers for the example scenario.
Notationt, f , s andp is used to abbreviate actionstrack,
free, send andphoto, respectively.

that have been broadcasted so far. In some sense, implicitly
through such messages, each local controller gets informa-
tion on the global system history in order to take the right
decision. Furthermore, at each step, each local controller
broadcasts messages. Such messages will be used in the next
step by all behavior controllers to choose how to proceed.

Example 6 [Distributed controllers] Figures 3(a) and 3(b)
represent, respectively, distributed controllers for cameras
C1 andC2 of Example 1. For space reasons, actions are
identified by their name’s first letter. Similarly to the cen-
tralized case (Example 5),nexta, nextmandnextsare repre-
sented togheter as edges labelled with pairsI/O, where, this
time,I = 〈s, e, Mrec, A, s′〉 andO = 〈Ā, Msent(s

′)〉, with
the following meaning:s is the current state of the camera
the distributed controller is attached to (C1 is attached to
DC1); e is the current state of environmentE; Mrec is the
set of messages the distributed controller received;A is the
set of actions to be performed;̄A is the set of actions the
distributed controller assigns to its associated camera;s′ is
the state of the camera after performing assigned actionsĀ
and, lastly,Msent(s

′) is the set of messages the controller
broadcasts.

Distributed vs Centralized Controllers
We now investigate the relationship between central con-
trollers and distributed ones. The main result on this rela-

tionship is that in going from centralized controllers to dis-
tributed ones we do not lose generality, as the following the-
orem shows.

Theorem 7 Let S = (B1, . . . ,Bn, E) be a system and let
B0 be the target behavior. Then, there exists a distributed
controller that realizesB0 iff there exists a centralized con-
troller that realizesB0.

The crux of the proof of this theorem (omitted here for space
reasons) is that, through the suitable use of messages, one
can emulate the ability of accessing the states of each of the
available behaviors, given that in the distributed case such
states are not directly observable. Interestingly, the proof
shows that it is sufficient for the set of messagesM to be
finite.

As an immediate consequence of Theorem 7 and Theo-
rem 2, we get a computational complexity characterization
of the synthesis problem in the distributed case as well.

Theorem 8 Checking the existence of a distributed con-
troller that realizes a target behaviorB0 relative to a system
S = (B1, . . . ,Bn, E) is EXPTIME-complete.

Next, we turn our attention to the relationship betweenfi-
nitecentral controllers andfinitedistributed controllers, i.e.,
teams of finite local controllers. The main result we get is
the following.

Theorem 9 If there exists a finite central controllerP that
realizesB0 relative to a systemS = (B1, . . . ,Bn, E), then
there is a finite distributed controllerT = (C1, . . . , Cn) that
realizesB0 relative toS.
PROOF. AssumeP = (Σ, σ0, nexts, nexta) realizesB0

relative toS. We define the finite state local controller
Ci = (Σi,M̂, pi0, nextsi, nextai, nextmi) as follows:

• Σi = Σ;

• M̂ = {“j : s” | s ∈ Sj , j = {1, . . . , n}};
• pi0 = σ0;
• nextai(σ, si, e, {“1 : s1”, . . . , “n : sn”}, A) = Ai iff

nexta(σ, s1, . . . , sn, e, A) = [A1, . . . , Ai, . . . , An];
• nextmi(σ, s, e, M, A, s′) = “i : s′”;
• nextsi(σ, si, e, {“1 : s1”, . . . , “n : sn”}, A) =

nexts(σ, s1, . . . , sn, e, A).

From the above theorem, we get the analog of Theorem 3
for distributed local controllers.

Theorem 10 If there exists a distributed controllerT realiz-
ing a target behaviorB0 relative to a system(B1, . . . ,Bn, E)
and a set of messagesM, then there exists one that is finite.

As a matter of fact, the construction in the proof of Theo-
rem 9, gives as a way of actually obtaining a distributed con-
troller: generate a finite centralized controller realizing the
target behavior, apply the construction above to get the team
of finite local controllers. Interestingly, if we start froma
minimal finite centralized controller satisfying the size con-
dition in Theorem 4, then what we get is indeed a team of
“optimal” finite local controllers in the following sense:(i)
the number of states of the local controller is|Σi| ≤ |B0|
– observe that this bound is tight; it is easy to find cases in
which we do need|B0| number of states;(ii) the total number
of different messages in the solution is bounded by the size

of the available behaviors|M̂| ≤ |B1| + · · · + |Bn| – again
this bound is tight, since it is easy to find cases in which
with less than|B1|+ · · ·+ |Bn| messages we lose the ability
of generating a distributed controller, even when a central-
ized one exists;(iii) the size of each message is bounded by
log n · log |Bi|, and at each point there are at mostn broad-
casted messages of such size; this gives us bounds on the
channel required for the messages exchange – again such
bounds are tight, one cannot do better than this in general.

We now look at the reverse relationship, that is, how we
can get a central controller from a distributed one.

Theorem 11 If there exists a finite distributed controller
T = (C1, . . . , Cn) that realizes the target behaviorB0 rela-
tive to a systemS = (B1, . . . ,Bn, E), then there is a finite
central controllerP that realizesB0 relative toS.
PROOF. Let Ci = (Σi,M̂, σi0, nextsi, nextai, nextmi), for
i ∈ {1, . . . , n}. We define the finite state central controller
P = (Σ, σ0, nexts, nexta) relative to systemS as follows:

• Σ = Σ1 × · · · × Σn;
• σ0 = 〈p10, . . . , pn0〉;
• nexta(〈σ1, . . . , σn〉, s1, . . . , sn, e, A) =
[nexta1(σ1, s1, e, M, A), . . . , nextan(σn, sn, e, M, A)];
• nexts(〈σ1, . . . , σn〉, s1, . . . , sn, e, A) =
〈nexts1(σ1, s1, e, M, A), . . . , nextsn(σn, sn, e, M, A)〉.

Looking at the construction used in the theorem above,
we get other interesting bounds: while the central controller
obtained from the local controllers is in general of the sizeof
the Cartesian product of the states of local controllers, inthe
case where the local controllers are allminimal (i.e., their
states and state transitions correspond to those of the tar-
get behavior), the obtained central controller can be shrunk
to the same number of states (of the target) by projecting
out states that are not reachable from the initial stateσ0. In
addition, if one starts from aminimalcentral controller (as
in Theorem 4), generates the corresponding team of local
controllers using the construction for Theorem 9, and finally
generates back a central controller using the constructionof
Theorem 11, one gets back the original central controller.

Conclusion
In this paper, we studied the distributed version of the syn-
thesis problem introduced in (De Giacomo & Sardina 2007).
As a result, the solutions proposed here are palatable to a
much wider range of cases, including those where we have
multiple independent agents and a centralized solution, as
that in (De Giacomo & Sardina 2007), is not conceivable.

We observe that the kind of problems we dealt with are
special forms of reactive process synthesis, both for the cen-
tralized (Pnueli & Rosner 1989) and distributed (Pnueli &
Rosner 1990) cases. The main distinction is, apart from
the specific formal settings, the kind of design specifica-
tion to be realized (a target behavior in our case). It is
well known that, in general, distributed solutions are much
harder to get than centralized ones (Pnueli & Rosner 1990;
Kupferman & Vardi 2001). This is not the case in our ap-
proach since we allow for equipping local controllers with
autonomous message exchange capabilities, even if such ca-
pabilities are not present in the behaviors that they control.
Such a capability is at the core of the reason why one can
always get a distributed controller from a centralized one.

We close the paper by pointing out that the context in
which the distributed synthesis problem has been tackled in
this paper can be seen as “ideal”: (i) there exists a shared
and fully reliable messaging channel with no a priori size
bound; (ii) the environment is shared and fully observable
by every local behavior controller; and (iii) behaviors are
allowed to synchronize at every step just before the next ac-
tion to be performed. In several practical cases, however, it
would be necessary to address variations of this ideal con-
text. For instance, in distributed settings where behaviors are
geographically far apart, one should consider behavior con-
trollers with local (partial) observability of the environment
or even consider different environments all together. Also,
when communication is limited and unreliable, robust solu-
tions in which a behavior can be “replaced” upon failure are
desired. Finally, in cases with diverse devices acting at very
different rates, more asynchronous accounts are of interest.
These and other variations remain for future study.

Acknowledgments
This work was funded by the European FET basic research
project FP6-7603 Thinking Ontologies (TONES) and the
Australian Research Council and Agent Oriented Software
under the grant LP0560702. The authors would also like to
thank the anonymous reviewers for their comments.

References
Berardi, D.; Calvanese, D.; De Giacomo, G.; Hull, R.; and Me-
cella, M. 2005. Automatic composition of transition-basedse-
mantic web services with messaging. InProc. VLDB 2005.
Bredenfeld, A.; Jacoff, A.; Noda, I.; and Takahashi, Y., eds. 2006.
RoboCup ’05: Robot Soccer WC IX, volume 4020 ofLNCS.
De Giacomo, G., and Sardina, S. 2007. Automatic synthesis of
new behaviors from a library of available behaviors. InProc. of
IJCAI 2007, 1866–1871.
Firby, J. R. 1989.Adaptive Execution in Complex Dynamic Do-
mains. Ph.D. Dissertation, Yale University. Technical Report
YALEU/CSD/RR 672.
Gelfond, M., and Lifschitz, V. 1998. Action languages.Electronic
Transactions of AI (ETAI)2:193–210.
Georgeff, M. P., and Lansky, A. L. 1987. Reactive reasoning and
planning. InProc. of AAAI 1987, 677–682.
Harel, D.; Kozen, D.; and Tiuryn, J. 2000.Dynamic Logic. The
MIT Press.
Katz, M. J., and Rosenschein, J. S. 1993. The generation and
execution of plans for multiple agents.Computers and Artificial
Intelligence12(1):5–35.
Kupferman, O., and Vardi, M. Y. 2001. Synthesizing distributed
systems. InProc. of LICS 2001, 389.
McIlraith, S., and Son, T. C. 2002. Adapting Golog for program-
ming the semantic web. InProc. of KR 2002, 482–493.
Meuleau, N.; Peshkin, L.; Kim, K.-E.; and Kaelbling, L. P. 1999.
Learning finite-state controllers for partially observable environ-
ments. InProc. of UAI 1999, 427–436.
Pnueli, A., and Rosner, R. 1989. On the synthesis of a reactive
module. InProc. of POPL 1989, 179–190.
Pnueli, A., and Rosner, R. 1990. Distributed reactive systems are
hard to synthesize. InProc. of FOCS 1990, 746–757.
Saffiotti, A., and Broxvall, M. 2005. PEIS ecologies: Ambient
intelligence meets autonomous robotics. InProc. of the Int. Conf.
on Smart Objects and Ambient Intelligence, 275–280.

Tilden, M. W. 1993. The evolution of functional robo-ecologies.
ARS Electronica93:195–200.

