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Abstract
We consider the problem of planning in environ-
ments where the state is fully observable, actions
have non-deterministic effects, and plans must gen-
erate infinite state trajectories for achieving a large
class of LTL goals. More formally, we focus on
the control synthesis problem under the assump-
tion that the LTL formula to be realized can be
mapped into a deterministic Büchi automaton. We
show that by assuming that action non-determinism
is fair, namely that infinite executions of a non-
deterministic action in the same state yield each
possible successor state an infinite number of times,
the (fair) synthesis problem can be reduced to a
standard strong cyclic planning task over reacha-
bility goals. Since strong cyclic planners are built
on top of efficient classical planners, the transfor-
mation reduces the non-deterministic, fully observ-
able, temporally extended planning task into the so-
lution of classical planning problems. A number
of experiments are reported showing the potential
benefits of this approach to synthesis in compari-
son with state-of-the-art symbolic methods.

1 Introduction
Classical planning is concerned with reachability problems
over compact propositional representations where a goal state
is to be achieved from a given initial state by applying actions
with deterministic effects. While the problem is computa-
tionally intractable [Bylander, 1994], significant progress has
been achieved, enabling classical planners to solve problems
with hundreds of actions and propositions [Richter and West-
phal, 2010]. In the last few years temporally extended goals,
expressed in temporal logics such as LTL [Pnueli, 1977] have
been increasingly used to capture a richer class of plans,
where restrictions over the whole sequence of states must
be satisfied as well [Gerevini and Long, 2005]. A (tempo-
rally) extended goal may state, for example, that any bor-
rowed tool should be kept clean until returning it; a constraint
that does not apply to states but, rather, to state sequences.
While most of this work has been focused on LTL goals
that can be achieved by finite plans [Bacchus and Kabanza,
1998; Edelkamp, 2003; Cresswell and Coddington, 2004;

Edelkamp, 2006; Baier and McIlraith, 2006; Baier et al.,
2009], more recent work has addressed the more general
task of planning for LTL goals that require infinite plans
[Kabanza and Thiébaux, 2005; Albarghouthi et al., 2009;
Patrizi et al., 2011]. For instance, in order to monitor a set of
rooms, an extended LTL goal may require the agent to always
return to each of the rooms, a goal that cannot be achieved
by a finite plan. It is known that the required plans in such a
setting can be finitely characterized as “lassos”: a sequence
of actions mapping the initial state of a composite system into
some state s, followed by a second action sequence that maps
s into itself that is repeated infinitely often [Vardi, 1996].
In [Patrizi et al., 2011], it is shown that such plans can ef-
ficiently be constructed by calling a classical planner once,
over a classical planning problem obtained from the compos-
ite system represented by the product of the planning domain
and the Büchi automaton corresponding to the LTL goal [De
Giacomo and Vardi, 1999].

The aim of this work is to push the envelope further by
showing how to use current planning techniques for dealing
with the more general problem of planning for LTL goals
that require infinite executions, in environments where ac-
tions have non-deterministic effects and states are fully ob-
servable. From a planning point of view, this is the stan-
dard fully-observable non-deterministic planning problem
(FOND) but with reachability goals replaced by temporally
extended goals. From a formal verification point of view,
this is the standard control synthesis problem for LTL for-
mulas [Pnueli and Rosner, 1989]. Since the general syn-
thesis problem is known to be 2EXPTIME-complete [Pnueli
and Rosner, 1989], however, it is common to impose re-
strictions on the class of LTL formulas for scaling up. A
common restriction is to focus on Generalized Reactive or
GR(1) formulas for which a synthesis algorithm has been
developed that is O(|S|3), where S is the problem state
space [Bloem et al., 2012]. Other approaches are based
on restricting to LTL formulas that can be mapped effi-
ciently into deterministic automata [Alur and La Torre, 2004;
Morgenstern and Schneider, 2008; 2011].

In this work we adopt the latter assumption by consid-
ering LTL formulas that can be mapped into deterministic
Büchi automata, and show that by assuming further that
action non-determinism is fair, namely that infinite execu-
tions of a non-deterministic action in the same state yield



each possible successor state an infinite number of times,
the (fair) synthesis problem can be reduced to a standard
strong cyclic planning task over a domain that is the prod-
uct of the (non-deterministic) planning domain and the (de-
terministic) Büchi automaton. A strong cyclic plan over a
non-deterministic planning domain is a policy π such that if
s is a non-goal state that is potentially reachable from the
initial state by following π, then a goal state must be poten-
tially reachable from s by following π [Daniele et al., 1999;
Cimatti et al., 2003]. Since strong cyclic planners are built
on top of efficient classical planners [Kuter et al., 2008;
Fu et al., 2011; Muise et al., 2012] the transformation re-
duces the non-deterministic, fully observable, extended plan-
ning task into the solution of classical planning tasks. Finally,
we report on a number of experiments showing the potential
benefits of this planning approach to synthesis in comparison
with state-of-the-art symbolic synthesis methods.

The paper is organized as follows. First, we review non-
deterministic planning domains, LTL, and Büchi automata.
Then we consider the target problem and the reduction to
strong cyclic planning, present the empirical results, and fin-
ish with a summary and discussion.

2 Preliminaries
We review the models and results associated with nondeter-
ministic planning, LTL, and Büchi automata.

2.1 Nondeterministic Planning Domains
A (nondeterministic) planning domain is a tuple D =
〈Act, Prop, S, S0, f〉 where:

• Act is the finite set of domain actions;

• Prop is the set of domain propositions;

• S ⊆ 2Prop is the set of domain states;

• s0 ∈ S is the (single) initial state; and

• f : S ×Act 7→ 2S is the state-transition function.

A D-path is a possibly infinite sequence µ = s0
a0−→ s1

a1−→
· · · such that si+1 ∈ f(si, ai). Astate s ∈ S is reachable
if there exists a D-path where s occurs. Moreover, we say
that a path µ reaches a state s, if s occurs in µ. In the rest
of the paper we assume, without loss of generality, that every
reachable state admits an executable action a, i.e., f(s, a) 6=
∅. Consequently, every finite path can be extended into an
infinite path. This allows us to consider the case of domains
with infinite runs only. Obviously, when the assumption is
not fulfilled, an additional action, say nop can be introduced.

A D-path µ is said to be fair if for every state s and action
a such that s a−→ occurs infinitely many times in µ, it is the
case that for every s′ ∈ f(s, a), s a−→ s′ occurs infinitely
many times in µ. A D-trace is a possibly infinite sequence
τ = s0s1 . . . such that there exists some D-path µ = s0

a0−→
s1

a1−→ · · · . A D-trace τ is said to be fair if there exists a

D-path µ′ = s0
a′0−→ s1

a′1−→ · · · that is so.
As it turns out, fairness captures the intuition that when-

ever an action is executed infinitely often, all of its effects

take place infinitely often. This accounts for a form of non-
determinism that is typical when modeling natural events, as
opposed to adversarial ones.

Planning languages such as STRIPS or ADL, all accom-
modated in the PDDL standard, are commonly used to spec-
ify the states and transitions in compact form. A goal in this
language is a specification of the desired traces on D. In
particular, classical reachability goals, which require reach-
ing a state s where a certain propositional formula ϕ over
Prop holds, are expressed as selecting all those finite traces
t = s0s1 · · · sn, such that sn |= ϕ. Using infinite traces al-
lows us to consider a richer set of goals, suitably expressed
through LTL formulas.

2.2 Linear Temporal Logic (LTL)
LTL was originally proposed as a specification language for
concurrent programs [Pnueli, 1977]. Formulas of LTL are
built from a set Prop of propositional symbols and are closed
under the boolean operators, the unary temporal operators©,
3, and 2, and the binary temporal operator U .1 Intuitively,
©ϕ says that ϕ holds at the next instant, 3ϕ says that ϕ will
eventually hold at some future instant, 2ϕ says that from the
current instant on, ϕ will always hold, and ϕU ψ says that at
some future instant ψ will hold and until that point ϕ holds.
We also use the standard boolean connectives ∨, ∧, and→.

The semantics of LTL is given in terms of interpretations
over a linear structure. For simplicity, we use IN as the linear
structure: for an instant i ∈ IN, the successive instant is i+ 1.
An interpretation is a function ι : IN → 2Prop assigning to
each element of Prop a truth value at each instant i ∈ IN.
For an interpretation ι, we inductively define when an LTL
formula ϕ is true at an instant i ∈ IN (written ι, i |= ϕ):

• ι, i |= p, for p ∈ Prop iff p ∈ ι(i).
• ι, i |= ¬ϕ iff not ι, i |= ϕ.
• ι, i |= ϕ ∧ ϕ′ iff ι, i |= ϕ and ι, i |= ϕ′.
• ι, i |=©ϕ iff ι, i+1 |= ϕ.
• ι, i |= ϕU ϕ′ iff for some j ≥ i, we have that ι, j |= ϕ′

and for all k, i ≤ k < j, we have that ι, k |= ϕ.

A formula ϕ is true in ι (written ι |= ϕ) if ι, 0 |= ϕ. Given
a planning domain, every trace τ = s0s1s2 . . . can be seen as
an LTL interpretation ι such that ι, i |= p iff si |= p.

2.3 LTL and Büchi Automata
There is a tight relation between LTL and Büchi automata on
infinite words [Vardi, 1996]. A Büchi automaton [Thomas,
1990] is a tuple A = 〈Σ, Q,Q0, ρ, F 〉, where:

• Σ is the finite input alphabet of the automaton;

• Q is the finite set of automaton states;

• Q0 ⊆ Q is the set of initial states of the automaton;

• ρ : Q× Σ→ 2Q is the automaton transition function;

• F ⊆ Q is the set of accepting states.

When Q0 is a singleton, and |ρ(q, σ)| ≤ 1, for every q ∈ Q
and σ ∈ Σ, A is said to be deterministic. When this is the
case, we use q0 instead of Q0, and assume ρ : Q× Σ→ Q.

1In fact, all operators can be defined in terms of© and U .



The input words of A are the infinite words w =
σ0σ1 · · · ∈ Σω . A run ofA on an infinite wordw is an infinite
sequence of states r = q0q1 · · · ∈ Qω such that q0 ∈ Q0 and
qi+1 ∈ ρ(qi, σi). A run r is accepting iff lim(r) ∩ F 6= ∅,
where lim(r) is the set of states that occur in r infinitely of-
ten. In other words, a run is accepting if it gets into F in-
finitely many times, which means, being F finite, that there
is at least one state qf ∈ F visited infinitely often. The lan-
guage accepted by A, denoted by L(A), is the set of (infinite)
words for which there is an accepting run.

The nonemptiness problem for an automaton A is to de-
cide whether L(A) 6= ∅, i.e., whether the automaton ac-
cepts at least one word. The relevance of such problem
for LTL follows from the correspondence obtained by setting
the automaton alphabet to propositional interpretations, i.e.,
Σ = 2Prop . Then, an infinite word over the alphabet 2Prop

represents an interpretation of an LTL formula over Prop.
Formally, if the set of all models of an LTL formula ϕ is de-
noted as M(ϕ), the result is that:
Theorem 1 [Vardi and Wolper, 1994] For every LTL formula
ϕ one can effectively construct a Büchi automaton Aϕ whose
number of states is at most exponential in the length of ϕ and
such that L(Aϕ) = M(ϕ).

In general, the automaton Aϕ of Theorem 1 is non-
deterministic. In fact, formulas exist for which no deter-
ministic Büchi automaton accepts exactly its models, e.g.,
ϕ = 32p. Thus, nondeterministic Büchi automata are
strictly more powerful than deterministic ones. In the follow-
ing, we only consider LTL goal formulae ϕ such that Aϕ is
a deterministic Büchi automaton such that L(Aϕ) = M(ϕ).
We call such formulas deterministic. Deterministic LTL for-
mulas are general enough to capture many of the extended
temporal goals and requirements that arise in practice.

3 The Problem
Given a (nondeterministic) planning domain D =
〈Act, Prop, S, S0, f〉, a finite-state controller (FSC) for
D is a tuple Π = 〈C, c0,Γ,Λ, δ,Ω〉, where:
• C is the finite set of controller states;
• c0 ∈ C is the initial controller state;
• Γ = S is the controller input alphabet;
• Λ = Act is the controller output alphabet;
• δ : C × Γ 7→ C is the controller transition function;
• Ω : C 7→ Λ is the controller output function.

Formally, Π is a Moore machine whose input and output al-
phabets are the states and the actions of D, respectively. The
machine is intended to “drive” D so as to make it show a de-
sired behavior. Note that, besides being able to observe the
domain state, Π owns an internal state, allowing it to track
past events, although in a limited way, as typical of finite-
state machines.

A Π-execution is a possibly infinite sequence η = c0
s0−→

c1
s1−→ · · · , such that ci+1 = δ(ci, si). A D-path µ = s0

a0−→
s1

a1−→ · · · is said to be induced by Π if there exists a Π-
execution η = c0

s0−→ c1
s1−→ · · · such that ai = Ω(ci). If so,

Π is said to induce the D-trace τ = s0s1 . . .. A state c of Π
is Π-reachable if there exists a Π-execution where c occurs.

We are interested in those FSCs that, when executed on D,
yield only evolutions that satisfy a requirement expressed in
the LTL goal. The following definitions capture this intuition.
We say that a FSC Π realizes an LTL goal ϕ (on D) if for all
the D-traces µ that Π induces on D, it is the case that µ |= ϕ.
We say that Π fairly realizes an LTL goal ϕ (on D) if for all
the fair D-traces µ induced by Π, µ |= ϕ.

Thus, the notion of goal realization requires all evolutions
of D, obtained by executing Π, to satisfy ϕ. Observe that
since the domain is nondeterministic, thus partially control-
lable, whenever Π prescribes the execution of an action in
some state, it must also take care of all the possible outcomes,
i.e., prescribing an action for each possible successor state.

An empty FSC inducing noD-trace, realizes any LTL goal.
To prevent such degenerate cases, we introduce the following
notion. A FSC Π for a domain D is said to be closed, if:
1. Ω(c0) and δ(c0, s0) are defined; 2. whenever a = Ω(c) and
c′ = δ(c, s) are defined, for some c and s, it is the case that
f(s, a) 6= ∅, and, for every s′ ∈ f(s, a), Ω(c′) and δ(c′, s′)
are defined. In words, this definition requires Π to prescribe
an executable action on both the initial state and on all the
D-states reachable by executing actions prescribed by Π. In
the rest of the paper we consider only closed controllers. The
problem of interest can thus be expressed as follows:

Given a non-deterministic planning domain D and
a deterministic LTL goal ϕ, build a closed finite-
state controller Π that fairly realizes ϕ on D.

We refer to this the problem as the LTL fair realization prob-
lem (for deterministic LTL goals over nondeterministic plan-
ning domains). This is a generalization of fully observable,
non-deterministic planning problem (FOND), with reachabil-
ity goals replaced by LTL goals, as well as an instance of the
general formal synthesis problem for deterministic LTL for-
mulas, where non-determinism is assumed to be fair. While
we implicitly assume fairness, in synthesis it is typically
stated in the input.

The standard approaches to controller synthesis are based
on symbolic methods that compute the states over which cer-
tain types of “games” can be won. For example, the problem
of realizing ϕ = 3p (eventually p), is mapped into that of
finding the largest set S of states such that: S contains all the
states satisfying p, and from any state in S, the system can be
forced to reach a state satisfying p. If the initial state is in S,
a strategy realizing ϕ can be obtained from the construction
of S [Bloem et al., 2012]. Similarly, to realize 23p (always
eventually p), one computes the set of states from which the
system can be forced to make p true infinitely often. Such
sets S, called winning sets, are characterized by fixpoint for-
mulas in the µ-calculus (over game structures), and are typ-
ically computed by symbolic methods. By taking advantage
of the symbolic representation, these methods can deal with
very large collections of states (see, e.g., [Burch et al., 1992]).
Planning methods, on the other hand, are aimed at exploiting
the structure of the planning domains by means of heuristics
that operate on the compact representation of the domains.



We show below how to map the LTL fair realization prob-
lem into a planning problem. As a first step towards this
goal, we show that we can restrict the search to controllers
Π = 〈C, c0, S,Act, δ,Ω〉 of a specific class, for which all
components are fixed except for the action selection function
Ω. Thus, the search for FSCs that achieve a goal ϕ with (de-
terministic) automaton Aϕ will be reduced to the search for a
policy Ωϕ mapping state-pairs 〈q, s〉 into actions where q is a
Büchi automaton state and s is a domain state:

Theorem 2 Consider a planning domain D =
〈Act, Prop, S, s0, f〉 and an LTL formula ϕ such that there
exists a deterministic Büchi automatonAϕ = 〈S,Q, q0, ρ, F 〉
such that L(Aϕ) = M(ϕ). Then, there exists a FSC
Π = 〈C, c0, S,Act, δ,Ω〉 that fairly realizes ϕ on D iff there
exists a FSC Πϕ = 〈Q × S, 〈q0, s0〉, S,Act, δϕ,Ωϕ〉 that
fairly realizes ϕ on D, such that: δϕ(q, s) = 〈q′, s′〉 iff
q′ = ρ(q, s) and s′ ∈ f(s,Ωϕ(q, s)).

Theorem 2 says that a FSC for realizing an LTL goal ϕ
can be obtained from a policy π = Ωϕ over the domain D′
that is the product of the non-deterministic domain D and the
deterministic Büchi automaton Aϕ. In the next section we
show a theorem that characterizes the goal achieved by this
policy over D′, and the form in which such goal is achieved.

4 Reduction to Strong Cyclic Planning
A (nondeterministic) planning problem is a pair P = 〈D, G〉,
whereD is a planning domain andG ⊆ S a set of goal states.
A policy π for a planning domain D is a function π : S →
Act, mapping states into actions. A D-path µ is said to be

induced by a policy π if µ = s0
π(s0)−−−→ s1

π(s1)−−−→ · · · . A
D-state s′ is said to be π-reachable from a D-state s if there
exists a finite path µ = s0

π(s0)−−−→ · · · π(sk−1)−−−−−→ sk induced by
π, such that sj = s, for 0 ≤ j ≤ k, and sk = s′, for k ≥ 1. A
policy π is said to be a non-terminating strong cyclic solution
to P if π(s0) is defined and for every state s π-reachable from
s0, there exists a state s′ ∈ G π-reachable from s.

The following result tells us that the output function ΩA of
the FSC ΠA of Theorem 2 can be easily extracted from a non-
terminating strong cyclic solution π of a particular planning
problem defined over the cross-product domain ofD and Aϕ.

Theorem 3 Consider a planning domain D =
〈Act, Prop, S, s0, f〉 and an LTL formula ϕ such that there
exists a deterministic Büchi automatonAϕ = 〈S,Q, q0, ρ, F 〉
with L(Aϕ) = M(ϕ). Let D′ = 〈Act, Prop′, S′, s′0, f ′〉 be
the planning domain such that:

• Prop′ = Prop ∪ {pq | q ∈ Q};
• s′0 = s0 ∪ {pq0};
• f ′(s, a) = s′D∪pq′ iff s′D ∈ f(sD, a) and q′ = ρ(q, sD),

for sD = s ∩ Prop and pq ∈ s.
Further, let G = {s ∈ S′ | pq ∈ s, for q ∈ F}. Then,
π : S → Act is a non-terminating strong cyclic solution to
〈D′, G〉 iff the FSC Π = 〈Q× S, 〈q0, s0〉, S,Act, δ,Ω〉, with:

• Ω(q, sD) = π(s) for s = sD ∪ pq;
• δ(q, s) = 〈q′, s′〉 for q′ = ρ(q, s), s′ ∈ f(s,Ω(q, s));

fairly realizes ϕ on D.
The theorem says that we can transform the problem of

building a finite-state controller for an LTL goal into that of
building a non-terminating strong-cyclic policy for a plan-
ning problem. We show next how to map the problem of
computing a non-terminating strong cyclic policy for a non-
deterministic problem P = 〈D, G〉 into the problem of com-
puting a standard strong cyclic policy for a non-deterministic
problem P ′ = 〈D′, G′〉, which can be computed with any
existing, off-the-shelf, strong cyclic planner. A (standard)
strong cyclic policy is a policy π such that if s is a non-goal
state π-reachable from s0, then a goal state s′ is π-reachable
from s [Cimatti et al., 2003]. The difference between stan-
dard (terminating) and non-terminating strong cyclic policies
π is that the former can be undefined over the goal states,
while the latter have to be defined over all π-reachable states,
including goal states, as they must give rise to infinite execu-
tions.

Theorem 4 A policy π is a non-terminating strong cyclic so-
lution π to P = 〈D, G〉 iff π is a strong cyclic solution
to P ′ = 〈D′, G′〉, with D′ = 〈Act, Prop′, S′, s0, f ′〉 and
G′ = {sg ∪ {ok} | sg ∈ G}, where:

• Prop′ = Prop ] {ok};2

• S′ = S ∪G′;
• f ′(s, a) = f(s, a) ∪ {sg ∪ {ok} | sg ∈ f(s, a) ∩G}, if
f(s, a) ∩G 6= ∅, else f ′(s, a) = f(s, a).

The transformation maps each goal state sg in P into a non-
goal state sg of P ′. In addition, a goal state sg ∪ {ok} that
is added as a possible successor state of the state-action pairs
(s, a) that can transition into sg . The transformation allows us
to compute non-terminating strong cyclic solutions by resort-
ing to planners for (standard) strong cyclic solutions. Notice
that all the steps in such transformation involve only syntac-
tic manipulations of the domain D and the Büchi automaton.
Theorems 2–4 together result in the following theorem:
Theorem 5 If there exists a solution to the fair realization
problem defined by a non-deterministic planning domain D
and a deterministic LTL formula ϕ, then a non-deterministic
planning problem P ′ = 〈D′, G′〉 can be constructed such
that the strong cyclic solutions to P ′ yield a FSC that fairly
realizes ϕ on D.

5 Implementation
In line with Theorem 5, we have implemented a compiler that
maps the compact description of a non-deterministic domain
P and an LTL goal ϕ, into a standard strong cyclic planning
problem Pϕ in PDDL that can be solved with off-the-shelf
planners. The first ingredient of the compilation is SPOT3, an
available tool able to map a large class of LTL goals ϕ into
deterministic Büchi automata Aϕ. We then take advantage
of Theorems 3 and 4, for obtaining the strong cyclic plan-
ning problem Pϕ by means of syntactic transformations of P
and Aϕ. Pϕ is the cross-product of P and the propositional

2] stands for disjoint union.
3http://spot.lip6.fr/ltl2tgba.html



representation of the automaton Aϕ, where an atom pq is in-
troduced to represent each state q of Aϕ. The goal of Pϕ is
the dummy atom ok, inserted as an additional possible out-
come of the actions that can add an atom pq , for accepting
state q of the automaton Aϕ. The cross-product is encoded
into two different ways, which give rise to two different but
logically equivalent encodings of the strong cyclic planning
problem Pϕ. In the sequential encoding, domain actions are
followed by actions that progress the state of the automaton
Aϕ, according to its transition function. In the parallel en-
coding, a new action is created for representing each pos-
sible sequence of a domain action followed by an automa-
ton transition. In order to solve the resulting strong cyclic
planning problem we use the recent PRP planner [Muise et
al., 2012], that like other recent solvers [Kuter et al., 2008;
Fu et al., 2011], maps the strong cyclic planning problem into
a sequence of classical planner calls.

6 Experiments
We have tested the proposed approach by running the PRP
planner over the problems Pϕ and comparing the method with
the standard symbolic synthesis tool called TLV [Pnueli and
Shahar, 1996], which provides an implementation of the algo-
rithm for GR(1) synthesis described in [Bloem et al., 2012].4
TLV accepts the LTL goal ϕ directly along with a compact de-
scription of the non-deterministic domain obtained from P .
In addition, we encode in LTL the assumptions about fairness
so that the space of solutions of the two approaches coincide.

6.1 Lift
The Lift controller problem [Bloem et al., 2012] requires
to build a lift controller for an n-floor building, that guar-
antees every request from a floor to be eventually served.
The main fluents we use to model the domain are ati and
reqi, one per floor (i = 1, . . . , n), which represent, re-
spectively, the lift being at floor i, and a request having
been issued from floor i. As to actions, we use push fi 1,
push fi 2, move up from fi (i = 1, . . . , n − 1), and
move down from fi (i = 2, . . . , n), with the following se-
mantics: push fi 1 is executable only if ¬ati, and nonde-
terministically either sets the value of reqi to true or does
nothing; push fi 2 is executable only when ati holds, and
sets the value of reqi to false; move up from fi unsets fi
and sets fi+1; move down from fi unsets fi and sets fi−1.
The lift is initially at floor 1, and no request is issued. We re-
quire move-up actions to be executable only if some request
is issued. To this end we use a fluent called in their precon-
dition. To describe the domain evolution, we introduce aux-
iliary fluents that we use in combination with preconditions
to force the alternate execution of a move and n push fi
actions, i = 1, . . . , n. In this way, we capture all the pos-
sible situations the controller faces when the lift is at some
floor. Notice that the nondeterminism of push fi 1 captures
the fact that the lift may or may not be called from some
floor. The LTL formula capturing the goal has the GR(1) form

4Also certain non-GR(1) problems, such as Clerk (see below),
can easily be rewritten as GR(1).

ϕ =
∧n
i=1 23(reqi → ati). We generated 10 instances in-

crementing the number n of floors from 1 to 10.

6.2 Waldo
The problem involves a robot that must move between loca-
tions until Waldo is found [Kress-Gazit et al., 2007]. The
robot moves in a circle of n rooms, and Waldo can appear
non-deterministically (from nowhere) when the robot is in
room i or i/2. When Waldo appears, the robot must remain in
the same room. The robot must thus “patrol” rooms i and i/2
until Waldo appears. The LTL formula of this requirement
is 23(ri ∨ W ) ∧ (ri/2 ∨ W ), where W represents the ap-
pearance of Waldo. In our account, the behavior of Waldo
is fair, meaning that when the robot visits rooms i or i/2
infinitely often, Waldo will eventually show up (in fact, in-
finitely often). This is captured as non-deterministic effects
in the actions that take the robot into rooms i and i/2. The
result of the fairness assumption in this problem is that the
best valid policy is to go either to i or i/2, move one step
away and return to the same location. As in the original prob-
lem formulation the robot has to bounce between locations
i and i/2 until Waldo appears, we considered a formulation
with an extra predicate visitedi to enforce that once the robot
visits one target location, it has to visit the remaining ones be-
fore searching in the same location again. When every target
location has been visited and Waldo didn’t appear, the extra
predicate search again becomes true and all visitedi false.
The LTL goal is set to 23(search again ∨ W ). We gen-
erated 40 instances, incrementing the number n of rooms by
100, from 100 up to 4000.

6.3 Clerk
This domain models the actions of a clerk in a store. The
problem requires to build a controller which guarantees that
every client request is served. New customers show up
requesting one of the n items or packages pi, which can
be available or not. If the item is not available, the clerk
buys the product from a supplier first. The available items
pi are described by the fluents instore pi and the pack-
age the customer requests by fluent want pi. If no cus-
tomer is requesting an item, the action request will non-
deterministically make true one of the want pi fluents and
the fluent item requested. If instore pi is true, the ac-
tion sell pi renders instore pi and want pi to be false while
making true item served. Otherwise, buy supply pi adds
instore pi when want pi is true and instore pi false. The
goal is 2(item requested→ 3item served).

We tested also an extended version of the same domain
where package pi must be stored and retrieved in a cell loci
of a 1 × (n + 1) grid. The desk of the clerk is at locn+1.
If a package is requested, the clerk has to find the pack-
age in the grid, pick it up and sell it to the customer at
the desk. If a supplier brings a package, the clerk has to
pick the package and store it in its correct location. The
goal then is encoded with the formula 2(active request →
3(item served ∨ item stored)), where active request
is made true every time the action request is applied, and
made false once the request has been satisfied, either stored



(a) Lift (b) Waldo

(c) Clerk (d) Clerk Extended

Figure 1: Comparison of TLV and PRP over sequential and paral-
lel encoding where y-axis stands for time in seconds and x-axis for
number of (a), rooms (b), and packages (c,d)

or served. Instances were generated for the two versions of
the domain with number n of packages ranging from 1 to 20.

6.4 Results
All experiments were run on an Intel Core i7-3770 3.4GHz
processor, with a timeout of 30 minutes and a memory limit
of 4GB. The results are shown in Figure 1. In Lift, TLV is un-
able to solve 6 floors, while PRP solves up to 7 floors. The
sequential encoding scales up better than the parallel one,
which runs out of memory while parsing the problem with
5 floors. In Waldo: TLV solves 35 instances, taking 1788.6s
to solve the instance with 3500 rooms, while PRP solves all
40 instances, taking 6.8s and 66.72s in the largest instance
with 4000 rooms in the sequential and parallel encodings re-
spectively. Finally, in Clerk, PRP solves the complete suite
of benchamarks up to 20 packages with the parallel encod-
ing, each instance in less than 0.25s. With the sequential en-
coding, PRP solves up to 16 floors in 26.54s, running out of
memory in the larger instances. TLV fails even with 4 pack-
ages, and for 3 it takes 265s (against 0.04 of PRP). In the
extended version of the domain, PRP based on parallel encod-
ing solves all instances in the suite in less than 1.4s, while
all instances up to 14 packages in 52.01s, when using the se-
quential encoding. TLV solves a few instances only, and is not
shown.

The results of the experiments show that the planning
approach scales up better than TLV, in particular, as the
problems become more planning-like with many actions and
propositions. The encoding of the cross-product between the
planning domain and Büchi automaton, that has been imple-
mented in two ways, sequential and parallel, makes a large
difference in some cases, with the parallel encoding perform-
ing better as the size of the Büchi automaton decreases. Last,

the LTL goal can often be encoded in many different ways
too. In many of these domains there is an enumerative ap-
proach with goals like ‘if requesti comes alive, then perform
servei’ and a generic approach like ‘if there is request, then
serve it’, which can be rendered equivalent by tinkering with
the planning domain. When this is possible, smaller automata
are obtained, which benefits the planning approach further.

Finally, we performed tests on deterministic problems to
compare with the approach reported recently in [Patrizi et al.,
2011], where deterministic planning with general LTL goals is
mapped into a classical planning problem that is solved once,
and whose solution encodes a lasso-plan that achieves the LTL
goal. For this, we considered their Gripper instances. In
terms of time, both approaches performed similarly, with PRP
being slightly faster on average (0.38s vs. 0.4s), and finding
more compact policies. In terms of coverage, out of 500 in-
stances, PRP solved 470, 70 more problems than the other
approach, that time out in compilation. It is worth noting that
our strong-cyclic-planning approach does not reduce to the
classical approach in [Patrizi et al., 2011] over deterministic
problems. This is because the proposed mapping makes the
resulting problem Pϕ non-deterministic even if the original
domain P is deterministic (this is the result of the transforma-
tion in Theorem 4 for mapping non-terminating strong cyclic
policies into standard ones). Yet the approach appears to be
competitive with the deterministic approach when this is used
for computing lasso-plans.

7 Conclusions
We have considered the problem of planning in environments
where the state is fully observable, actions have (fair) non-
deterministic effects, and plans must generate infinite state
trajectories for complying with LTL goals. The problem
is a generalization of the fully-observable non-deterministic
planning problem (FOND) where reachability goals are re-
placed by temporally extended LTL goals, and a special case
of the more general formal synthesis problem where non-
determinism is assumed fair and LTL formulas encode de-
terministic Büchi automata. We have shown that the prob-
lem can be compiled into a strong cyclic planning problem
that can be solved by off-the-shelf planners. The experiments
show that the approach is computationally meaningful and
has potential benefits in relation to standard symbolic synthe-
sis methods. The proposed formulation extends the scope of
current planning methods, which can thus be used effectively
to generate controllers for systems that must operate continu-
ously, under exogenous interventions that cannot be predicted
or controlled.
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