
Solving High-Level Planning Programs
(Extended Abstract)

Giuseppe De Giacomo and Fabio Patrizi
Dipartimento di Informatica e Sistemistica

Sapienza Università di Roma
Rome, Italy.

{degiacomo,patrizi}@dis.uniroma1.it

Sebastian Sardina
School of CS and IT

RMIT University
Melbourne, Australia

sebastian.sardina@rmit.edu.au

Introduction
In this work, we consider a middle ground between au-
tomated planning (Ghallab, Nau, and Traverso 2004; Nau
2007; Green 1969; Weld 1999) and agent-oriented high-
level programming (Shoham 1993; Lespérance et al. 1995;
Levesque and Reiter 1998; Rao 1996). Specifically, we
propose a framework for high-level programming of au-
tonomous intelligent agents using pure declarative goals.

Automated planning allows the specification of behavior
in a declarative manner, thus providing an abstract, flexi-
ble, and powerful mechanism that caters for flexible behav-
ior: any conceivable way of achieving the desired outcome
may be constructed (from first-principle). On the other hand,
agent-oriented programming accommodates useful “know-
how” domain knowledge encoding the typical operations of
the domain of concern since agent systems generally “act as
they go”.

Interestingly, the advantages of each of the two ap-
proaches are the weaknesses of the other. Lookahead plan-
ning is intrinsically difficult computationally since plans are
built from first-principle, and it is not tailored for long-
term behavior in changing domains, where the actual be-
havior depends on contingencies. Similarly, agent-oriented
approaches typically rely entirely on procedural knowledge
that ought to be crafted at design time and upon which the
ultimate behavior of the system shall depend entirely: no
“new” plans can be generated.

In this paper, we propose a novel account that mixes pro-
gramming with planning, thus leveraging on the advantages
of both approaches. In concrete, we assume a typical plan-
ning domain D describing the dynamics of the world and
a so-called planning target program T to be realized in D.
Target T is a basically a high-level program composed of
goals, both achievement and maintenance ones. Techni-
cally, the target is a transition system in which states specify
choice points and transitions specify a pair of maintenance
and achievement goals to be chosen by the agent and real-
ized next. At any point in time, the external world and the
target agent are in some of their respective states, and the
agent decides, autonomously, which goal to achieve next in
order to be in its following desire state (e.g., be at the air-
port). At the same time, it specifies a goal that has to be

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

maintained while achieving the latter (e.g., always keep the
ticket and enough money).

A course of actions is then synthesized for that end, while
respecting the corresponding maintenance. Once its request
is fulfilled, the agent evolves to its next state, where he can
choose other pairs of goals to realize (e.g., do the check-in
while keeping the cell phone handy). Observe that while the
target itself needs to be programmed from declarative goals
representing the different stages in the life of the agent, each
step within the target is indeed a planning task. The problem
then is: can the target planning program be realized fully
in the dynamic domain? That is, can each of the possible
options that the target agent may autonomously choose be
guaranteed always in the environment of concern?

In the rest of the paper, we start by formally defining the
problem described above, by relying on transition systems
and the formal notion of simulation. We then briefly re-
view a recent LTL-based synthesis technique developed in
the literature on Verification (Pettersson 2005). Finally, we
develop a sound and complete technique to synthesize a so-
lution to realizing the target planning program, by reducing
the planning problem into that of of LTL realizability.

The Framework
Our framework consists of two main ingredients: (i) a dy-
namic domain, formalizing the environment that the agent
acts in, and (ii) a target planning program, providing a high-
level representation of the desired domain evolutions.

The dynamic domain is a usual deterministic planning do-
main, defined as a tuple D = 〈P, 2P , A, S0, ρ〉, where:1

• P = {p1, . . . , pn} is a finite set of domain propositions;

• 2P is the set of domain states;

• A = {a1, . . . , ar} is the finite set of domain actions;

• S0 ∈ 2P is the initial state;

• ρ : 2P × A → 2P is the (partial) transition function.
We freely interchange notations (i) ρ(S, a) = S′; (ii)
〈S, a, S′〉 ∈ ρ; and (iii) S a−→ S′.

The dynamic domain is also referred to as environment.

1We do not deal with non-deterministic domains for simplicity
of exposition, but all the results extend directly to domains with
non-deterministic actions.

t0 t1 t2
〈φ1, ψ1〉

〈φ2, ψ2〉

〈φ3, ψ3〉

〈φ4, ψ4〉

Figure 1: An abstract target planning program. A label
〈φ, ψ〉 in an edge represents the achievement goal φ and the
maintenance goal ψ for the corresponding transition.

Given D, a plan η = a1 · · · av is a sequence of actions
from A. Given a state S ∈ 2P , a plan η = a1 · · · av is
executable in S if there are states S0, . . . , Sv such that S0 =

S and Si a
i+1

−→ Si+1 in D for i = 0, . . . , v − 1. A plan η =
a1 · · · av executable in S generates an induced (D-)history

hη,S = S0 a1

−→ S1 · · ·Sv−1 av−→ Sv , representing the do-
main evolution that η yields on D, when executed from S.

A target planning program is a high-level specification of
the behavior desired for the dynamic domain, described by
formulae that domain executions are required to satisfy.
Definition 1 (Target Planning Program). A target plan-
ning program, or simply a target program, for a dynamic
domain D is a tuple T = 〈T,Ψ,Φ, t0, δ〉, where:

• T = {t0, . . . , tq} is the finite set of program states;
• Ψ = {ψ1, . . . , ψm} is a set of maintenance goal proposi-

tional formulae over P ;
• Φ = {φ1, . . . , φt} is the set of achievement goal proposi-

tional formulae over P ;
• t0 ∈ T is the program initial state;
• δ : T × Ψ × Φ → T is the transition function such that

for each t ∈ T there exists at least one t′ ∈ T , ψ ∈ Ψ and
φ ∈ Φ such that δ(t, ψ, φ) = t′. We also use notations

〈t, ψ, φ, t′〉 ∈ δ and t
ψ/φ−→ t′.

Target programs (whose transitions are deterministic for
given t, ψ, φ) provide a description of the high-level re-
quests, i.e., maintenance and achievement goals over P , that
a client might request for execution on the dynamic domain,
at each point in time. The client can, in fact, be the agent ex-
ecuting the target program itself, which generates requests,
according to its intentions, following the target program. An
abstract target program is depicted in Figure 1.

Intuitively, when the target program is realized, a typi-
cal session is as follows: initially, D and T are in their
respective initial states; from current state t, the client re-

quests a transition t
ψ/φ−→ t′; as a result, a plan from S is

executed which (i) eventually leads the domain to a state Sg
s.t. Sg |= φ, while (ii) constraining D to traverse only states
satisfying ψ; upon plan completion, the program moves to

t′; the client selects a new transition t′
ψ′/φ′

−→ t′′ in T and a
new iteration takes place. Notice that at any point in time
all choices available to the client in T must be guaranteed.
Next, we formalize target planning program semantics.
Definition 2 (Plan-based simulation relation). Let D be a
dynamic domain and T a target planning program. A plan-

based simulation relation, or PLAN-simulation relation, is
a relation �PLAN⊆ T × 2P such that if 〈t, S〉 ∈�PLAN
(written t �PLAN S) then, for each transition t

ψ/φ−→ t′ in
T there exists a plan a1 · · · av from S, inducing a D-history
h : S0 a1

−→ · · · av−→ Sv , with S0 = S, such that: (i) Sv |= φ;
(ii) Si |= ψ for i = 1, . . . , v; and (iii) t′ �PLAN Sv . �

Observe the strong similarity of this definition with the for-
mal notion of simulation relation (Milner 1971): PLAN-
simulation relations can be seen as kinds of high-level sim-
ulation relations.

A target program state t ∈ T is plan-simulated by a D
state S ∈ 2P , denoted t �PLAN S, if there exists a PLAN-
simulation relation R s.t. 〈t, S〉 ∈ R. Clearly, �PLAN
is a PLAN-simulation relation itself and, in particular, the
largest one.

A target program T is realizable by a dynamic domain D
if t0 �PLAN S0. When this happens, we want to build a
plan generator, defined as a function g : T ×2P ×Ψ×Φ→
A∗ which, given (i) a current domain state S ∈ 2P , (ii) a cur-
rent target program state t ∈ T , (iii) a requested achievement
goal φ ∈ Φ and (iv) a requested maintenance goal ψ ∈ Ψ,
returns a plan η = g(t, S, ψ, φ) = a1 · · · av executable in S,
which is able to lead D to a state Sg such that Sg |= φ
while maintaining ψ satisfied all along induced history hη,S
and such that all possible requests issued next can be ful-
filled. The problem we face here is: how such function can
be built?

Reactive Synthesis in LTL
Linear Temporal Logic (LTL) is a well-known logic used
to specify dynamic or temporal properties of programs, see
e.g., (Vardi 1996). Formulas of LTL are built from a set P of
atomic propositions and are closed under the boolean opera-
tors, the unary temporal operators© (next), ♦ (eventually),
and � (always, from now on), and the binary temporal op-
erator until (which in fact can be used to express both ©
and �, though it will not be used here). LTL formulas are
interpreted over infinite sequences π of propositional inter-
pretations for P , i.e., π ∈ (2P)ω . If π is an interpretation, i
a natural number, and µ a propositional formula, we denote
by π, i |= µ the fact that µ is true in the i-th propositional
interpretation of π. Such interpretation is extended to the
temporal operators as follows (we omit until for brevity).

π, i |=©µ iff π, i+1 |= µ;
π, i |= ♦µ iff for some j ≥ i, we have that π, j |= µ;
π, i |= �µ iff for all j ≥ i, we have that π, j |= µ.

An interpretation π satisfies µ, written π |= µ, if π, 0 |= µ.
Standard logical tasks such as satisfiability or validity are
defined as usual, e.g., a formula µ is satisfiable if there exists
an interpretation that satisfies it. Checking satisfiability or
validity for LTL is PSPACE-complete.

Here we are interested in a different kind of logical task,
which is called realizability, or Church problem, or simply
synthesis (Vardi 1996; Pnueli and Rosner 1989). Namely,
we partition P into two disjoint sets X and Y . We as-
sume to have no control on the truth value of the propo-
sitions in X , while we can control those in Y . The prob-
lem then is: can we control the values of Y such that for

all possible values of X a certain LTL formula remains
true? More precisely, interpretations now assume the form
π = (X0, Y0)(X1, Y1)(X2, Y2) · · · , where (Xi, Yi) is the
propositional interpretation at the i-th position in π, now par-
titioned in the propositional interpretation Xi for X and Yi
for Y . Let us denote by πX |i the interpretation π projected
only on X and truncated at the i-th element (included), i.e.,
πX |i = X0X1 · · ·Xi. The realizability problem checks the
existence of a function f : (2X)∗ → 2Y such that for all π
with Yi = f(πX |i) we have that π satisfies the formula µ.
The synthesis problem consists in actually computing such
a function. Observe that in realizability/synthesis we have
no way of constraining the value assumed by the proposi-
tions in X : the function we are looking for only acts on
propositions in Y . This means that the most interesting for-
mulas for the synthesis have the form ϕa → ϕr, where ϕa
captures the “relevant” assignments of the propositions in X
(and Y) and ϕr specifies the property we want to assure for
such relevant assignments. The realizability (and actual syn-
thesis) are 2EXPTIME-complete for arbitrary LTL formulas
(Pnueli and Rosner 1989). However, recently, several well-
behaved patterns of LTL formulas have been identified, for
which efficient procedures based on model checking tech-
nologies applied to game structures can be devised. Here,
we shall focus on one of the most general well-behaved pat-
terns, called “Generalized Reactivity (1)” or GR(1) (Piter-
man, Pnueli, and Sa’ar 2006). Such formulas have the form
ϕa → ϕr, with ϕ and ψ of the following shape

ϕa: µ[X ,Y] ∧
∧
j �µj [X ,Y,©µ[X]] ∧

∧
k �♦µk[X ,Y],

ϕr: µ[X ,Y] ∧
∧
j �µj [X ,Y,©µ[X ,Y]] ∧

∧
k �♦µk[X ,Y],

where µ[Z] stands for any boolean combination of sym-
bols from Z . Notice that: (i) with the first conjunct we
can express initial conditions; (ii) with the second (big) con-
junct we can express transitions —and we have the further
constraint that in doing so within ϕa we cannot talk about
the next value of the propositions in Y; and (iii) with the
third (big) conjunct we can express fairness conditions of
the form “it is always true that eventually something holds.”
For such formulas we have the following result.
Theorem 1 (Piterman, Pnueli, and Sa’ar 2006).
Realizability (and synthesis) of GR(1) LTL formulas
ϕa → ϕr can be determined in time O((p ∗ q ∗w)3), where
p and q are the number of conjuncts of the form �♦µ in ϕa
and ϕr, respectively,2 and w is the number of possible value
assignments of X and Y under the conditions of ϕa → ϕr.

Solving Planning Programs
We now show how computing a plan generator (PG) can
be reduced to realizability (and synthesis) of a GR(1) LTL
formula Υ. The reader should keep in mind that, although
the reduction can be informally understood as a set of con-
straints on the strategy to get the solution, its formal justifi-
cation is simply Theorem 2, stating its soundness and com-
pleteness.

The intuition behind the reduction is as follows. At some
point in time, the target program T and environment D are

2We assume that both ϕa and ϕr contain at least one conjunct
of such a form, if not, we vacuously add the trivial one �♦>.

in one of their states, say t and S, respectively. T requests

a transition t
ψ/φ−→ t′ to be realized. The PG then builds a

plan η executable in S. In selecting each action, the PG is to
satisfy two constraints. First, when the plan is executed in
S, maintenance goal ψ may not be violated. Second, upon
execution completion, T moves to state t′ and D must be in
a state S′ such that: (i) φ holds and (ii) for all transitions
outgoing from t′ (i.e., all possible T next requests), a new
plan exists which satisfies above constraints.

We start building the GR(1) LTL formula Υ = ϕa → ϕr
by specifying the sets of uncontrolled and controlled propo-
sitions X and Y , and then build assumption formula ϕa and
requirement formula ϕr.
Uncontrolled and controlled propositions The set of un-
controlled propositions X is the union of sets: (i) P =
{p1, . . . , pn} (D propositions); (ii) PT = {pt0, . . . , ptq}
(one proposition for each target’s state, where pti denotes
that T is in state ti); (iii) Pδ = {pδψ,φ | 〈t, ψ, φ, t′〉 ∈ δ}
(one proposition for each target’s transition, where pδψ,φ
states that T is asking for the achievement of goal φ while
maintaining goal ψ).

The set of controlled propositions Y contains set PA =
{pa1, . . . , par} (one proposition for to actions ai in A,
where pa states that action a is to be executed next) plus
proposition last (stating that last action of current plan is to
be executed next).
Assumption formula Next, we build a formula
ϕa = ϕainit ∧ ϕatrans capturing the assumptions on the
overall framework the plan generator is acting on. For
legibility, we define some syntactic shortcuts:
• for eachD state S ∈ 2P we define a propositional formula
ϕS =

∧n
i=1 li, where li = pi if pi ∈ S; and li = ¬pi

otherwise;
• for each target state t ∈ T , we define a propositional

formula reqt =
∨
〈t,ψ,φ,t′〉∈δ pδψ,φ, representing the fact

that the target is requesting at least one pair of mainte-
nance and achievement goals available in state t.
The assumption formula is meant to encode how the over-

all system is expected to behave; technically, it encodes
the synchronous execution of dynamic domain D and target
specification T .

Propositional formula ϕainit = ϕS0 ∧ pt0 characterizes
the (legal) initial states of the overall system, by requiring
D and T to start in their respective initial states. Note no
constraint on proposition last nor on any proposition in Pδ
are imposed here.

LTL formulaϕatrans=�transD∧�transT characterizes
the assumptions on the overall system evolution. Specifi-
cally, transD defines the “rules” for the domain and transT
defines those for the target. The former is defined as follows:

transD =
∧

〈S,a,S′〉∈ρ

[ϕS ∧ pa→©ϕS′]

where each conjunct states that if the world is in state S and
action a is to be executed, then S′ is the next state of the
world.

Formula transT , in turn, is built as conjunction of the
following formulae:

•
∨
pt∈PT [pt ∧

∧
pt′∈PT \{pt} ¬pt

′], that is, the target is in
exactly one of its states.

•
∧
ti∈T [pti → reqti], that is, in each state, the target ought

to be requesting some of the possible goals available in
current state;

•
∧
pδψ,φ,pδψ′,φ′∈Pδ,pδψ,φ 6=pδψ′,φ′ [pδψ,φ → ¬pδψ′,φ′], that

is, at most one goal request is allowed;
•

∧
〈ti,ψ,φ,tj〉∈δ[pti∧pδψ,φ∧ last→©ptj], that is, if tran-

sition ti
ψ,φ−→ tj is currently being requested and last ac-

tion of current plan is to be executed next, then the target
shall move next to successor state t′;

•
∧
ti∈T,〈ti,ψ,φ,tj〉∈δ[(pti ∧ pδψ,φ ∧ ¬last) → ©pti], that

is, the target remains still if the current plan has not yet
been completed.

•
∧
ti∈T,〈ti,ψ,φ,tj〉∈δ[(pti∧pδψ,φ∧¬last)→©pδψ,φ], that

is, the target remains requesting the same transition if the
current plan has not yet ben completed.

Requirement Formula Let us now build formula ϕr =
ϕrtrans∧ϕrgoal, which captures the requirements for the mod-
ule to be synthesized, i.e., the plan generator: an automaton
which, at each step, selects an action for execution.

LTL formula ϕrtrans = �(ϕacttrans ∧ϕlasttrans ∧ϕmainttrans) en-
codes constraints on action executions and how target agents
are “fulfilled”. Namely:
• ϕacttrans =

∨
pa∈PA [pa ∧

∧
pa′∈PA,pa′ 6=pa ¬pa′], i.e., one

and only one domain action is expected to be executed at
each step;

• ϕlasttrans =
∧
pδψ,φ∈Pδ [pδψ,φ∧ last→©φ], i.e., upon plan

completion, requested goal φ is indeed achieved.
• ϕmainttrans = 2

∧
pδψ,φ∈Pδ [pδψ,φ → ψ], i.e., maintenance

goals are respected along plans’ executions.
Finally, by using simply one fairness conjunct, we are

able to encode the synthesis objective, i.e., the realization
of the achievement goals and preservation of maintenance
ones. Formally, we have:

ϕrgoal = � � last

That is, we require that each plan is always eventually com-
pleted. This implies, in turn, that all requested goals are
(always eventually) fulfilled.

It is not hard to check that the LTL formula Υ obtained is
indeed in GR(1) format. Hence, the results from (Piterman,
Pnueli, and Sa’ar 2006) are directly available and we are
able to prove our main result:
Theorem 2 (Soundness & Completeness). There exists a
solution to the target planning program T in the dynamic
domain D iff the LTL formula Υ, constructed as above, is
realizable.

That is, checking the realizability of Υ is a sound and
complete technique for solving the target planning program
in the domain of concern. We stress that by solving realiz-
ability with the techniques in (Piterman, Pnueli, and Sa’ar
2006) we do get an actual solution for the realization of the
planning program, not merely verify its existence.

Analyzing the structure of Υ, we get that: (i) ϕa con-
tains no subformulas of the form �♦µ; (ii) ϕr contains just
one such subformulas; (iii) the number of possible value as-
signments of X and Y under the conditions of ϕa → ϕr is
O(|2P | ∗ |T | ∗ |Ψ| ∗ |Φ|) (observe that variables that rep-
resent states in a TS are pairwise disjoint). Consequently,
from Theorem 1, we get:
Theorem 3 (Complexity upperbound). Checking the ex-
istence of a solution for a target planning program in a dy-
namic domain can be done in O((|2P | ∗ |T | ∗ |Ψ| ∗ |Φ|)3).

Such bound can be refined by replacing 2P with the num-
ber of environment’s states that are actually reachable from
the initial state.

Conclusion
This work combines automated planning and high-level
agent-oriented programming into the novel problem of syn-
thesizing a high-level planning program for execution on a
planning domain. We provided a solution by resorting on
synthesis for a well-behaved class of LTL formulas, which
constitutes one of the most general classes in which LTL
synthesis can be reduced to model-checking of game struc-
tures. This allows us to leverage on existing results and tools
(including TLV3 and Anzu4) and leaves us room for inter-
esting extensions (e.g., explicit fairness assumptions on the
dynamic domain).

References
Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Automated Plan-
ning: Theory and Practice. Morgan Kaufmann.
Green, C. C. 1969. Theorem proving by resolution as a basis for
question-answering systems. Machine Intelligence 4:183–205.
Lespérance, Y.; Levesque, H. J.; Lin, F.; Marcu, D.; Reiter, R.;
and Scherl, R. B. 1995. Foundations of a logical approach to
agent programming. In Proc. of ATAL’95.
Levesque, H. J., and Reiter, R. 1998. High-level robotic control:
Beyond planning. A position paper. In AIII 1998 Spring Sympo-
sium: Integrating Robotics Research: Taking the Next Big Leap.
Milner, R. 1971. An algebraic definition of simulation between
programs. In Proc. of IJCAI 1971, 481–489.
Nau, D. S. 2007. Current trends in automated planning. AI
Magazine 28(4):43–58.
Pettersson, O. 2005. Execution monitoring in robotics: A survey.
Robotics and Autonomous Systems 53(2):73–88.
Piterman, N.; Pnueli, A.; and Sa’ar, Y. 2006. Synthesis of Reac-
tive(1) Designs. In VMCAI, 364–380.
Pnueli, A., and Rosner, R. 1989. On the Synthesis of a Reactive
Module. In Proc. of POPL 1989, 179–190.
Rao, A. S. 1996. Agentspeak(L): BDI agents speak out in a
logical computable language. In Proc. of MAAMAW’96, 42–55.
Shoham, Y. 1993. Agent-oriented programming. Artificial Intel-
ligence Journal 60:51–92.
Vardi, M. Y. 1996. An automata-theoretic approach to linear
temporal logic. In Logics for Concurrency: Structure versus Au-
tomata, vol. 1043 of LNCS. Springer. 238–266.
Weld, D. S. 1999. Recent advances in AI planning. AI Magazine
20(2):93–123.

3www.cs.nyu.edu/acsys/tlv/
4www.ist.tugraz.at/staff/jobstmann/anzu/

