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Introduzione

consideriamo un generico sistema dinamico non lineare stazionario

z = f(z,u)
y = g(z)
con stato x € IR", ingresso u € IRP, uscita y € IR?

problema tipico
calcolare, dati zo = z(0) e upy 4, lo stato z(t) e I'uscita y(t) per valori di t > 0

es: nei sistemi lineari, dove f(z,u) = Az + Bu, Si ha

t
z(t) = exg —I—/ A7) Bu(r)dr
0

tuttavia

Spesso non Si ha interesse a stabilire esplicitamente la soluzione, ma piuttosto a determinarne
alcune proprieta come limitatezza, comportamento asintotico, ...

—— teoria qualitativa delle equazioni differenziali (Poincaré 1880, Lyapunov 1892, LaSalle
e Lefschetz 1947...)
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idea di base

valutare il comportamento qualitativo del sistema in corrispondenza a perturbazioni dello
stato iniziale e dell’'ingresso del sistema rispetto a valori nominali

indicata con z(t) I'evoluzione dello stato in corrispondenza a zo € uj,, Ci Si chiede:
e COSsa succede se xg — xg + Axg?
e cosa succede se u(t) — u(t) + Au(t)?

in particolare:
e quanto é prossima l'evoluzione perturbata a quella nominale?

e sotto quali condizioni le due soluzioni tendono a coincidere per t — oco?

qualitativamente, appare naturale chiamare
e stabile un sistema nel quale piccole perturbazioni danno luogo a piccoli scostamenti

e instabile un sistema nel quale piccole perturbazioni danno luogo ad ampi scostamenti
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teoria della stabilita
definizioni

proprieta di stabilita (diversi tipi in relazione al comportamento del sistema e alle esigenze
applicative) e di instabilita

condizioni

che un sistema deve soddisfare per godere dell’'una o dell’altra di queste proprieta

criteri

per verificare la sussistenza o meno delle condizioni senza calcolare esplicitamente la soluzione
perturbata del sistema

es: nei sistemi lineari
e definizione di stabilita, stabilita asintotica, instabilita
e condizione di stabilita asintotica: iMoo (t)]u=0 = liM;_00 eMazg = 0

e criteri di stabilita asintotica: o(A) € €, criterio di Routh, oppure criterio di Nyquist
per sistemi retroazionati
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generalmente si considera il comportamento di sistemi in evoluzione libera

= f(z)

rispetto a perturbazioni dello stato iniziale xg

infatti:

e scelta una legge di controllo in retroazione uw = h(x), la dinamica ad anello chiuso
diventa

z = f(z,Mz)) = f'(z)

cioé appunto un (nuovo) sistema in evoluzione libera

e anche ad anello aperto, se la perturbazione sull’'ingresso € non persistente

~.n _ Ju(t)+6(t) tel0,t]
u(t)_{u(t) t>t :

il problema si riconduce allo studio dell’effetto di una perturbazione (e cioé z(¢1)) sullo
stato iniziale
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Definizioni

un importante concetto preliminare: punto di equilibrio

uno stato z. € IR" € un punto di equilibrio (pde) per il sistema xz = f(x) se, posto zg = =z,
si ha z(t) = xe, Vt >0

nota: si tratta di una traiettoria degenere del sistema

matematicamente:

r. € un pde <— f(xe) =0

i pde sono percio gli zeri della funzione vettoriale f(x)
es: nei sistemi lineari x = Ax, i pde sono i punti x. tali che
Az, = 0, cioe x. € N(A)
e se A &€ non singolare, I'unico pde & l'origine

e se A é singolare, i pde sono infiniti e contigui: geometricamente, sono iperpiani
passanti per I'origine (rette se dim(WN(A)) = 1, piani se dim(WN(A)) =2, ...)
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es: pendolo di lunghezza ¢ e massa m in presenza di attrito viscoso di coefficiente d

m 20+ d0+mglsind =0

ponendo z = (z1,z2) = (6,0), I'’equazione nello spazio di stato &

1 = X2
L gsin —d
/ me2
= f(x) = (2 — %sin xr1 — %CBQ)T; sistema non lineare!
m

quindi, i punti di equilibrio sono caratterizzati da 1 = jnm (j = 0,£1,4+2,...) e 22 = 0 (e
cioe, pendolo (i) verticale verso il basso/l'alto e (ii) fermo)
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ecco le traiettorie del pendolo nel piano (z1,22) = (0,0) (piano delle fasi)

5

4+

3,

N
T

[N
T

X2
o

x1

esS: ancora un sistema non lineare

t = 1—a3
o = X1 — :13%
I pde sono caratterizzatida z1 =1 e o = +1 m

nota: i pde di un sistema non lineare possono essere in numero finito (2 nei precedenti
esempi, ma eventualmente nullo) o infinito, ed essere punti isolati nello spazio di stato
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definizioni di stabilita (secondo Lyapunov)
(nel seguito, | -| indica una qualsiasi norma di IR™)

un pde z. si dice stabile (S) se:
Ve, F(€) @ |xo — xe| <0 = |x(t) —xe| < €,VEt >0

Ve 36(e) |0 — x| < O |z(t) — ze| < €,VE >0

un pde z. di un sistema dinamico é stabile se & possibile mantenere |'evoluzione del sistema
arbitrariamente vicina a z. prendendo |la condizione iniziale g sufficientemente vicina a
Te, Oovvero, se nell'intorno di z. € possibile limitare a piacimento |lo scostamento limitando

opportunamente la perturbazione

ovviamente: un pde z. si dice instabile se non & stabile
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e |a stabilita € una proprieta dei pde, non del sistema: |o stesso sistema pud avere sia
pde stabili che instabili (accade nei sistemi non lineari, es: pendolo)

e nella definizione di stabilita non si richiede che lo stato perturbato tenda a convergere
VErso x.

e d’altra parte, nella definizione di instabilita non si richiede che |'evoluzione perturbata
tenda a divergere

es: oscillatore di Van der Pol (sistema MMS con damping dipendente dalla posizione)

r1 = X0
. 2
o = —x1+ (1 —2x7)x2
i le traiettorie nello spazio di stato mostrano che,
il indipendentemente dalla condizione iniziale,
lo stato converge ad un ciclo limite: quindi,
%0 e impossibile limitare a piacimento lo scostamento
da O (ad es., se si pone ¢ = 1 non esiste alcun 9)
= l'origine € un pde instabile per il sistema |
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in pratica, spesso la stabilita semplice non basta:

un pde z. si dice asintoticamente stabile (AS) se:

1. é stabile

2. 364 |0 — x| < 00 = tlim lx(t) — x| =0
— 00

e in aggiunta alla stabilita, si richiede la convergenza a z. se la condizione iniziale &
sufficientemente vicina a x.

e |a stabilita asintotica € un concetto locale, nel senso che la convergenza si ha se xg
appartiene all'intorno di z. avente raggio §, (dominio di attrazione); all’esterno di
tale intorno si pud avere semplice limitatezza o persino divergenza!

e la 2. non implica la 1.; & possibile cioé avere la convergenza senza la stabilita (qualche
volta pde di questo tipo si definiscono quasi-stabili asintoticamente, ma sono a tutti
gli effetti pde instabili)
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es: (dovuto a Vinograd)
2 (z2 — 1) + 73
(22 + 23)(1 + (22 + 23)?)
x2(z2 — 271)

(22 4+ 22)(1 + (23 4+ 23)?)

le traiettorie nello spazio di stato mostrano che,
indipendentemente dalla distanza di xg dall’origine,
se 10 < O lo stato converge all'origine dopo aver
toccato una curva che si trova a distanza finita
da O0: quindi, € impossibile limitare a piacimento
lo scostamento dall’origine

= |'origine & un pde quasi-stabile asintoticamente (ma instabile) per il sistema |
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tuttavia, nelle applicazioni, & spesso necessario disporre di una stima del tempo necessario
perché lo stato perturbato ritorni in z.:

un pde z. si dice esponenzialmente stabile (ES) se esistono costanti positive a, A e ¢ tali
che:

|x(t) — xe| < O‘|x0 — 336|6_>\t7 vt > 0, \V/|£Eo — 336| <c

e in pratica, si richiede che esista un intorno di z. a partire dal quale l|la traiettoria
perturbata converge a z. con velocita almeno esponenziale (anche questo & un concetto
locale)

e )\ viene detto tasso di convergenza esponenziale; posto a = e, si trova facilmente
che dopo (70 + 1/)\) secondi la distanza da z. si & ridotta ad almeno 1/e (circa il 35%)
del suo valore iniziale

e |a stabilita esponenziale implica la stabilita asintotica (e quindi la stabilita); il viceversa
non € vero

es: l'origine @ un pde asintoticamente ma non esponenzialmente stabile per il sistema
T = —x°
infatti, la soluzione & z(t) = #Otmo’ che converge a zero piu lentamente di qualsiasi

funzione esponenziale m
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le proprieta di stabilita asintotica e stabilita esponenziale, che sono intrinsecamente locali,
possono anche essere globali

e un pde si dice globalmente asintoticamente stabile (GAS) se & stabile e lo stato
converge a z. per qualsiasi stato iniziale (il dominio di attrazione coincide con tutto
R™)

e un pde si dice globalmente esponenzialmente stabile (GES) se lo stato converge
esponenzialmente a z. per qualsiasi stato iniziale

riassumendo, si ha la seguente classificazione dei pde stabili

AS

@)

nota: z. pud essere GAS solo se & I'unico pde del sistema (C.N.)
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Stabilita dei sistemi lineari

Teorema

se un sistema lineare ammette piu di un pde, la stabilita (instabilita) di uno di essi implica
ed e implicata da quella di tutti gli altri

dim basta mostrare che, se il generico pde x. € stabile, lo € anche I'origine, e viceversa
per ipotesi Ve,3(€) : |zo — x| < I = |x(t) — x| < €,VE >0

x(t) — z. € la differenza tra la risposta a partire da zo e quella a partire da z. = per |a
linearita, z(t) — z. € la risposta a partire da g — z. = 29, che indicheremo con z. (t)

si ha dunque Ve, 36(e) : |z0| < 6 = |z, ()] < €, Vt > 0, cioe la stabilita dell’origine
analogamente si prova il ‘@ implicata’ m

Teorema

in un sistema lineare:

1. si pu0O avere stabilita asintotica solo per I'origine e solo nel caso in cui sia I'unico pde
2. se l'origine € AS, é anche GAS

dim 1: I'origine & sempre un pde, se ci sono altri pde sono contigui all’origine (cfr. slide 5)

2. ovvia per sistemi stazionari a dimensione finita, considerando che affinche |'evoluzione
libera z(t) = e?txo converga da un intorno dell’origine & necessario che gli autovalori di
A abbiano parte reale negativa, il che implica che I'evoluzione libera converge da Vxg =

Oriolo: Teoria della stabilita per sistemi non lineari 14



Teorema

in un sistema lineare, I'origine € ES se e solo se ¢ AS

dim necessita: ovvia

sufficienza: ovvia per sistemi stazionari a dimensione finita, poiché se |'origine € AS

I’evoluzione libera € combinazione di esponenziali convergenti m

riassumendo, nei sistemi lineari:

e se l'origine & I'unico pde, pud essere S, AS (in effetti ES), oppure I
e Se Ci sono piu pde, sono infiniti, contigui e sono tutti S oppure tutti I

e in ogni caso, e lecito parlare di stabilita, stabilita asintotica (in effetti esponenziale) o
instabilita del sistema nel suo complesso

il seguente criterio di stabilita € immediato per sistemi stazionari a dimensione finita

Teorema

un sistema lineare stazionario a dimensione finita € S se e solo se

1. gli autovalori di A con molteplicita geometrica pari a quella algebrica hanno Re[] <0
2. gli autovalori di A con molteplicita geometrica minore di quella algebrica hanno Re[] < 0

il sistema & AS (in effetti ES) se e solo se tutti gli autovalori di A hanno Re[] <0

oppure, per evitare il calcolo degli autovalori: criterio di Routh
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Criterio diretto di Lyapunov

idea di base

se I'energia totale di un sistema (meccanico, elettrico, ...) viene continuamente dissipata,
il sistema (lineare o non lineare) tende a un punto di equilibrio = & possibile studiare la
stabilita del punto esaminando un’unica funzione scalare

es: sistema MMS non lineare

nonlinear spring

W

al m i+ d 2|2 + (koz + k123) = 0

nonlinear damper

DM

Z

unico pde: origine, ma & impossibile studiarne la stabilita usando le definizioni, poiché non
siamo in grado di ottenere |la soluzione dell’equazione

invece: esaminiamo I'energia meccanica! posto x = (z,2), si ha

1 # 1 1 1
V(z) = Vein(2) + Voot (2) = 5 mz? + /O (koC + k1¢3)d¢ = 5 mz? —+ 5 koz? + 2 k12*

Oriolo: Teoria della stabilita per sistemi non lineari



relazioni energia/stabilita
e Si ha energia nulla solo se z = 0, z = 0, cioe nell’origine
e sel’'energia converge (sempre) a zero, ne segue la stabilita asintotica (globale) dell’origine

e Se |l'energia diverge, ne segue l'instabilita dell’origine

come varia I'energia durante il moto del sistema? basta derivare V rispetto a t (di cui &
funzione composta) e sostituire a z I'espressione che se ne ricava dal modello dinamico

V(z) = mzz + (koz + k12°)2 = —d|z]>

= |'energia viene continuamente dissipata e il sistema converge ad uno stato con velocita
nulla (2 = 0); d'altra parte, poiché in qualsiasi posizione diversa da z = 0 la massa sarebbe
soggetta a una forza di richiamo —kgz — k123 non nulla, & evidente che il sistema converge
in effetti all’origine (z =0, 2z =0) u

il metodo diretto di Lyapunov si basa appunto su una generalizzazione (e una formalizzazione
rigorosa) di questo concetto: si cerca un'opportuna funzione scalare energy-like per il
sistema dinamico non lineare in esame, € se ne esamina la variazione nel tempo lungo le
traiettorie del sistema
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nel seguito, faremo riferimento al generico sistema non lineare stazionario
z = f(x) x € R"
e indicheremo con z. il pde da studiare; dunque, f(z.) =0

concetti preliminari: data una funzione scalare V(z), continua e derivabile rispetto a =
(V € C1), e detto S(z.,r) un intorno sferico di z. di raggio r
e V(x) si dice definita positiva (DP) in S(xe,7) se
a) V(ze) =0
b) V(z) > 0,Vx € S(xe,7), T # T

e V(x) si dice semidefinita positiva (SDP) in S(z.,r) se
a) V(ze) =0
b) V(x) > 0,Vx € S(xe, 1), T £ T

e V(x) si dice definita negativa (DN) in S(z.,r) se —V (x) & definita positiva, semidefinita
negativa (SDN) in S(xe,r) se —V (x) & semidefinita positiva

e V(x) si dice indefinita (I) in S(z.,7) se non € DP, SDP, DN o SDN

nota: V(z) DP (DN) in S(xze,r) = V(x) SDP (SDN) in S(xe,7)
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Caso n = 2: rappresentazione grafica locale di una funzione V DP in z.

A

V

L9

es: in IR?, la funzione V(z) = 7z = 2?2 + 23 & DP in qualsiasi intorno dell’origine (le curve

di livello sono chiuse)

es: in IR?, la funzione V(z) = 22 & SDP in qualsiasi intorno dell’origine (si annulla su tutto

I'asse x5; le curve di livello sono aperte)

es: in IR?, la funzione V(x) = z1z2 & I in qualsiasi intorno dell’origine (ci sono sempre punti

dell’'intorno dove & positiva e punti dove & negativa)

es: per il sistema MMS non lineare, I'energia meccanica V(x) & DP in qualsiasi intorno

dell’origine
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data una funzione V (x), e considerata una soluzione z(t) della z = f(x), si pud riguardare
la V(x(t)) come una funzione composta di ¢, continua e derivabile per ogni t; si ha quindi

av(xz(t)) "L OV dz;
dt Z Ox; dt

1 =1 1=

=Y Y ) = V)

V(t) =
(t) . o,

dove f;(z(t)) & la i-esima componente della funzione vettoriale f(x)

la V(z), considerata come una funzione della sola z, viene chiamata la derivata di V lungo
le traiettorie del sistema

alla V(x) & quindi ancora possibile attribuire le proprieta di definitezza positiva, negativa,
semidefinitezza positiva, etc.

es: si consideri il sistema dinamico

1 2

To —T1 — I

il cui unico pde & I'origine, e si ponga V = x? 4+ z3, che & DP intorno all’origine; si ha

V(z) = 2z121 + w000 = 2120 — 20170 — 2:13% = —2:13%

che @ SDN intorno all’origine m
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Teorema

un pde x. di un sistema z = f(x) & stabile se esiste una funzione V(x) € C?! tale che
1. V(x) sia DP in un intorno S(xe,r)
2. V(x) sia SDN nello stesso intorno

dim di tipo geometrico, per n = 2 (ma valida in generale)

si noti intanto che, poiché V(z) & DP in S(xz.,r), le linee di livello U, = {x € R? : V(x) = k}
sono chiuse per k sufficientemente piccolo; inoltre, se k1 < k2, Uy, € interna a Uy,
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scelto r; tale che 0 < r1 <r, esiste certamente un valore k tale che U, & interna a S(xe,71)
(basta prendere il valore minimo di V lungo la frontiera di S(xz.,71), Che esiste ed & positivo
perché V e continua, e scegliere k minore di tale valore); dunque U, & chiusa

inoltre, poiché U, € una curva chiusa che contiene x., € sempre possibile trovare r, tale che
S(xe,7m2) € interno a Uy

si consideri una traiettoria che origina da xzo € S(xe,72); si ha V(xg) < k ed essendo V
negativa o nulla lungo le traiettorie del sistema contenute in S(z.,r), la V(x(t)) € non
crescente nello stesso intorno

= si ha V(z(t)) < k, Vt > 0, e dunque lo stato z(t) si mantiene all'interno di S(ze,r1)
indefinitamente

quindi:
lxo—xe| <12 = |z(t)—z| <71, VE>O0 c.d.d. n
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e una funzione V(z) che gode delle proprieta richieste dal teorema (cioé tale che V sia
DP e V sia SDN in un intorno di z.) si definisce funzione di Lyapunov

e il teorema stabilisce dunque che l'esistenza di una funzione di Lyapunov & condizione
sufficiente per |la stabilita; in effetti, per sistemi stazionari a dimensione finita si puo
mostrare che la condizione € anche necessaria

e |'applicazione del teorema passa attraverso due fasi, eventualmente ripetute:
1. costruzione di una V(x) DP in un intorno di z. (detta candidata di Lyapunov)
2. calcolo della V' lungo le traiettorie del sistema e verifica della sua SDN nell'intorno

nota: se la V(x) scelta non risulta essere una funzione di Lyapunov, non si pud
concludere nulla; potrebbe esisterne un’altra

e se V(x) & una funzione di Lyapunov per un sistema, lo & anche la funzione

Vi(z) = V7 () B>0,7v>1

e |a scelta della candidata di Lyapunov é ovviamente cruciale: nei sistemi meccanici ed
elettrici si pud provare a scegliere I'energia totale, ma possono esistere scelte migliori
che non hanno un'immediata interpretazione fisica
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es: pendolo (per semplicita, m=1,d=1,/4=1)

il vettore di stato & z = (z1,22) = (6, 6)

1 2

ro = —gSinxy — a7

posto xSOW” = (0,0), proviamo con l'energia meccanica

1
V(z) = 5:1;3 + g(1 — coszy) DP in S(0,277)
Si ha
V(x) = xods + gsinzi1d1 = —x3 SDN in S§(0,277) (in effetti, in qualsiasi intorno)
dunque z9°%" & un pde stabile per il pendolo (e V & la potenza dissipata) n

per0O: I'intuizione fisica ci dice che, in presenza di attrito, |'origine € un pde asintoticamente
stabile per il pendolo = ci serve un teorema piu forte
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Teorema

un pde z. di un sistema ¢ = f(x) & asintoticamente stabile se esiste una funzione V(z) € C*
tale che

1. V(z) sia DP in un intorno S(xe, )
2. V(x) sia DN nello stesso intorno

dim intanto, x. & certamente stabile; in particolare, se zg € S(xe,72) (cfr. dimostrazione
precedente) la traiettoria rimane in S(xz,r1) indefinitamente = V(¢) lungo la traiettoria
tende a un valore limite V> 0 (perché V < 0 e V e limitata inferiormente da zero)

supponiamo V > 0: poiché V & continua e si azzera solo in z., esiste un intorno S(xe,0) in
cui la traiettoria non entra mai = poiché anche V & continua e si azzera solo in x., esiste
un o > 0 tale che V < —« indefinitamente

ma allora avremmo

V() =V(0) + /tV(T)dT < V() — at
e quindi V diventerebbe negativa dopo un ’fempo finito, contraddicendo I’assunzione V > 0
quindi, se xg € S(xe,72) Si ha limio V(t) = 0; quindi, essendo V(x) nulla solo per x = x,

implica che lim; o 2(t) = ., c.d.d. n

nota: estrapolando le proprieta di S(xe,72) dalla prova del criterio di stabilita precedente, si conclude che
qualsiasi intorno di z. contenuto in Uy (dove V* & il valore minimo di V lungo la frontiera di S(z.,r)) €
una stima (per difetto) del dominio di attrazione di z.
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es: sSi consideri il sistema

a:l(x% -+ :c% —1) —xo
1 + xg(a:% + a:% —1)

1

T

per il quale I'origine € un punto di equilibrio

scelta
V(z) = %ax% + %x% DP in qualsiasi intorno dell’origine
si ha
V(z) = (22 + 23) (22 + 232 — 1) DN per x : 22 4+ x5 < 1, ovvero in S(0,17)

I'origine € dunque asintoticamente stabile per il sistema in questione

per stimare il dominio di attrazione:
si ponga Uy- = {z € R? : V(x) < 1/2} = S(0,17); scelto p € (0,1), qualunque intorno S(0, p)

e contenuto in Uy- e dunque costituisce una stima (per difetto) del dominio di attrazione
dell’origine n
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es: pendolo; prendiamo la seguente candidata di Lyapunov (nessuna interpretazione fisica)

1 1
V(z) = 5303 + 2¢(1 — cosz1) + 5(:01 + x2)? DP in qualsiasi intorno dell’origine

si trova

V(x) = —x35 — gz1Sinzy DN in qualsiasi intorno dell’origine tale che z1 € (—m, )
dunque z%°%" & un pde asintoticamente stabile per il pendolo

dominio di attrazione: |la convergenza all’origine € garantita da stati iniziali interni a linee
di livello interamente contenute nella regione dove V € DN, ma non a partire da stati
iniziali interni a linee di livello che escono da tale regione, da cui puoO verificarsi divergenza
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cosa succede se cerchiamo di applicare i teoremi precedenti al punto di equilibrio zYP? = (7, 0)
del pendolo? [I'intuizione fisica ci dice che z /P & instabile, ma |la condizione necessaria
(e sufficiente) di stabilita & I'esistenza di una funzione di Lyapunov, che non possiamo
escludere a priori = & utile disporre di un criterio di instabilita

Teorema [Cetaev]

un pde x. di un sistema z = f(x) & instabile se esiste una funzione V(z) € C?! tale che
1. l'insieme P = {x : V(z) > 0} ha x. come punto di accumulazione (pda)
2. V(x) sia DP in U = Pn S(x.,r), per qualche r > 0

es: il teorema di Cetaev mostra che il pde z. = (0,0) & instabile per il sistema dinamico

: 2
r1 = x1+ x5
o = —I9
si consideri V(z) = %az% — %x% che & positiva in P = {x : |z1| > |z2|}, di cui z. & pda
Si ha

Viz) = :13% + wlxg + w% = w% + :13%(1 + x1)

che & chiaramente DP in U = PN S(z., 1)
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e disponibile anche un criterio di stabilita asintotica globale

Teorema

un pde z. di un sistema z = f(z) & globalmente asintoticamente stabile se esiste una
funzione V(x) € C! tale che

1. V(x) sia DP in qualsiasi intorno di x.

2. V() sia DN in qualsiasi intorno di x.

3. V(x) sia radialmente illimitata, cioe lim V(x) = oo

es:

radialmente limitata radialmente illimitata
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dim come_nel caso locale, osservando che la illimitatezza radiale di V, combinata con il
fatto che V &€ DN in tutto IR", implica che per qualsiasi condizione iniziale zg le traiettorie
rimangono all’'interno della regione limitata definita da V(z) < V(xo) m

nota: nel caso in cui V sia radialmente limitata, le curve di livello ‘lontane’ da z. non
sono chiuse; di conseguenza, é possibile che lo stato si allontani indefinitamente da z. pur
rimanendo all’interno della regione definita da V(z) < V(xg), e anzi attraversando curve di
livello relative a valori progressivamente decrescenti di V

T Vi< Vo<V

= quando xzp & sufficientemente lontano, x(¢t) pud non convergere a x.
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es. si consideri la famiglia di sistemi non lineari descritta da

= —c(x), con zc(x)>0,Vxr#=0, ¢(0)=0

e la candidata di Lyapunov

1
Viz) = 5 x2

che & DP in qualsiasi intorno di z. = 0 e radialmente illimitata

essendo
V(z) =22 = —zc(x)
la V(z) & DN in qualsiasi intorno di . =0

= x. € un pde globalmente asintoticamente stabile

riassumendo, il criterio diretto di stabilita di Lyapunov si basa sulle seguenti condizioni:

Te €S Te € AS . € GAS T. € instabile
. . DP in V S(xe, 1) T. € punto di accum.
V(z) || DPinun S(ze,r) | DP in un S(ze,r) e rad. illim. di P = {z:V(z)> 0}
V(x) SDN in S(xe,T) DN in S(xe,7) DN in V S(xe,7) DP in PN S(xe, 1)
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Costruzione di funzioni di Lyapunov

la maggiore difficolta nell’applicare il metodo diretto di Lyapunov per studiare un pde z. di
un sistema non lineare z = f(x) consiste nella scelta della funzione V(z); a volte la fisica
del problema fornisce un’ispirazione, ma in generale é utile procedere sistematicamente

una scelta spesso efficace consiste nello scegliere come candidata di Lyapunov una forma
quadratica del tipo

V() = (@) QG — x)

con la matrice Q : n x n simmetrica e definita positiva (tale ciog che w'Qw > 0, Yw % 0)

per garantire la definitezza positiva di Q si puo utilizzare la C.N.&S. di Sylvester

0 011 O1 Q11 Q12 Q13
11 > 0, O1s O > 0, Q12 Q22 Q23 | >0, ... det(Q)>0
2 Q13 (23 Q33

essendo Q simmetrica, la V(x) risulta essere

V(@) = 27 QG a5 (@ -2 QxS (-2 Qb = (- ) Qi+ (r — ) Qw — )
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es: si consideri il sistema

Ci?l = —kl I
T = —x3+ ko3
T3 = —2xo— 3
con ki,k> > 0O; l'origine € I'unico pde
e poOsto
1 1 1
V(e) = (= z) Taa(w — o) = Ja'e = _(af + 23 +a3)

che e DP in qualsiasi intorno dell’origine e radialmente illimitata, si trova
V(z) =zld =x1d1 +x0d0 4+ 2383 = —klm%—a:g—l— (k2—2)x2m3—m§
per ko = 2, V(z) & DN in qualsiasi intorno dell’origine, che & in questo caso GAS
e Si pud fare un’analisi molto piu generale ponendo Q = diag(l,k%, 1)

1 1 2 . 2
Vz) = ECCTQCC = 5(:13% + k—ng + x%) = V(x) =—-k1 :13% — k—la:g — azg

che per ki1,k> > 0 € sempre DN = l'origine € GAS in ogni caso!
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metodo di Krasovski

assumendo che l'origine sia un pde per z = f(x) (altrimenti: traslazione z. — O), provare
come candidata di Lyapunov la V(z) = f'(z)f(x), chiaramente DP in un intorno di z.

Teorema

indicata con J(x) = df /dx la matrice Jacobiana della funzione f:
e se la matrice F(z) = J(z) + J'(x) & definita negativa in un intorno S(z.,r) allora x. &
asintoticamente stabile
o se F(x) = J(z)+J"(x) & definita negativa in tutto IR" e V(z) = f7(x) f(z) & radialmente
illimitata, allora x. € globalmente asintoticamente stabile

dim posto V(z) = fT(2)f(x), si ha V = 2f7(2)f(z) = 267 & che, se F(z) & definita
negativa, € anch’'essa DN = V e una funzione di Lyapunov ]

es: |'origine € un pde GAS per il sistema

1

—3x1 + T2
3

T2 = X1 — T2 —TH

J(x>:<_13 —1—13333) ::>F(f’3):<_26 —2—26:1:%)

dalla condizione di Sylvester, —F'(x) & definita positiva in tutto IR"; quindi F(z) & definita
negativa in tutto IR" e inoltre

V(z) = f(2)f(z) = (—3z1422)°+ (z1—22—23)? — o0 per |z| — o u

infatti si ha
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metodo del gradiente variabile

si basa sull’'osservazione che, se V(z) € una funzione di Lyapunov per il pde z. del sistema
xz = f(x), allora

dV
V(z) = ECE =vVVi(z)z VV(z) : gradiente di V rispetto a =

I'idea di base & di scegliere direttamente VV (z) (invece che V(z)), in modo da ottenere
V DP e V DN; generalmente si pone

VVi(z) = Zaij(x)a:j

j=1
affinché VV (z) sia un gradiente, si deve imporre la condizione che (Th. di Schwartz)
avV;  OVYV;

= 1,7=1,...,n

(933]' 8$Z

si cerca di scegliere gli a;; in modo che (i) sia verificata questa condizione; (ii) V(x) sia DN
in un intorno S(xz.,r); e infine

Gii)  V(x) _/ daz—/ VVT(z)dx sia DP in S(ze, )

nota: poiché V(z) dipende solo da z, I'integrale & indipendente dal percorso di integrazione; conviene dunque
usare un percorso di integrazione allineato di volta in volta con gli assi x1,...,x,, CiO€

x1 2 Tn
V(z) = / V‘/;T(:cl, 0,...,0)dz1 + / (3;1, 22,0,...,0)dzo + ...+ / VVnT(:L'l, x2,...,Tn)dTy
0 0 0
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es: si consideri il sistema

1T = —I
: 2
T = —T2+ T1T5
e si scelga la seguente forma per VV (x)
VVi = aii1z1 + aixxo
VVo = a2121 + a2
la condizione di simmetria
da11 daio Oaoo dao1
1 + a12 + x2 = x> + a21 + 71
85132 8%2 8:c1 3%1

Si puo soddisfare ponendo aip» = a»1 = COSt e a11 = cost, ar» = cost.

provare con ais> = a»1 = 0, cioe VVi; = a11x1 € VVo = axxr. Ne segue

V(z) = (a1121 asxo)ld = —allm% — aggm%(l — x1X2)

Ad esempio, si puo

che, se a1 > 0, azxx > 0, risulta DN in qualsiasi intorno dell’origine tale che zi1zo < 1 (ad
esempio, la crf di raggio 1). Proviamo dunque a porre ai1 = azp = 1. Troviamo

1 1,

I T2
Viz) = / r1dx1 —I—/ Todros = 5:5‘% + 5:1:2 DP in qualsiasi intorno dell'origine
0 0

= |'origine € un pde AS
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Teorema dell’insieme invariante

spesso la funzione di Lyapunov scelta ha una derivata V(z) che & solo SDN (e non DN); in
queste condizioni, si pud concludere la stabilita semplice di . ma non |'eventuale stabilita
asintotica (cfr: la prima funzione di Lyapunov per il pendolo)

in queste condizioni, il teorema dell’insieme invariante consente di analizzare piu a fondo
la situazione

un sottoinsieme G C IR" dello spazio di stato si dice insieme invariante per un sistema

dinamico = = f(xz) se qualsiasi traiettoria z(¢) del sistema che parte da un punto zg € G
rimane indefinitamente in G

€ una generalizzazione del concetto di punto di equilibrio; esempi di insiemi invarianti:
e qualsiasi punto di equilibrio
e il dominio di attrazione di un punto di equilibrio AS

e qualsiasi traiettoria del sistema (purché questo sia stazionario)

e IR" stesso
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idea di base

se V(z) & DP in un intorno di z. e V(z) & SDN nello stesso intorno = partendo da qualunque
punto dell’intorno, V(t) tende a zero e V(t) tende a un valore limite

Teorema locale dell’insieme invariante [LaSalle]

per un sistema = = f(x), si assuma che esista una funzione V(z) € C! tale che:
1. la regione Q, = {z € R": V(z) < a} sia limitata, per qualche a > 0
2. V(z) <0 in £,

allora, ogni traiettoria del sistema che parte da 2, tende asintoticamente all'insieme M, il
massimo insieme invariante contenuto in P, lI'insieme dei punti di €2, dove V =20

qui: massimo insieme invariante contenuto in P = unione di tutti i sottoinsiemi invarianti di P

| |
Ta

v

xy

si noti come il criterio di AS sia un caso particolare di questo teorema con P = M = x,
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I'uso del teorema dell’'insieme invariante consente, in certi casi, di concludere la stabilita
asintotica anche in presenza di una V SDN

in particolare, si pu0 enunciare il seguente

Corollario [LaSalle]

un pde z. di un sistema z = f(x) & asintoticamente stabile se esiste una funzione V(z) € C*
tale che

1. V(x) sia DP in un insieme D che contiene z. al suo interno
2. V(x) sia SDN nello stesso insieme

3. il massimo insieme invariante M contenuto in P (I'insieme dei punti di D per cui V = 0)
contenga solo z.

inoltre, detta €2, una regione limitata definita dalla V(z) < «, a > 0 e contenuta in D, si ha
che 2, costituisce una stima per difetto del dominio di attrazione per =z,

e rispetto al criterio diretto di AS di Lyapunov, questo corollario ‘rilassa’ |la condizione
2 (DN — SDN) ma aggiunge la 3; inoltre la condizione 1 del corollario garantisce la
condizione 1 del Teorema Locale dell'Insieme Invariante

e l'insieme D di per sé non & una stima del dominio di attrazione (in sostanza, alcune
delle curve di livello che cadono in D possono essere aperte, e dunque esso risulterebbe
non invariante)
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es: riprendiamo in esame il pendolo con |la prima funzione di Lyapunov

1
V(z) = Eac% + g(1 — cosz) DP in S(0,n7)

si ha

V(x) = xo@s + gsinzid1 = —x3 SDN in qualsiasi intorno dell’origine

come gia osservato, questo ci consente di dire che :r;SOW” = (0,0) & un pde stabile per il
pendolo; ma il teorema dell'insieme invariante dice qualcosa in piu

I'insieme P & costituito dagli stati in S(0,7~) per cui V = 0, ovvero dai punti di S(0,77)
aventi x> = 0O; qual é il massimo insieme invariante M contenuto in P7?

la dinamica del sistema in P &

0
—gsSinxy

1

T2
se 1 = 0, si ha 22 # 0 e quindi z, varia, facendo uscire la traiettoria z(¢) dall'insieme P

= l'insieme M consiste solo dell’origine, cui dunque converge qualsiasi traiettoria

dunque z9°%" & un pde asintoticamente stabile per il pendolo

nota: in effetti la V(z) € DP in S(0,27x~); abbiamo ristretto I'analisi a S(0,27~) perché altrimenti M avrebbe
compreso oltre a xg'OW” anche i punti (0,+7), ciog z:°! e non avremmo potuto concludere la AS di :cSOW”

dominio di attrazione: si pud stimare (per difetto) come I'insieme delimitato dalla pit ampia linea di livello
di V contenuta all'interno di S(0,277) u
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il teorema dell'insieme invariante ammette ovviamente una versione globale

Teorema globale dell’insieme invariante [LaSalle]

per un sistema z = f(z), si assuma che esista una funzione V(x) € C*! tale che:
1. V(z) sia radialmente illimitata
2. V(z) <0 in tutto R"

allora, ogni traiettoria del sistema tende asintoticamente all’'insieme M, il massimo insieme
invariante contenuto in P, l'insieme dei punti di IR" dove V =20

nota: il fatto che V(z) sia radialmente illimitata garantisce che qualsiasi regione Q, = {z € R" : V(x) < a},
con « > 0, sia limitata

cui corrisponde il seguente

Corollario [LaSalle]

un pde z. di un sistema =z = f(x) € globalmente asintoticamente stabile se esiste una
funzione V(z) € C! tale che

1. V(x) sia DP in qualsiasi intorno di x. e radialmente illimitata
2. V(z) sia SDN in qualsiasi intorno di x.

3. i! massimo insieme invariante M contenuto in P (I'insieme dei punti di IR" per cui
V = 0) contenga solo z.

Oriolo: Teoria della stabilita per sistemi non lineari 41



es. si consideri la famiglia di sistemi non lineari del secondo ordine descritta da

z2+b(2)+c(z) =0

dove le funzioni generiche b e ¢ sono continue e verificano le condizioni

2b(2) >0,V2 £ 0 ze(2) >0,V2 # 0

si noti che queste condizioni, insieme alla continuita, implicano che 5(0) =0, ¢(0) =0

b(z) c(z2)

Y

|

fanno parte di questa famiglia i sistemi meccanici massa-molla-smorzatore (con molla e
smorzatore non lineari, rappresentati rispettivamente dalla forza di richiamo elastica c(z) e

dalla forza di attrito b(2)) e i circuiti elettrici RLC (con resistenza b(2) e capacita ¢(z) non
lineari)
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si consideri il punto di equilibrio z. = (2., 2.) = (0,0); una candidata di Lyapunov & I'energia
totale del sistema (ad esempio, cinetica + potenziale)

1. o
V@) =324+ [ cwy
2 0
che e DP in qualsiasi intorno di x.

Si ha
V(z) =224+ c(2)z = —2b(2) — 2¢(2) + c(2)2 = —2b(2)

che nelle ipotesi del problema & SDN in qualsiasi intorno di 2z, = 0

I'insieme P & costituito dagli stati per cui V = 0, ovvero dai punti aventi 2 = 0; qual & il
massimo insieme invariante M contenuto in P7?

la dinamica del sistema in P &

z2 = —c(z2)

se z #, si ha Z # 0 e quindi z varia, facendo uscire la traiettoria z(¢) dall'insieme P =
I'insieme M consiste solo dell’origine, cui dunque converge qualsiasi traiettoria

dunque I'origine € un pde asintoticamente stabile per il sistema

inoltre, se foz c(y)dy € illimitato per |z| — oo, V(z) risulta essere radialmente illimitata, e
quindi z. € un pde globalmente asintoticamente stabile m
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Criterio indiretto di Lyapunov

idea di base

analizzare la stabilita dell’approssimazione lineare del sistema intorno al punto di equilibrio
Te. IN certe condizioni, & possibile trarre da cid conclusioni sulla stabilita o meno di z. per
il sistema originario

Ssi consideri il generico sistema non lineare

= f(x) con z. pde, cioe f(xe) =0

nell'ipotesi che f € C°, la si pu0 sviluppare in serie di Taylor nell’intorno di x.

df

flz) = f(ze) + % (x — x) + h(x — ze) = J(x)(x — xe) + h(T — )

dove h(x — z.) raccoglie gli (infiniti) termini di grado superiore al primo e J(z.) € la matrice
Jacobiana di f rispetto a x, calcolata in x.

effettuiamo una trasformazione di coordinate

£ =1z — e — =i = f(z) = J(xe)& + h(€)

nell'intorno di z., i termini di ordine superiore sono trascurabili rispetto a quello lineare =
Si puO associare al sistema non lineare originario la seguente approssimazione lineare

é = J(x)&

che & naturalmente tanto piu accurata quanto piu lo stato é prossimo a xz.
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I’analisi dell’approssimazione lineare ¢ = J(z.)¢ conduce a risultati interessanti sul sistema
non lineare originario z = f(x)

Teorema

se la matrice J(z.) € non singolare, z. &€ un pde isolato del sistema non lineare

dim per assurdo: se cid non fosse vero, in qualsiasi intorno di . cadrebbe almeno un punto
z!, tale che f(zl) = f(xz.) = 0; si avrebbe allora

fl@e) = f(xe) + J () (we — we) + h(x, — xe) =0 = J(x) (2, — @) + h(z, — @) =0

poiché z! varia, tale condizione richiede di fatto che siano nulli entrambi gli addendi,
in particolare, deve essere J(z.)(z, — x.) = 0, che perd contraddice il fatto che J(x.)
sia non singolare n

il viceversa non & vero; pud accadere che z. sia isolato e J(z.) risulti singolare

es: si consideri il sistema non lineare

1

I
8
=

2

I
8
N

il cui unico pde e l'origine; tuttavia

J(xe) = ( 281 (; )

che é singolare n
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il risultato piu forte e il seguente

Teorema | (criterio indiretto di stabilita di Lyapunov)

2.

si consideri I’approssimazione lineare ¢ = J(z.)¢ di un sistema non lineare # = f(z) intorno
a un suo punto di equilibrio x.

1.

se tutti gli autovalori di J(z.) hanno parte reale negativa (= I'approssimazione lineare
e AS) z. € un pde asintoticamente stabile per il sistema non lineare

se almeno uno degli autovalori di J(x.) ha parte reale positiva (= I'approssimazione
lineare € I) x. € un pde instabile per il sistema non lineare

dim
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basata sull’applicazione del criterio diretto di Lyapunov: in particolare, si dimostra che
una funzione di Lyapunov per I'approssimazione lineare risulta essere tale anche per il
sistema non lineare

comunque: la tesi e intuitiva per continuita N

la stabilita asintotica dell’origine dell’approssimazione lineare (che & sempre globale)
consente di concludere solo la stabilita asintotica locale di z. per il sistema non lineare

in effetti il teorema contiene anche un criterio di instabilita

se nessun autovalore di J(x.) ha parte reale positiva, ma qualcuno di essi ha parte reale
nulla (= I'approssimazione lineare &€ SS o I, a seconda della relazione tra molteplicita
geometrica e algebrica per questi autovalori) si € nel caso critico: non si pud concludere
nulla sulla natura del pde z. per il sistema non lineare (sono decisivi i termini di ordine
superiore al primo)
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es: riprendiamo ancora in esame il pendolo

1 01

To —gsin r1 — I

dx —g COSxq

la matrice Jacobiana é

e nell’intorno del pde z9°"" = (0,0) si ha

sy = 4

dx

({0 1
xdown_ _g _1

il cui polinomio caratteristico & )2 + A4 g; quindi I'approssimazione lineare del pendolo
nell'intorno di zd°V" & AS

—— xSOW” e un pde asintoticamente stabile per il pendolo

(0 1
xUp_ g —1

il cui polinomio caratteristico & )\2—|—)\—g; quindi I'approssimazione lineare del pendolo
nell’intorno di xtP e 1

e nell'intorno del pde zY? = («,0) si ha

e

d
e =2

— z.P € un pde instabile per il pendolo n
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spesso, tuttavia, il criterio indiretto non e risolutivo perché ci si trova nel caso critico; in
questi casi si deve ricorrere al criterio diretto, che & piu potente (e, con |'aiuto del teorema
dell'insieme invariante, consente anche di stabilire I'eventuale dominio di attrazione, che
non & direttamente analizzabile con il metodo indiretto)

es: si consideri il sistema non lineare

avente come unico pde z. =0

la Jacobiana & in questo caso uno scalare

d
J(ze) = é = —3z?

Le

=0

Le

e dunque I'approssimazione lineare del sistema intorno a z. € é’ — 0 = siamo nel caso critico

Ssi consideri allora |la seguente candidata di Lyapunov
1 2

V(z) = Eaz DP in qualsiasi intorno dell’origine, e radialmente illimitata
Si ha
V(z) = —z* DN in qualsiasi intorno dell’origine
= x. = 0 & dunque un pde GAS per il sistema (prevedibile, cfr. esempio slide 31) n
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