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Introduzione

consideriamo un generico sistema dinamico non lineare stazionario

ẋ = f(x, u)
y = g(x)

con stato x ∈ IRn, ingresso u ∈ IRp, uscita y ∈ IRq

problema tipico

calcolare, dati x0 = x(0) e u[0,t], lo stato x(t) e l’uscita y(t) per valori di t > 0

es: nei sistemi lineari, dove f(x, u) = Ax+Bu, si ha

x(t) = eAtx0 +

∫ t

0
eA(t−τ)Bu(τ)dτ

tuttavia

spesso non si ha interesse a stabilire esplicitamente la soluzione, ma piuttosto a determinarne
alcune proprietà come limitatezza, comportamento asintotico, . . .

=⇒ teoria qualitativa delle equazioni differenziali (Poincaré 1880, Lyapunov 1892, LaSalle
e Lefschetz 1947. . . )
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idea di base

valutare il comportamento qualitativo del sistema in corrispondenza a perturbazioni dello
stato iniziale e dell’ingresso del sistema rispetto a valori nominali

indicata con x(t) l’evoluzione dello stato in corrispondenza a x0 e u[0,t], ci si chiede:

• cosa succede se x0 → x0 + ∆x0?

• cosa succede se u(t)→ u(t) + ∆u(t)?

in particolare:

• quanto è prossima l’evoluzione perturbata a quella nominale?

• sotto quali condizioni le due soluzioni tendono a coincidere per t→∞?

qualitativamente, appare naturale chiamare

• stabile un sistema nel quale piccole perturbazioni danno luogo a piccoli scostamenti

• instabile un sistema nel quale piccole perturbazioni danno luogo ad ampi scostamenti
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teoria della stabilità

definizioni

proprietà di stabilità (diversi tipi in relazione al comportamento del sistema e alle esigenze
applicative) e di instabilità

condizioni

che un sistema deve soddisfare per godere dell’una o dell’altra di queste proprietà

criteri

per verificare la sussistenza o meno delle condizioni senza calcolare esplicitamente la soluzione
perturbata del sistema

es: nei sistemi lineari

• definizione di stabilità, stabilità asintotica, instabilità

• condizione di stabilità asintotica: limt→∞ x(t)|u≡0 = limt→∞ eAtx0 = 0

• criteri di stabilità asintotica: σ(A) ∈ IC−, criterio di Routh, oppure criterio di Nyquist
per sistemi retroazionati
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generalmente si considera il comportamento di sistemi in evoluzione libera

ẋ = f(x)

rispetto a perturbazioni dello stato iniziale x0

infatti:

• scelta una legge di controllo in retroazione u = h(x), la dinamica ad anello chiuso
diventa

ẋ = f(x, h(x)) = f ′(x)

cioè appunto un (nuovo) sistema in evoluzione libera

• anche ad anello aperto, se la perturbazione sull’ingresso è non persistente

ũ(t) =

{
u(t) + δ(t) t ∈ [0, t1]
u(t) t > t1

il problema si riconduce allo studio dell’effetto di una perturbazione (e cioè x(t1)) sullo
stato iniziale
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Definizioni

un importante concetto preliminare: punto di equilibrio

uno stato xe ∈ IRn è un punto di equilibrio (pde) per il sistema ẋ = f(x) se, posto x0 = xe,
si ha x(t) ≡ xe, ∀t > 0

nota: si tratta di una traiettoria degenere del sistema

matematicamente:

xe è un pde ⇐⇒ f(xe) = 0

i pde sono perciò gli zeri della funzione vettoriale f(x)

es: nei sistemi lineari ẋ = Ax, i pde sono i punti xe tali che

Axe = 0, cioè xe ∈ N (A)

• se A è non singolare, l’unico pde è l’origine

• se A è singolare, i pde sono infiniti e contigui: geometricamente, sono iperpiani
passanti per l’origine (rette se dim(N (A)) = 1, piani se dim(N (A)) = 2, . . . )
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es: pendolo di lunghezza ` e massa m in presenza di attrito viscoso di coefficiente d

m `2 θ̈ + d θ̇ +mg ` sin θ = 0

ponendo x = (x1, x2) = (θ, θ̇), l’equazione nello spazio di stato è

ẋ1 = x2

ẋ2 = −
g

`
sinx1 −

d

m`2
x2

=⇒ f(x) = (x2 − g
`

sinx1 − d
m`2 x2)T ; sistema non lineare!

quindi, i punti di equilibrio sono caratterizzati da x1 = jπ (j = 0,±1,±2, . . .) e x2 = 0 (e
cioè, pendolo (i) verticale verso il basso/l’alto e (ii) fermo)
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ecco le traiettorie del pendolo nel piano (x1, x2) = (θ, θ̇) (piano delle fasi)
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es: ancora un sistema non lineare

ẋ1 = 1− x3
1

ẋ2 = x1 − x2
2

i pde sono caratterizzati da x1 = 1 e x2 = ±1

nota: i pde di un sistema non lineare possono essere in numero finito (2 nei precedenti
esempi, ma eventualmente nullo) o infinito, ed essere punti isolati nello spazio di stato
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definizioni di stabilità (secondo Lyapunov)
(nel seguito, | · | indica una qualsiasi norma di IRn)

un pde xe si dice stabile (S) se:

∀ε, ∃ δ(ε) : |x0 − xe| < δ ⇒ |x(t)− xe| < ε, ∀t > 0

xe

ǫ

xe

δ

xe
x0

xe
x0

∀ε ∃ δ(ε) |x0 − xe| < δ |x(t)− xe| < ε, ∀t > 0

un pde xe di un sistema dinamico è stabile se è possibile mantenere l’evoluzione del sistema
arbitrariamente vicina a xe prendendo la condizione iniziale x0 sufficientemente vicina a
xe; ovvero, se nell’intorno di xe è possibile limitare a piacimento lo scostamento limitando
opportunamente la perturbazione

ovviamente: un pde xe si dice instabile se non è stabile
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• la stabilità è una proprietà dei pde, non del sistema: lo stesso sistema può avere sia
pde stabili che instabili (accade nei sistemi non lineari, es: pendolo)

• nella definizione di stabilità non si richiede che lo stato perturbato tenda a convergere
verso xe

• d’altra parte, nella definizione di instabilità non si richiede che l’evoluzione perturbata
tenda a divergere

es: oscillatore di Van der Pol (sistema MMS con damping dipendente dalla posizione)

ẋ1 = x2

ẋ2 = −x1 + (1− x2
1)x2
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le traiettorie nello spazio di stato mostrano che,
indipendentemente dalla condizione iniziale,
lo stato converge ad un ciclo limite: quindi,
è impossibile limitare a piacimento lo scostamento
da 0 (ad es., se si pone ε = 1 non esiste alcun δ)

⇒ l’origine è un pde instabile per il sistema
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in pratica, spesso la stabilità semplice non basta:

un pde xe si dice asintoticamente stabile (AS) se:

1. è stabile

2. ∃ δa : |x0 − xe| < δa ⇒ lim
t→∞
|x(t)− xe| = 0

• in aggiunta alla stabilità, si richiede la convergenza a xe se la condizione iniziale è
sufficientemente vicina a xe

• la stabilità asintotica è un concetto locale, nel senso che la convergenza si ha se x0

appartiene all’intorno di xe avente raggio δa (dominio di attrazione); all’esterno di
tale intorno si può avere semplice limitatezza o persino divergenza!

• la 2. non implica la 1.; è possibile cioè avere la convergenza senza la stabilità (qualche
volta pde di questo tipo si definiscono quasi-stabili asintoticamente, ma sono a tutti
gli effetti pde instabili)
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es: (dovuto a Vinograd)

ẋ1 =
x2

1(x2 − x1) + x5
2

(x2
1 + x2

2)(1 + (x2
1 + x2

2)2)

ẋ2 =
x2

2(x2 − 2x1)

(x2
1 + x2

2)(1 + (x2
1 + x2

2)2)

le traiettorie nello spazio di stato mostrano che,
indipendentemente dalla distanza di x0 dall’origine,
se x1,0 < 0 lo stato converge all’origine dopo aver
toccato una curva che si trova a distanza finita
da 0: quindi, è impossibile limitare a piacimento
lo scostamento dall’origine

⇒ l’origine è un pde quasi-stabile asintoticamente (ma instabile) per il sistema
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tuttavia, nelle applicazioni, è spesso necessario disporre di una stima del tempo necessario
perché lo stato perturbato ritorni in xe:

un pde xe si dice esponenzialmente stabile (ES) se esistono costanti positive α, λ e c tali
che:

|x(t)− xe| ≤ α|x0 − xe|e−λt, ∀t > 0, ∀|x0 − xe| < c

• in pratica, si richiede che esista un intorno di xe a partire dal quale la traiettoria
perturbata converge a xe con velocità almeno esponenziale (anche questo è un concetto
locale)

• λ viene detto tasso di convergenza esponenziale; posto α = eλτ0, si trova facilmente
che dopo (τ0 + 1/λ) secondi la distanza da xe si è ridotta ad almeno 1/e (circa il 35%)
del suo valore iniziale

• la stabilità esponenziale implica la stabilità asintotica (e quindi la stabilità); il viceversa
non è vero

es: l’origine è un pde asintoticamente ma non esponenzialmente stabile per il sistema

ẋ = −x2

infatti, la soluzione è x(t) = x0
1 + tx0

, che converge a zero più lentamente di qualsiasi

funzione esponenziale

Oriolo: Teoria della stabilità per sistemi non lineari 12



le proprietà di stabilità asintotica e stabilità esponenziale, che sono intrinsecamente locali,
possono anche essere globali

• un pde si dice globalmente asintoticamente stabile (GAS) se è stabile e lo stato
converge a xe per qualsiasi stato iniziale (il dominio di attrazione coincide con tutto
IRn)

• un pde si dice globalmente esponenzialmente stabile (GES) se lo stato converge
esponenzialmente a xe per qualsiasi stato iniziale

riassumendo, si ha la seguente classificazione dei pde stabili

S

AS

GAS ESGES

nota: xe può essere GAS solo se è l’unico pde del sistema (C.N.)
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Stabilità dei sistemi lineari

Teorema

se un sistema lineare ammette più di un pde, la stabilità (instabilità) di uno di essi implica
ed è implicata da quella di tutti gli altri

dim basta mostrare che, se il generico pde xe è stabile, lo è anche l’origine, e viceversa

per ipotesi ∀ε, ∃ δ(ε) : |x0 − xe| < δ ⇒ |x(t)− xe| < ε, ∀t > 0

x(t)− xe è la differenza tra la risposta a partire da x0 e quella a partire da xe ⇒ per la
linearità, x(t)− xe è la risposta a partire da x0 − xe = z0, che indicheremo con xz0(t)

si ha dunque ∀ε, ∃ δ(ε) : |z0| < δ ⇒ |xz0(t)| < ε, ∀t > 0, cioè la stabilità dell’origine

analogamente si prova il ‘è implicata’

Teorema

in un sistema lineare:

1. si può avere stabilità asintotica solo per l’origine e solo nel caso in cui sia l’unico pde

2. se l’origine è AS, è anche GAS

dim 1: l’origine è sempre un pde, se ci sono altri pde sono contigui all’origine (cfr. slide 5)

2: ovvia per sistemi stazionari a dimensione finita, considerando che affinchè l’evoluzione
libera x(t) = eAtx0 converga da un intorno dell’origine è necessario che gli autovalori di
A abbiano parte reale negativa, il che implica che l’evoluzione libera converge da ∀x0
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Teorema

in un sistema lineare, l’origine è ES se e solo se è AS

dim necessità: ovvia

sufficienza: ovvia per sistemi stazionari a dimensione finita, poiché se l’origine è AS
l’evoluzione libera è combinazione di esponenziali convergenti

riassumendo, nei sistemi lineari:

• se l’origine è l’unico pde, può essere S, AS (in effetti ES), oppure I
• se ci sono più pde, sono infiniti, contigui e sono tutti S oppure tutti I
• in ogni caso, è lecito parlare di stabilità, stabilità asintotica (in effetti esponenziale) o

instabilità del sistema nel suo complesso

il seguente criterio di stabilità è immediato per sistemi stazionari a dimensione finita

Teorema

un sistema lineare stazionario a dimensione finita è S se e solo se

1. gli autovalori di A con molteplicità geometrica pari a quella algebrica hanno Re [ ] ≤ 0

2. gli autovalori di A con molteplicità geometrica minore di quella algebrica hanno Re [ ]< 0

il sistema è AS (in effetti ES) se e solo se tutti gli autovalori di A hanno Re [ ] < 0

oppure, per evitare il calcolo degli autovalori: criterio di Routh
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Criterio diretto di Lyapunov

idea di base

se l’energia totale di un sistema (meccanico, elettrico, . . . ) viene continuamente dissipata,
il sistema (lineare o non lineare) tende a un punto di equilibrio ⇒ è possibile studiare la
stabilità del punto esaminando un’unica funzione scalare

es: sistema MMS non lineare

m

z

nonlinear spring

nonlinear damper
mz̈ + d ż|ż|+ (k0z + k1z3) = 0

unico pde: origine, ma è impossibile studiarne la stabilità usando le definizioni, poiché non
siamo in grado di ottenere la soluzione dell’equazione

invece: esaminiamo l’energia meccanica! posto x = (z, ż), si ha

V (x) = Vcin(ż) + Vpot(z) =
1

2
mż2 +

∫ z

0
(k0ζ + k1ζ

3)dζ =
1

2
mż2 +

1

2
k0z

2 +
1

4
k1z

4
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relazioni energia/stabilità

• si ha energia nulla solo se z = 0, ż = 0, cioè nell’origine

• se l’energia converge (sempre) a zero, ne segue la stabilità asintotica (globale) dell’origine

• se l’energia diverge, ne segue l’instabilità dell’origine

come varia l’energia durante il moto del sistema? basta derivare V rispetto a t (di cui è
funzione composta) e sostituire a z̈ l’espressione che se ne ricava dal modello dinamico

V̇ (x) = mżz̈ + (k0z + k1z
3)ż = −d|ż|3

⇒ l’energia viene continuamente dissipata e il sistema converge ad uno stato con velocità
nulla (ż = 0); d’altra parte, poiché in qualsiasi posizione diversa da z = 0 la massa sarebbe
soggetta a una forza di richiamo −k0z−k1z3 non nulla, è evidente che il sistema converge
in effetti all’origine (z = 0, ż = 0)

il metodo diretto di Lyapunov si basa appunto su una generalizzazione (e una formalizzazione
rigorosa) di questo concetto: si cerca un’opportuna funzione scalare energy-like per il
sistema dinamico non lineare in esame, e se ne esamina la variazione nel tempo lungo le
traiettorie del sistema
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nel seguito, faremo riferimento al generico sistema non lineare stazionario

ẋ = f(x) x ∈ IRn

e indicheremo con xe il pde da studiare; dunque, f(xe) = 0

concetti preliminari: data una funzione scalare V (x), continua e derivabile rispetto a x
(V ∈ C1), e detto S(xe, r) un intorno sferico di xe di raggio r

• V (x) si dice definita positiva (DP) in S(xe, r) se

a) V (xe) = 0

b) V (x) > 0, ∀x ∈ S(xe, r), x 6= xe

• V (x) si dice semidefinita positiva (SDP) in S(xe, r) se

a) V (xe) = 0

b) V (x) ≥ 0, ∀x ∈ S(xe, r), x 6= xe

• V (x) si dice definita negativa (DN) in S(xe, r) se −V (x) è definita positiva, semidefinita
negativa (SDN) in S(xe, r) se −V (x) è semidefinita positiva

• V (x) si dice indefinita (I) in S(xe, r) se non è DP, SDP, DN o SDN

nota: V (x) DP (DN) in S(xe, r) ⇒ V (x) SDP (SDN) in S(xe, r)
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caso n = 2: rappresentazione grafica locale di una funzione V DP in xe

es: in IR2, la funzione V (x) = xTx = x2
1 + x2

2 è DP in qualsiasi intorno dell’origine (le curve
di livello sono chiuse)

es: in IR2, la funzione V (x) = x2
1 è SDP in qualsiasi intorno dell’origine (si annulla su tutto

l’asse x2; le curve di livello sono aperte)

es: in IR2, la funzione V (x) = x1x2 è I in qualsiasi intorno dell’origine (ci sono sempre punti
dell’intorno dove è positiva e punti dove è negativa)

es: per il sistema MMS non lineare, l’energia meccanica V (x) è DP in qualsiasi intorno
dell’origine
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data una funzione V (x), e considerata una soluzione x(t) della ẋ = f(x), si può riguardare
la V (x(t)) come una funzione composta di t, continua e derivabile per ogni t; si ha quindi

V̇ (t) =
dV (x(t))

dt
=

n∑
i=1

∂V

∂xi

dxi

dt
=

n∑
i=1

∂V

∂xi
fi(x(t)) = V̇ (x)

dove fi(x(t)) è la i-esima componente della funzione vettoriale f(x)

la V̇ (x), considerata come una funzione della sola x, viene chiamata la derivata di V lungo
le traiettorie del sistema

alla V̇ (x) è quindi ancora possibile attribuire le proprietà di definitezza positiva, negativa,
semidefinitezza positiva, etc.

es: si consideri il sistema dinamico

ẋ1 = x2

ẋ2 = −x1 − x2

il cui unico pde è l’origine, e si ponga V = x2
1 + x2

2, che è DP intorno all’origine; si ha

V̇ (x) = 2x1ẋ1 + 2x2ẋ2 = 2x1x2 − 2x1x2 − 2x2
2 = −2x2

2

che è SDN intorno all’origine
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Teorema

un pde xe di un sistema ẋ = f(x) è stabile se esiste una funzione V (x) ∈ C1 tale che

1. V (x) sia DP in un intorno S(xe, r)

2. V̇ (x) sia SDN nello stesso intorno

dim di tipo geometrico, per n = 2 (ma valida in generale)

si noti intanto che, poiché V (x) è DP in S(xe, r), le linee di livello Uk = {x ∈ IR2 : V (x) = k}
sono chiuse per k sufficientemente piccolo; inoltre, se k1 < k2, Uk1

è interna a Uk2

x2

x1

xe

S(x  ,r)e

Uk1

Uk2
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x2

x1

xe

Uk

S(x  ,r  )e 1

S(x  ,r  )e 2

x0

scelto r1 tale che 0 < r1 ≤ r, esiste certamente un valore k tale che Uk è interna a S(xe, r1)
(basta prendere il valore minimo di V lungo la frontiera di S(xe, r1), che esiste ed è positivo
perché V è continua, e scegliere k minore di tale valore); dunque Uk è chiusa

inoltre, poiché Uk è una curva chiusa che contiene xe, è sempre possibile trovare r2 tale che
S(xe, r2) è interno a Uk

si consideri una traiettoria che origina da x0 ∈ S(xe, r2); si ha V (x0) < k ed essendo V̇
negativa o nulla lungo le traiettorie del sistema contenute in S(xe, r), la V (x(t)) è non
crescente nello stesso intorno

⇒ si ha V (x(t)) < k, ∀t > 0, e dunque lo stato x(t) si mantiene all’interno di S(xe, r1)
indefinitamente

quindi:

|x0−xe| < r2 ⇒ |x(t)−xe| < r1, ∀t > 0 c.d.d.
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• una funzione V (x) che gode delle proprietà richieste dal teorema (cioè tale che V sia
DP e V̇ sia SDN in un intorno di xe) si definisce funzione di Lyapunov

• il teorema stabilisce dunque che l’esistenza di una funzione di Lyapunov è condizione
sufficiente per la stabilità; in effetti, per sistemi stazionari a dimensione finita si può
mostrare che la condizione è anche necessaria

• l’applicazione del teorema passa attraverso due fasi, eventualmente ripetute:

1. costruzione di una V (x) DP in un intorno di xe (detta candidata di Lyapunov)

2. calcolo della V̇ lungo le traiettorie del sistema e verifica della sua SDN nell’intorno

nota: se la V (x) scelta non risulta essere una funzione di Lyapunov, non si può
concludere nulla; potrebbe esisterne un’altra

• se V (x) è una funzione di Lyapunov per un sistema, lo è anche la funzione

V ′(x) = βV γ(x) β > 0, γ > 1

• la scelta della candidata di Lyapunov è ovviamente cruciale: nei sistemi meccanici ed
elettrici si può provare a scegliere l’energia totale, ma possono esistere scelte migliori
che non hanno un’immediata interpretazione fisica
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es: pendolo (per semplicità, m = 1, d = 1, ` = 1)

il vettore di stato è x = (x1, x2) = (θ, θ̇)

ẋ1 = x2

ẋ2 = −g sinx1 − x2

posto xdown
e = (0,0), proviamo con l’energia meccanica

V (x) =
1

2
x2

2 + g(1− cosx1) DP in S(0,2π−)

si ha

V̇ (x) = x2ẋ2 + g sinx1ẋ1 = −x2
2 SDN in S(0,2π−) (in effetti, in qualsiasi intorno)

dunque xdown
e è un pde stabile per il pendolo (e V̇ è la potenza dissipata)

però: l’intuizione fisica ci dice che, in presenza di attrito, l’origine è un pde asintoticamente
stabile per il pendolo ⇒ ci serve un teorema più forte
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Teorema

un pde xe di un sistema ẋ = f(x) è asintoticamente stabile se esiste una funzione V (x) ∈ C1

tale che

1. V (x) sia DP in un intorno S(xe, r)

2. V̇ (x) sia DN nello stesso intorno

dim intanto, xe è certamente stabile; in particolare, se x0 ∈ S(xe, r2) (cfr. dimostrazione
precedente) la traiettoria rimane in S(xe, r1) indefinitamente ⇒ V (t) lungo la traiettoria
tende a un valore limite V̄ ≥ 0 (perché V̇ < 0 e V è limitata inferiormente da zero)

supponiamo V̄ > 0; poiché V è continua e si azzera solo in xe, esiste un intorno S(xe, σ) in
cui la traiettoria non entra mai ⇒ poiché anche V̇ è continua e si azzera solo in xe, esiste
un α > 0 tale che V̇ ≤ −α indefinitamente

ma allora avremmo

V (t) = V (0) +

∫ t

0
V̇ (τ)dτ ≤ V (0)− αt

e quindi V diventerebbe negativa dopo un tempo finito, contraddicendo l’assunzione V̄ > 0

quindi, se x0 ∈ S(xe, r2) si ha limt→∞ V (t) = 0; quindi, essendo V (x) nulla solo per x = xe,
implica che limt→∞ x(t) = xe, c.d.d.

nota: estrapolando le proprietà di S(xe, r2) dalla prova del criterio di stabilità precedente, si conclude che

qualsiasi intorno di xe contenuto in UV ∗ (dove V ∗ è il valore minimo di V lungo la frontiera di S(xe, r)) è

una stima (per difetto) del dominio di attrazione di xe
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es: si consideri il sistema

ẋ1 = x1(x2
1 + x2

2 − 1)− x2

ẋ2 = x1 + x2(x2
1 + x2

2 − 1)

per il quale l’origine è un punto di equilibrio

scelta

V (x) =
1

2
x2

1 +
1

2
x2

2 DP in qualsiasi intorno dell’origine

si ha

V̇ (x) = (x2
1 + x2

2)(x2
1 + x2

2 − 1) DN per x : x2
1 + x2

2 < 1, ovvero in S(0,1−)

l’origine è dunque asintoticamente stabile per il sistema in questione

per stimare il dominio di attrazione:

si ponga UV ∗ = {x ∈ IR2 : V (x) ≤ 1/2} = S(0,1−); scelto ρ ∈ (0,1), qualunque intorno S(0, ρ)
è contenuto in UV ∗ e dunque costituisce una stima (per difetto) del dominio di attrazione
dell’origine
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es: pendolo; prendiamo la seguente candidata di Lyapunov (nessuna interpretazione fisica)

V (x) =
1

2
x2

2 + 2g(1− cosx1) +
1

2
(x1 + x2)2 DP in qualsiasi intorno dell’origine

si trova

V̇ (x) = −x2
2 − gx1 sinx1 DN in qualsiasi intorno dell’origine tale che x1 ∈ (−π, π)

dunque xdown
e è un pde asintoticamente stabile per il pendolo

dominio di attrazione: la convergenza all’origine è garantita da stati iniziali interni a linee
di livello interamente contenute nella regione dove V̇ è DN, ma non a partire da stati
iniziali interni a linee di livello che escono da tale regione, da cui può verificarsi divergenza
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cosa succede se cerchiamo di applicare i teoremi precedenti al punto di equilibrio xup
e = (π,0)

del pendolo? l’intuizione fisica ci dice che xup
e è instabile, ma la condizione necessaria

(e sufficiente) di stabilità è l’esistenza di una funzione di Lyapunov, che non possiamo
escludere a priori ⇒ è utile disporre di un criterio di instabilità

Teorema [Cetaev]

un pde xe di un sistema ẋ = f(x) è instabile se esiste una funzione V (x) ∈ C1 tale che

1. l’insieme P = {x : V (x) > 0} ha xe come punto di accumulazione (pda)

2. V̇ (x) sia DP in U = P ∩ S(xe, r), per qualche r > 0

es: il teorema di Cetaev mostra che il pde xe = (0,0) è instabile per il sistema dinamico

ẋ1 = x1 + x2
2

ẋ2 = −x2

si consideri V (x) = 1
2
x2

1 −
1
2
x2

2, che è positiva in P = {x : |x1| > |x2|}, di cui xe è pda

xe
1

U

x2

x1

U

si ha

V̇ (x) = x2
1 + x1x2

2 + x2
2 = x2

1 + x2
2(1 + x1)

che è chiaramente DP in U = P ∩ S(xe,1)
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è disponibile anche un criterio di stabilità asintotica globale

Teorema

un pde xe di un sistema ẋ = f(x) è globalmente asintoticamente stabile se esiste una
funzione V (x) ∈ C1 tale che

1. V (x) sia DP in qualsiasi intorno di xe

2. V̇ (x) sia DN in qualsiasi intorno di xe

3. V (x) sia radialmente illimitata, cioè lim
|x−xe|→∞

V (x) =∞

es:

V =
x2

1

1 + x2
1

+ x2
2 V = x2

1 + x2
2

x1

x2

x1

x2

radialmente limitata radialmente illimitata
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dim come nel caso locale, osservando che la illimitatezza radiale di V , combinata con il
fatto che V̇ è DN in tutto IRn, implica che per qualsiasi condizione iniziale x0 le traiettorie
rimangono all’interno della regione limitata definita da V (x) ≤ V (x0)

nota: nel caso in cui V sia radialmente limitata, le curve di livello ‘lontane’ da xe non
sono chiuse; di conseguenza, è possibile che lo stato si allontani indefinitamente da xe pur
rimanendo all’interno della regione definita da V (x) ≤ V (x0), e anzi attraversando curve di
livello relative a valori progressivamente decrescenti di V

⇒ quando x0 è sufficientemente lontano, x(t) può non convergere a xe
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es: si consideri la famiglia di sistemi non lineari descritta da

ẋ = −c(x), con x c(x) > 0, ∀x 6= 0, c(0) = 0

e la candidata di Lyapunov

V (x) =
1

2
x2

che è DP in qualsiasi intorno di xe = 0 e radialmente illimitata

essendo

V̇ (x) = x ẋ = −x c(x)

la V̇ (x) è DN in qualsiasi intorno di xe = 0

⇒ xe è un pde globalmente asintoticamente stabile

riassumendo, il criterio diretto di stabilità di Lyapunov si basa sulle seguenti condizioni:

xe è S xe è AS xe è GAS xe è instabile

V (x) DP in un S(xe, r) DP in un S(xe, r)
DP in ∀ S(xe, r)

e rad. illim.
xe è punto di accum.
di P = {x : V (x) > 0}

V̇ (x) SDN in S(xe, r) DN in S(xe, r) DN in ∀ S(xe, r) DP in P ∩ S(xe, r)
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Costruzione di funzioni di Lyapunov

la maggiore difficoltà nell’applicare il metodo diretto di Lyapunov per studiare un pde xe di
un sistema non lineare ẋ = f(x) consiste nella scelta della funzione V (x); a volte la fisica
del problema fornisce un’ispirazione, ma in generale è utile procedere sistematicamente

una scelta spesso efficace consiste nello scegliere come candidata di Lyapunov una forma
quadratica del tipo

V (x) =
1

2
(x− xe)TQ(x− xe)

con la matrice Q : n×n simmetrica e definita positiva (tale cioè che wTQw > 0, ∀w 6= 0)

per garantire la definitezza positiva di Q si può utilizzare la C.N.&S. di Sylvester

Q11 > 0,

∣∣∣∣ Q11 Q12

Q12 Q22

∣∣∣∣ > 0,

∣∣∣∣∣∣
Q11 Q12 Q13

Q12 Q22 Q23

Q13 Q23 Q33

∣∣∣∣∣∣ > 0, . . . det(Q) > 0

essendo Q simmetrica, la V̇ (x) risulta essere

V̇ (x) =
1

2
ẋTQ(x−xe)+

1

2
(x−xe)T Q̇(x−xe)+

1

2
(x−xe)TQẋ = (x−xe)TQẋ+

1

2
(x−xe)T Q̇(x−xe)

Oriolo: Teoria della stabilità per sistemi non lineari 32



es: si consideri il sistema

ẋ1 = −k1 x1

ẋ2 = −x3
2 + k2 x3

ẋ3 = −2x2 − x3
3

con k1, k2 > 0; l’origine è l’unico pde

• posto

V (x) =
1

2
(x− xe)TI3×3(x− xe) =

1

2
xTx =

1

2
(x2

1 + x2
2 + x2

3)

che è DP in qualsiasi intorno dell’origine e radialmente illimitata, si trova

V̇ (x) = xT ẋ = x1 ẋ1 + x2 ẋ2 + x3 ẋ3 = −k1 x
2
1 − x4

2 + (k2 − 2)x2 x3 − x4
3

per k2 = 2, V̇ (x) è DN in qualsiasi intorno dell’origine, che è in questo caso GAS

• si può fare un’analisi molto più generale ponendo Q = diag(1, 2
k2
,1)

V (x) =
1

2
xTQx =

1

2
(x2

1 +
2

k2
x2

2 + x2
3) =⇒ V̇ (x) = −k1 x

2
1 −

2

k1
x4

2 − x4
3

che per k1, k2 > 0 è sempre DN ⇒ l’origine è GAS in ogni caso!
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metodo di Krasovski

assumendo che l’origine sia un pde per ẋ = f(x) (altrimenti: traslazione xe → O), provare
come candidata di Lyapunov la V (x) = fT(x)f(x), chiaramente DP in un intorno di xe

Teorema

indicata con J(x) = df/dx la matrice Jacobiana della funzione f :
• se la matrice F (x) = J(x) + JT(x) è definita negativa in un intorno S(xe, r) allora xe è

asintoticamente stabile

• se F (x) = J(x)+JT(x) è definita negativa in tutto IRn e V (x) = fT(x)f(x) è radialmente
illimitata, allora xe è globalmente asintoticamente stabile

dim posto V (x) = fT(x)f(x), si ha V̇ = 2fT(x)ḟ(x) = 2ẋT df
dx

ẋ che, se F (x) è definita
negativa, è anch’essa DN ⇒ V è una funzione di Lyapunov

es: l’origine è un pde GAS per il sistema

ẋ1 = −3x1 + x2

ẋ2 = x1 − x2 − x3
2

infatti si ha
J(x) =

(
−3 1
1 −1− 3x2

2

)
=⇒ F (x) =

(
−6 2
2 −2− 6x2

2

)
dalla condizione di Sylvester, −F (x) è definita positiva in tutto IRn; quindi F (x) è definita
negativa in tutto IRn e inoltre

V (x) = fT(x)f(x) = (−3x1+x2)2+(x1−x2−x3
2)2 →∞ per |x| → ∞
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metodo del gradiente variabile

si basa sull’osservazione che, se V (x) è una funzione di Lyapunov per il pde xe del sistema
ẋ = f(x), allora

V̇ (x) =
dV

dx
ẋ = ∇V T(x)ẋ ∇V (x) : gradiente di V rispetto a x

l’idea di base è di scegliere direttamente ∇V (x) (invece che V (x)), in modo da ottenere
V DP e V̇ DN; generalmente si pone

∇Vi(x) =
n∑

j=1

aij(x)xj

affinché ∇V (x) sia un gradiente, si deve imporre la condizione che (Th. di Schwartz)

∂∇Vi
∂xj

=
∂∇Vj
∂xi

i, j = 1, . . . , n

si cerca di scegliere gli aij in modo che (i) sia verificata questa condizione; (ii) V̇ (x) sia DN
in un intorno S(xe, r); e infine

(iii) V (x) =

∫ x

0

dV

dx
dx =

∫ x

0
∇V T(x)dx sia DP in S(xe, r)

nota: poiché V (x) dipende solo da x, l’integrale è indipendente dal percorso di integrazione; conviene dunque
usare un percorso di integrazione allineato di volta in volta con gli assi x1, . . . , xn, cioè

V (x) =

∫ x1

0

∇V T
i (x1,0, . . . ,0)dx1 +

∫ x2

0

∇V T
2 (x1, x2,0, . . . ,0)dx2 + . . .+

∫ xn

0

∇V T
n (x1, x2, . . . , xn)dxn
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es: si consideri il sistema

ẋ1 = −x1

ẋ2 = −x2 + x1x
2
2

e si scelga la seguente forma per ∇V (x)

∇V1 = a11x1 + a12x2

∇V2 = a21x1 + a22x2

la condizione di simmetria

x1
∂a11

∂x2
+ a12 + x2

∂a12

∂x2
= x2

∂a22

∂x1
+ a21 + x1

∂a21

∂x1

si può soddisfare ponendo a12 = a21 = cost e a11 = cost, a22 = cost. Ad esempio, si può
provare con a12 = a21 = 0, cioè ∇V1 = a11x1 e ∇V2 = a22x2. Ne segue

V̇ (x) = (a11x1 a22x2)T ẋ = −a11x
2
1 − a22x

2
2(1− x1x2)

che, se a11 > 0, a22 > 0, risulta DN in qualsiasi intorno dell’origine tale che x1x2 < 1 (ad
esempio, la crf di raggio 1). Proviamo dunque a porre a11 = a22 = 1. Troviamo

V (x) =

∫ x1

0
x1dx1 +

∫ x2

0
x2dx2 =

1

2
x2

1 +
1

2
x2

2 DP in qualsiasi intorno dell’origine

⇒ l’origine è un pde AS
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Teorema dell’insieme invariante

spesso la funzione di Lyapunov scelta ha una derivata V̇ (x) che è solo SDN (e non DN); in
queste condizioni, si può concludere la stabilità semplice di xe ma non l’eventuale stabilità
asintotica (cfr: la prima funzione di Lyapunov per il pendolo)

in queste condizioni, il teorema dell’insieme invariante consente di analizzare più a fondo
la situazione

un sottoinsieme G ⊂ IRn dello spazio di stato si dice insieme invariante per un sistema
dinamico ẋ = f(x) se qualsiasi traiettoria x(t) del sistema che parte da un punto x0 ∈ G
rimane indefinitamente in G

è una generalizzazione del concetto di punto di equilibrio; esempi di insiemi invarianti:

• qualsiasi punto di equilibrio

• il dominio di attrazione di un punto di equilibrio AS

• qualsiasi traiettoria del sistema (purché questo sia stazionario)

• IRn stesso

Oriolo: Teoria della stabilità per sistemi non lineari 37



idea di base

se V (x) è DP in un intorno di xe e V̇ (x) è SDN nello stesso intorno ⇒ partendo da qualunque
punto dell’intorno, V̇ (t) tende a zero e V (t) tende a un valore limite

Teorema locale dell’insieme invariante [LaSalle]

per un sistema ẋ = f(x), si assuma che esista una funzione V (x) ∈ C1 tale che:

1. la regione Ωα = {x ∈ IRn : V (x) ≤ α} sia limitata, per qualche α > 0

2. V̇ (x) ≤ 0 in Ωα

allora, ogni traiettoria del sistema che parte da Ωα tende asintoticamente all’insieme M , il
massimo insieme invariante contenuto in P , l’insieme dei punti di Ωα dove V̇ = 0

qui: massimo insieme invariante contenuto in P = unione di tutti i sottoinsiemi invarianti di P

V

x1

x2

xe

α

x2

x1

xe

Ωα

P

M

x0

si noti come il criterio di AS sia un caso particolare di questo teorema con P = M = xe
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l’uso del teorema dell’insieme invariante consente, in certi casi, di concludere la stabilità
asintotica anche in presenza di una V̇ SDN

in particolare, si può enunciare il seguente

Corollario [LaSalle]

un pde xe di un sistema ẋ = f(x) è asintoticamente stabile se esiste una funzione V (x) ∈ C1

tale che

1. V (x) sia DP in un insieme D che contiene xe al suo interno

2. V̇ (x) sia SDN nello stesso insieme

3. il massimo insieme invariante M contenuto in P (l’insieme dei punti di D per cui V̇ = 0)
contenga solo xe

inoltre, detta Ωα una regione limitata definita dalla V (x) ≤ α, α > 0 e contenuta in D, si ha
che Ωα costituisce una stima per difetto del dominio di attrazione per xe

• rispetto al criterio diretto di AS di Lyapunov, questo corollario ‘rilassa’ la condizione
2 (DN → SDN) ma aggiunge la 3; inoltre la condizione 1 del corollario garantisce la
condizione 1 del Teorema Locale dell’Insieme Invariante

• l’insieme D di per sé non è una stima del dominio di attrazione (in sostanza, alcune
delle curve di livello che cadono in D possono essere aperte, e dunque esso risulterebbe
non invariante)
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es: riprendiamo in esame il pendolo con la prima funzione di Lyapunov

V (x) =
1

2
x2

2 + g(1− cosx1) DP in S(0, π−)

si ha

V̇ (x) = x2ẋ2 + g sinx1ẋ1 = −x2
2 SDN in qualsiasi intorno dell’origine

come già osservato, questo ci consente di dire che xdown
e = (0,0) è un pde stabile per il

pendolo; ma il teorema dell’insieme invariante dice qualcosa in più

l’insieme P è costituito dagli stati in S(0, π−) per cui V̇ = 0, ovvero dai punti di S(0, π−)
aventi x2 = 0; qual è il massimo insieme invariante M contenuto in P?

la dinamica del sistema in P è

ẋ1 = 0
ẋ2 = −g sinx1

se x1 6= 0, si ha ẋ2 6= 0 e quindi x2 varia, facendo uscire la traiettoria x(t) dall’insieme P

⇒ l’insieme M consiste solo dell’origine, cui dunque converge qualsiasi traiettoria

dunque xdown
e è un pde asintoticamente stabile per il pendolo

nota: in effetti la V (x) è DP in S(0,2π−); abbiamo ristretto l’analisi a S(0,2π−) perché altrimenti M avrebbe
compreso oltre a xdown

e anche i punti (0,±π), cioè xup
e ! e non avremmo potuto concludere la AS di xdown

e

dominio di attrazione: si può stimare (per difetto) come l’insieme delimitato dalla più ampia linea di livello
di V contenuta all’interno di S(0,2π−)
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il teorema dell’insieme invariante ammette ovviamente una versione globale

Teorema globale dell’insieme invariante [LaSalle]

per un sistema ẋ = f(x), si assuma che esista una funzione V (x) ∈ C1 tale che:

1. V (x) sia radialmente illimitata

2. V̇ (x) ≤ 0 in tutto IRn

allora, ogni traiettoria del sistema tende asintoticamente all’insieme M , il massimo insieme
invariante contenuto in P , l’insieme dei punti di IRn dove V̇ = 0

nota: il fatto che V (x) sia radialmente illimitata garantisce che qualsiasi regione Ωα = {x ∈ IRn : V (x) < α},
con α > 0, sia limitata

cui corrisponde il seguente

Corollario [LaSalle]

un pde xe di un sistema ẋ = f(x) è globalmente asintoticamente stabile se esiste una
funzione V (x) ∈ C1 tale che

1. V (x) sia DP in qualsiasi intorno di xe e radialmente illimitata

2. V̇ (x) sia SDN in qualsiasi intorno di xe

3. il massimo insieme invariante M contenuto in P (l’insieme dei punti di IRn per cui
V̇ = 0) contenga solo xe
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es: si consideri la famiglia di sistemi non lineari del secondo ordine descritta da

z̈ + b(ż) + c(z) = 0

dove le funzioni generiche b e c sono continue e verificano le condizioni

ż b(ż) > 0, ∀ż 6= 0 z c(z) > 0, ∀z 6= 0

si noti che queste condizioni, insieme alla continuità, implicano che b(0) = 0, c(0) = 0

z
.

b(z)

z

c(z)
.

fanno parte di questa famiglia i sistemi meccanici massa-molla-smorzatore (con molla e
smorzatore non lineari, rappresentati rispettivamente dalla forza di richiamo elastica c(z) e
dalla forza di attrito b(ż)) e i circuiti elettrici RLC (con resistenza b(ż) e capacità c(z) non
lineari)
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si consideri il punto di equilibrio xe = (ze, że) = (0,0); una candidata di Lyapunov è l’energia
totale del sistema (ad esempio, cinetica + potenziale)

V (x) =
1

2
ż2 +

∫ z

0
c(y)dy

che è DP in qualsiasi intorno di xe

si ha

V̇ (z) = żz̈ + c(z)ż = −żb(ż)− żc(z) + c(z)ż = −żb(ż)

che nelle ipotesi del problema è SDN in qualsiasi intorno di xe = 0

l’insieme P è costituito dagli stati per cui V̇ = 0, ovvero dai punti aventi ż = 0; qual è il
massimo insieme invariante M contenuto in P?

la dinamica del sistema in P è

z̈ = −c(z)

se z 6=, si ha z̈ 6= 0 e quindi ż varia, facendo uscire la traiettoria x(t) dall’insieme P ⇒
l’insieme M consiste solo dell’origine, cui dunque converge qualsiasi traiettoria

dunque l’origine è un pde asintoticamente stabile per il sistema

inoltre, se
∫ z

0 c(y)dy è illimitato per |z| → ∞, V (x) risulta essere radialmente illimitata, e
quindi xe è un pde globalmente asintoticamente stabile
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Criterio indiretto di Lyapunov

idea di base

analizzare la stabilità dell’approssimazione lineare del sistema intorno al punto di equilibrio
xe: in certe condizioni, è possibile trarre da ciò conclusioni sulla stabilità o meno di xe per
il sistema originario

si consideri il generico sistema non lineare

ẋ = f(x) con xe pde, cioè f(xe) = 0

nell’ipotesi che f ∈ C∞, la si può sviluppare in serie di Taylor nell’intorno di xe

f(x) = f(xe) +
df

dx

∣∣∣∣
xe

(x− xe) + h(x− xe) = J(xe)(x− xe) + h(x− xe)

dove h(x−xe) raccoglie gli (infiniti) termini di grado superiore al primo e J(xe) è la matrice
Jacobiana di f rispetto a x, calcolata in xe

effettuiamo una trasformazione di coordinate

ξ = x− xe =⇒ ξ̇ = ẋ = f(x) = J(xe)ξ + h(ξ)

nell’intorno di xe, i termini di ordine superiore sono trascurabili rispetto a quello lineare ⇒
si può associare al sistema non lineare originario la seguente approssimazione lineare

ξ̇ = J(xe)ξ

che è naturalmente tanto più accurata quanto più lo stato è prossimo a xe
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l’analisi dell’approssimazione lineare ξ̇ = J(xe)ξ conduce a risultati interessanti sul sistema
non lineare originario ẋ = f(x)

Teorema

se la matrice J(xe) è non singolare, xe è un pde isolato del sistema non lineare

dim per assurdo: se ciò non fosse vero, in qualsiasi intorno di xe cadrebbe almeno un punto
x′e tale che f(x′e) = f(xe) = 0; si avrebbe allora

f(x′e) = f(xe) + J(xe)(x′e − xe) + h(x′e − xe) = 0 =⇒ J(xe)(x′e − xe) + h(x′e − xe) = 0

poiché x′e varia, tale condizione richiede di fatto che siano nulli entrambi gli addendi,
in particolare, deve essere J(xe)(x′e − xe) = 0, che però contraddice il fatto che J(xe)
sia non singolare

il viceversa non è vero; può accadere che xe sia isolato e J(xe) risulti singolare

es: si consideri il sistema non lineare

ẋ1 = x2
1

ẋ2 = x2

il cui unico pde è l’origine; tuttavia

J(xe) =

(
2x1 0
0 1

)∣∣∣∣
xe

=

(
0 0
0 1

)
che è singolare
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il risultato più forte è il seguente

Teorema (criterio indiretto di stabilità di Lyapunov)

si consideri l’approssimazione lineare ξ̇ = J(xe)ξ di un sistema non lineare ẋ = f(x) intorno
a un suo punto di equilibrio xe

1. se tutti gli autovalori di J(xe) hanno parte reale negativa (⇒ l’approssimazione lineare
è AS) xe è un pde asintoticamente stabile per il sistema non lineare

2. se almeno uno degli autovalori di J(xe) ha parte reale positiva (⇒ l’approssimazione
lineare è I) xe è un pde instabile per il sistema non lineare

dim basata sull’applicazione del criterio diretto di Lyapunov: in particolare, si dimostra che
una funzione di Lyapunov per l’approssimazione lineare risulta essere tale anche per il
sistema non lineare

comunque: la tesi è intuitiva per continuità

• la stabilità asintotica dell’origine dell’approssimazione lineare (che è sempre globale)
consente di concludere solo la stabilità asintotica locale di xe per il sistema non lineare

• in effetti il teorema contiene anche un criterio di instabilità

• se nessun autovalore di J(xe) ha parte reale positiva, ma qualcuno di essi ha parte reale
nulla (⇒ l’approssimazione lineare è SS o I, a seconda della relazione tra molteplicità
geometrica e algebrica per questi autovalori) si è nel caso critico: non si può concludere
nulla sulla natura del pde xe per il sistema non lineare (sono decisivi i termini di ordine
superiore al primo)
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es: riprendiamo ancora in esame il pendolo

ẋ1 = x2

ẋ2 = −g sinx1 − x2

la matrice Jacobiana è

J(x) =
df

dx
=

(
0 1

−g cosx1 −1

)

• nell’intorno del pde xdown
e = (0,0) si ha

Jdown
e (x) =

df

dx

∣∣∣∣
xdown
e

=

(
0 1
−g −1

)
il cui polinomio caratteristico è λ2 +λ+ g; quindi l’approssimazione lineare del pendolo
nell’intorno di xdown

e è AS

=⇒ xdown
e è un pde asintoticamente stabile per il pendolo

• nell’intorno del pde xup
e = (π,0) si ha

Jup
e (x) =

df

dx

∣∣∣∣
xup
e

=

(
0 1
g −1

)
il cui polinomio caratteristico è λ2 + λ− g; quindi l’approssimazione lineare del pendolo
nell’intorno di xup

e è I

=⇒ xup
e è un pde instabile per il pendolo
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spesso, tuttavia, il criterio indiretto non è risolutivo perché ci si trova nel caso critico; in
questi casi si deve ricorrere al criterio diretto, che è più potente (e, con l’aiuto del teorema
dell’insieme invariante, consente anche di stabilire l’eventuale dominio di attrazione, che
non è direttamente analizzabile con il metodo indiretto)

es: si consideri il sistema non lineare

ẋ = −x3

avente come unico pde xe = 0

la Jacobiana è in questo caso uno scalare

J(xe) =
df

dx

∣∣∣∣
xe

= −3x2
∣∣
xe

= 0

e dunque l’approssimazione lineare del sistema intorno a xe è ξ̇ = 0 ⇒ siamo nel caso critico

si consideri allora la seguente candidata di Lyapunov

V (x) =
1

2
x2 DP in qualsiasi intorno dell’origine, e radialmente illimitata

si ha

V̇ (x) = −x4 DN in qualsiasi intorno dell’origine

⇒ xe = 0 è dunque un pde GAS per il sistema (prevedibile, cfr. esempio slide 31)
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