#### Elective in Robotics 2014/2015

# Analysis and Control of Multi-Robot Systems

# Formation Control of Multiple Robots

Dr. Paolo Robuffo Giordano

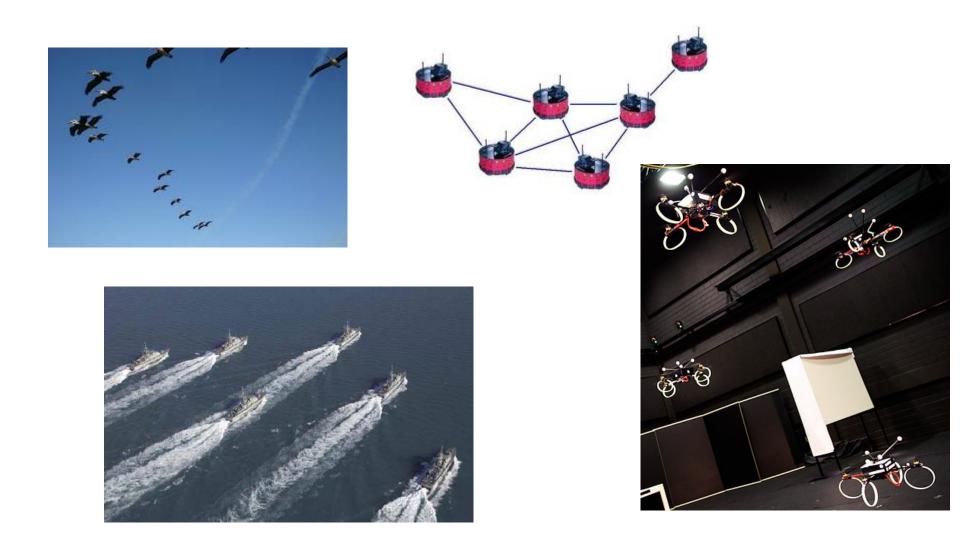
CNRS, Irisa/Inria Rennes, France

DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI

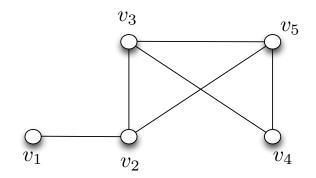


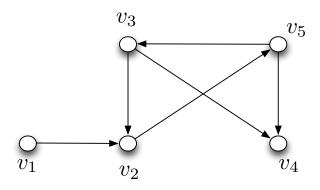


# Formation Control of Multiple Robots



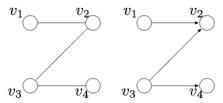
- What have we seen so far?
- Graph Theory
- ullet Undirected graphs  $\mathcal{G}=(\mathcal{V},\,\mathcal{E})$  and Directed graphs  $\mathcal{D}=(\mathcal{V},\,\mathcal{E})$





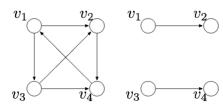
Connected graphs/Disconnected graphs

connected



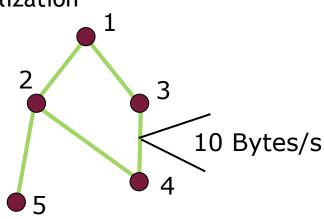
weakly connected

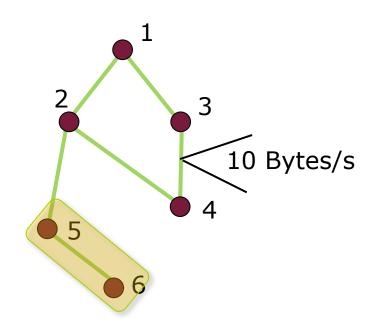
strongly connected



disconnected

Decentralization





• Algebraic Graph Theory: Adjacency matrix  $A \in \mathbb{R}^{N \times N}$ , Degree matrix  $\Delta \in \mathbb{R}^{N \times N}$  Incidence matrix  $E \in \mathbb{R}^{N \times |\mathcal{E}|}$  and Laplacian matrix  $L \in \mathbb{R}^{N \times N}$  with

$$L = \Delta - A = EE^T$$

ullet Properties of the Laplacian:  $L{f 1}=0$  (and  ${f 1}^TL=0$  for undirected graphs)

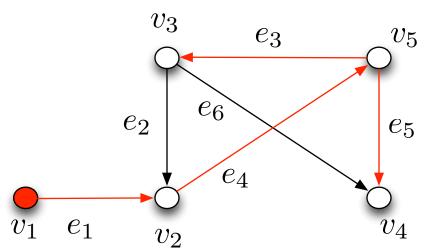
- Properties of the Laplacian:  $0=\lambda_1\leq \lambda_2\leq \ldots \leq \lambda_N$  (all eigenvalues real and non-negative for undirected graphs)
- Graph connected if and only if  $\lambda_2>0 \Leftrightarrow {\rm rank}(L)=N-1$  and  ${\bf 1}$  is the eigenvector associated to  $\lambda_1=0$
- Also,  $E^T \mathbf{1} = 0$  and  $\operatorname{rank}(E) = N-1$
- Consensus protocol:
- N agents with dynamics  $\dot{x}_i=u_i$ , find  $u_i=u_i(x_i-x_j)$ ,  $\forall j\in\mathcal{N}_i$ , such that  $\lim_{t\to\infty}x_i(t)=\bar{x},\ \forall i$  for some common but unspecified  $\bar{x}$
- Solution:  $u_i = \sum_{j \in \mathcal{N}_i} (x_j x_i)$  equivalent to u = -Lx, yielding  $\dot{x} = -Lx$

• Result: if the (undirected) graph is connected ( $\lambda_2>0$  and/or  ${\rm rank}(L)=N-1$  then the consensus converges to the average of the initial condition

$$\lim_{t \to \infty} x(t) = \frac{(\mathbf{1}^T x_0)\mathbf{1}}{N}$$

- ullet The magnitude of  $\lambda_2$  dictates the rate of convergence
- For directed graphs, the conditions for the consensus convergence, i.e.,  $\operatorname{rank}(L) = N-1$ ,  $0 < \Re(\lambda_2) \leq \ldots \leq \Re(\lambda_N)$ , require presence of a

rooted out-branching



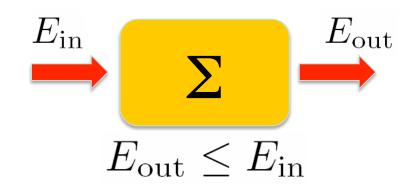
 For directed graphs, in general no convergence to the average of the initial condition, but just

$$\lim_{t \to \infty} x(t) = (q_1^T x_0) p_1 = (q_1^T x_0) \mathbf{1}$$

for some  $q_1 \neq 0$ 

- If the graph is balanced, then we re-obtain  $\lim_{t \to \infty} x(t) = \frac{(\mathbf{1}^T x_0) \mathbf{1}}{N}$
- Consensus protocol: paradigm of many decentralized algorithms based on relative information
- Can (and has been) extended to many variants (time-varying topologies, delays, more complex agent dynamics, etc.)

- Passivity:
- I/O characterization in "Energetic terms"
- No internal production of energy



- Passivity ingredients:
- a dynamical system  $\left\{ \begin{array}{lcl} \dot{x} & = & f(x) + g(x)u \\ y & = & h(x) \end{array} \right.$
- a lower-bounded Storage function  $V(x) \in \mathcal{C}^1: \mathbb{R}^n \to \mathbb{R}^+$
- a passivity condition  $\left\{ \begin{array}{ccc} V(x(t)) V(x(t_0)) & \leq & \int_{t_0}^t y^T(\tau) u(\tau) \mathrm{d}\tau \\ & \dot{V}(x(t)) & \leq & y^T(t) u(t) \end{array} \right.$

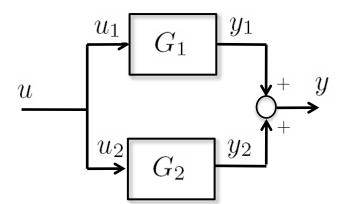
• Passivity is w.r.t. an input/output pair (u, y) and w.r.t. a Storage function V(x)

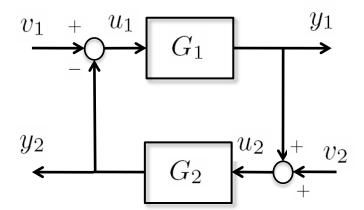
Current energy is at most equal to the initial energy + exchanged energy with outside

$$V(x(t)) \le V(x(t_0)) + \int_{t_0}^t y^T(s)u(s)ds$$

- Passivity is strongly related to Lyapunov stability
- Stable free evolution ( $u \equiv 0$ ) and stable zero-dynamics ( $y \equiv 0$ )
- "Easy" output feedback for (asympt.) stabilization  $u=-\phi(y),\quad y^T\phi(y)>0\ \forall y\neq 0$  e.g.,  $u=-ky,\quad k>0$
- When possible, one can choose the "right" output for enforcing passivity
- Many physical systems are passive, e.g., mechanical systems (robot manipulators) w.r.t. the pair force/velocity

- Proper compositions of passive systems are passive
- Example: parallel and feedback interconnection

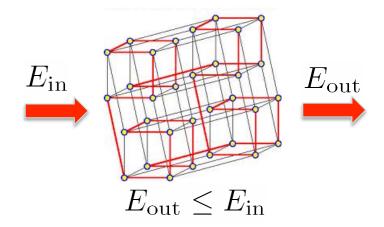




• In the feedback interconnection, the coupling is skew-symmetric (power-preserving interconnection)

$$\left[\begin{array}{c} u_1 \\ u_2 \end{array}\right] = \left[\begin{array}{cc} 0 & \pm 1 \\ \mp 1 & 0 \end{array}\right] \left[\begin{array}{c} y_1 \\ y_2 \end{array}\right] + \left[\begin{array}{c} v_1 \\ v_2 \end{array}\right]$$

Port-Hamiltonian Systems (PHS): look at the network structure behind passivity



- Passive systems are made of a "power-preserving interconnection" of:
  - Elements storing Energy
  - Elements dissipating Energy
  - Power ports with the external world

In the general form, a PHS is

$$\begin{cases} \dot{x} &= \left[J(x) - R(x)\right] \frac{\partial H}{\partial x} + g(x)u, \quad J(x) = -J^T(x), \ R(x) \ge 0 \\ y &= g^T(x) \frac{\partial H}{\partial x} \end{cases}$$

with  $H(x) \ge 0$  being the Hamiltonian (lower-bounded Storage function), and the passivity condition naturally embedded in the system structure

$$\dot{H} = -\frac{\partial H^T}{\partial x} R(x) \frac{\partial H}{\partial x} + \frac{\partial H^T}{\partial x} g(x) u \le y^T u$$

Among the many control techniques for PHS, we focused on the Energy Transfer control

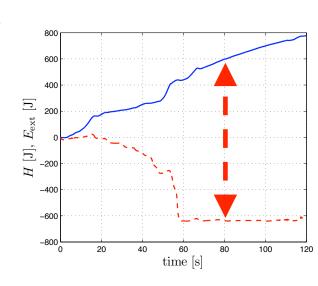
$$\begin{cases} \dot{x}_1 &= J_1(x_1) \frac{\partial H_1}{\partial x_1} + g_1(x_1) u_1 \\ y_1 &= g_1^T(x_1) \frac{\partial H_1}{\partial x_1} \end{cases} \qquad \begin{cases} \dot{x}_2 &= J_2(x_2) \frac{\partial H_2}{\partial x_2} + g_2(x_2) u_2 \\ y_2 &= g_2^T(x_2) \frac{\partial H_2}{\partial x_2} \end{cases}$$
$$\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 & -\alpha y_1(x_1) y_2^T(x_2) \\ \alpha y_2(x_2) y_1^T(x_1) & 0 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}, \quad \alpha \in \mathbb{R}$$

- This allows to transfer energy from a PHS to another PHS in a lossless way
- The total does not change  $\dot{H}(x_1,\,x_2)=0$ , but the individual energies may increase/decrease depending on the value of the parameter  $\alpha$

$$\dot{H}_1(x_1) = -\alpha \|y_1\|^2 \|y_2\|^2 \qquad \qquad \dot{H}_2(x_2) = \alpha \|y_1\|^2 \|y_2\|^2$$

- This technique can be used in conjunction with the so-called Energy Tanks
- In a PHS, there is an inherent passivity margin due to the internal dissipation

$$H(t) - H(t_0) = \int_{t_0}^t y^T u \, d\tau - \int_{t_0}^t \frac{\partial H^T}{\partial x} R(x) \frac{\partial H}{\partial x} d\tau$$



- $\bullet$  Idea: store back the dissipated energy, and use it to passively implement whatever action  $\boldsymbol{w}$
- The PHS dissipated power is  $D(x) = \frac{\partial H^T}{\partial x} R(x) \frac{\partial H}{\partial x}$
- Design a PHS Tank dynamics with energy function  $T(x_t) = \frac{1}{2}x_t^2 \geq 0$  as

$$\begin{cases} \dot{x} &= [J(x) - R(x)] \frac{\partial H}{\partial x} + g(x)u \\ y &= g^{T}(x) \frac{\partial H}{\partial x} \end{cases} + g(x)u - \begin{cases} \dot{x}_{t} &= \frac{1}{x_{t}} D(x) + \tilde{u}_{t} \\ y_{t} &= x_{t} \end{cases}$$

and then interconnect Tank and PHS by means of the skew-symmetric coupling

$$\begin{bmatrix} u \\ \tilde{u}_t \end{bmatrix} = \begin{bmatrix} 0 & \frac{w}{x_t} \\ -\frac{w^T}{x_t} & 0 \end{bmatrix} \begin{bmatrix} y \\ y_t \end{bmatrix}$$

• The PHS becomes  $\dot{x}=[J(x)-R(x)]\frac{\partial H}{\partial x}+g(x)w$  and the Tank dynamics is

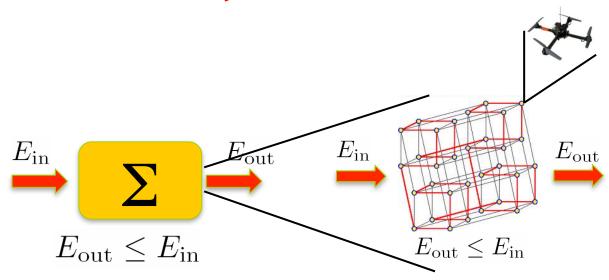
$$\dot{x}_t = \frac{1}{x_t} D(x) - \frac{w^T}{x_t} g^T(x) \frac{\partial H}{\partial x}$$

- Singularity for  $x_t=0$ : Tank empty, therefore the action w cannot be (passively) implemented
- Anyway: the Tank is
  - continuously refilled by the term D(x)
  - ullet possibly refilled by the action w
  - ullet and complete freedom in choosing the initial Tank energy level  $T(x_t(t_0))$

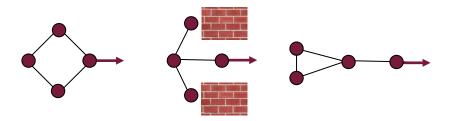
We are finally ready for some action (Formation Control of UAVs)



Let us then focus on the Passivity-based Decentralized Control of Multiple UAVs



• We start with a basic problem: formation control under sensing/comm. constraints



- Formation Control with Time-varying graph topology
- Robots are loosely coupled together
  - can gain/lose neighbors, but must show some form of cohesive behavior
- Robots can decide to split or to join because of any constraint or task, e.g.

- sensing and/or communication constraints
- need to temporarily split for better maneuvering in cluttered environments
- Overall motion controlled by selected robots (leaders)
- Appropriate for "loose" tasks, e.g., coverage, persistent patrolling, exploration, etc.



#### Features:

- decentralized design (local and 1-hop communication/sensing)
- flexible formation: splits/joins due to
  - sensing/communication constraints
  - execution of extra tasks in parallel to the collective motion
- Autonomy in avoiding obstacles and inter-agent collisions

#### Challenges:

- Time-varying topology: ensure stability despite a switching dynamics
- Guarantee passivity of the overall group behavior
- Steady-state characteristics? (Velocity synchronization)
- What if time delays are present in the communication links?
- What about maintenance of group connectivity?

# Agent Model

• Every agent is modeled as a free-floating mass in  $\mathbb{R}^3$  with Energy  $\mathcal{K}_i=rac{1}{2}p_i^TM_i^{-1}p_i$ 

$$\begin{cases} \dot{p}_i = F_i^a + F_i^e - B_i M_i^{-1} p_i \\ v_i = \frac{\partial \mathcal{K}_i}{\partial p_i} = M_i^{-1} p_i \end{cases}$$

$$i=1,\ldots,N$$

- $p_i \in \mathbb{R}^3$  is the agent momentum and  $v_i \in \mathbb{R}^3$  the agent velocity. Let also  $x_i \in \mathbb{R}^3$ , with  $\dot{x}_i = v_i$ , be the agent position
- $M_i \in \mathbb{R}^{3 \times 3}$  is the agent Inertia matrix
- $B_i \geq 0 \in \mathbb{R}^{3 \times 3}$  is a velocity damping term (either naturally present or artificially added)
- Force (input)  $F_i^a \in \mathbb{R}^3$  represents the interaction (coupling) with the other agents
- Force (input)  $F_i^e \in \mathbb{R}^3$  represents the interaction with the "external world" (e.g., obstacles)

# Agent Model

• Remarks:

• In PHS terms, an agent represents an atomic element storing kinetic energy

$$\mathcal{K}_i = \frac{1}{2} p_i^T M_i^{-1} p_i$$

and endowed with two power ports  $(F_i^a, v_i)$  and  $(F_i^e, v_i)$ 

- We consider a simple "free-floating mass" mainly for easiness of exposition
  - Any other (more complex) mechanical (PHS) system would do the job, also constrained (e.g., ground robots)
- ullet The Inertia matrix  $M_i$  can model different inertial properties in space
  - e.g., a quadrotor UAV with a faster vertical dynamics w.r.t. the horizontal one
- Heterogeneity in the group can be enforced by choosing different  $M_i$  and  $B_i$

# Neighboring Definition

- We want to allow for autonomous (and arbitrary) split/join decisions because of
  - Sensing/communication constraints
  - Any additional internal criterion (task)



- ullet We assume (as usual) presence of a maximum sensing/communication range  $D\in\mathbb{R}^+$
- Two agents cannot be neighbors if  $d_{ij} > D$  (they cannot sense/communicate with each other)
- To also take into account more general requirements, we introduce a time-varying neighboring condition  $\sigma_{ij} \in \{0, 1\}$  satisfying at least:

(1) 
$$\sigma_{ij}(t) = 0$$
, if  $d_{ij} > D \in \mathbb{R}^+$ ;

2) 
$$\sigma_{ij}(t) = \sigma_{ji}(t)$$
.

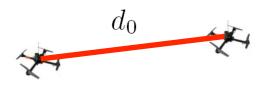
# Neighboring Definition

1) 
$$\sigma_{ij}(t) = 0$$
, if  $d_{ij} > D \in \mathbb{R}^+$ ;  
2)  $\sigma_{ij}(t) = \sigma_{ji}(t)$ .

- Interpretation:
  - Two agents cannot be neighbors if they are too far apart  $(d_{ij} > D)$
  - The neighboring condition is symmetric  $\sigma_{ij}(t) = \sigma_{ji}(t)$
  - Still, complete freedom in gaining/losing neighbors when  $d_{ij} \leq D$ 
    - Additional sensing/comm. constraints
    - Additional parallel tasks
- This neighboring relationship induces a time-varying Undirected Graph  $\mathcal{G}=(\mathcal{V},\,\mathcal{E}(t))$  where

$$\mathcal{E}(t) = \{(i,j) \in \mathcal{V} \times \mathcal{V} \mid \sigma_{ij}(t) = 1 \Leftrightarrow j \in \mathcal{N}_i\}$$

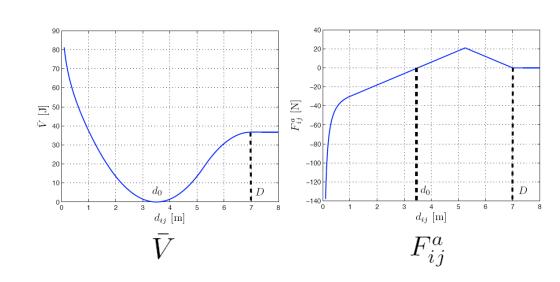
- When neighbors, the agents should keep a cohesive formation
- ullet We consider the (simple) case of maintaining a desired interdistance  $0 < d_0 < D$ 
  - Other more complex (e.g., relative position) cases are possible



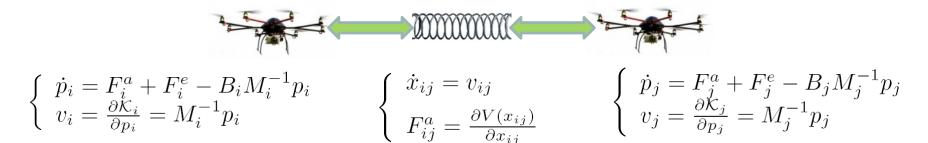
$$\begin{cases} \dot{p}_i = F_i^a + F_i^e - B_i M_i^{-1} p_i \\ v_i = \frac{\partial \mathbf{K}_i}{\partial p_i} = M_i^{-1} p_i \end{cases}$$

- This cohesive motion must be achieved by means of local and 1-hop information (decentralization), and by exploiting the coupling force  $F_i^a$  in the agent dynamics
- When non-neighbors, no interaction among the agents

- How to model this interagent coupling? Let us model it as a (nonlinear) elastic element
- Let  $x_{ij} \in \mathbb{R}^3$  be the state of this element, and  $V(x_{ij}) = \bar{V}(\|x_{ij}\|) \ge 0$  some (lower-bounded) Energy function (Hamiltonian)
- Take the usual PHS form for a storing element  $\left\{\begin{array}{l} \dot{x}_{ij}=v_{ij}\\ F^a_{ij}=\frac{\partial V(x_{ij})}{\partial x_{ij}} \end{array}\right. \text{ where } v_{ij},\, F^a_{ij}\in\mathbb{R}^3$  are the input/output vectors
- For  $V(x_{ij})$ , we take a function
  - lower-bounded
  - ullet with a minimum at  $d_0$
  - becoming flat for  $d_{ij} > D$
  - growing unbounded for  $d_{ij} \to 0$



• Say i and j are neighbors, i.e.,  $\sigma_{ij}(t)=1\Leftrightarrow j\in\mathcal{N}_i$ , how are they coupled with the elastic element?



• Power preserving interconnection (assume for simplicity everything in  $\mathbb{R}$ )

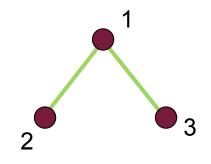
$$\begin{bmatrix} F_i^a \\ F_j^a \\ v_{ij} \end{bmatrix} = \begin{bmatrix} 0 & 0 & -\sigma_{ij}(t) \\ 0 & 0 & \sigma_{ij}(t) \\ \sigma_{ij}(t) & -\sigma_{ij}(t) & 0 \end{bmatrix} \begin{bmatrix} v_i \\ v_j \\ F_{ij}^a \end{bmatrix}$$

Motivation:

when neighbors 
$$(\sigma_{ij}=1)$$
 when non-neighbors  $(\sigma_{ij}=0)$   $v_{ij}=\dot{x}_i-\dot{x}_j=v_i-v_j$   $v_{ij}=0$   $F_i^a=-F_{ij}^a$   $F_i^a=0$   $F_j^a=F_{ij}^a=-F_{ji}^a$   $F_j^a=0$ 

• Note: for N agents, there exist N(N-1)/2 elastic elements (all the possible edges)

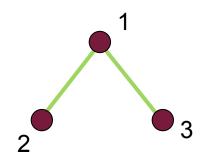
Let us analyze the case of 3 agents with this interaction graph
 (3 agents and a total of 3 elastic elements)



$$\begin{bmatrix} F_1^a \\ F_2^a \\ F_3^a \\ v_{12} \\ v_{13} \\ v_{23} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & -1 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ F_{12}^a \\ F_{13}^a \\ F_{23}^a \end{bmatrix}$$
 Missing edge "23"

What is the highlighted matrix?

$$\begin{bmatrix} F_1^a \\ F_2^a \\ F_3^a \\ v_{12} \\ v_{13} \\ v_{23} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & -1 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ F_{12}^a \\ F_{13}^a \\ F_{23}^a \end{bmatrix}$$



- Let us call it  $E_\mathcal{G} \in \mathbb{R}^{N \times N(N-1)/2}$ . This is (almost) the Incidence matrix of graph  $\mathcal G$ 
  - labeling and orientation induced by the entries  $(v_{12},\,v_{13},\,v_{23})$
  - however, also accounts (with zero columns) for all the missing edges

$$\begin{bmatrix} F_1^a \\ F_2^a \\ F_3^a \\ v_{12} \\ v_{13} \\ v_{23} \end{bmatrix} = \begin{bmatrix} 0 & E_{\mathcal{G}} \\ -E_{\mathcal{G}}^T & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ F_{12}^a \\ F_{13}^a \\ F_{23}^a \end{bmatrix}$$

• Note that 
$$F_i^a = \sum_{j \in \mathcal{N}_i} e_{ij} F_{ij}^a := \sum_{j \in \mathcal{N}_i} e_{ij} \frac{\partial V}{\partial d_{ij}} \frac{\partial d_{ij}}{\partial x_{ij}}$$

- Therefore, the coupling Force  $F_i^a$  for agent i can be computed in a decentralized way
  - Need to know only  $x_i$  and  $x_j, j \in \mathcal{N}_i$
- Let us now generalize for N agents
- Let  $x=(x_{12}^T,\ldots,x_{1N}^T,x_{23}^T,\ldots,x_{2N}^T,\ldots,x_{N-1N}^T)^T\in\mathbb{R}^{\frac{3N(N-1)}{2}}$  collect all the elastic element states (edges), and implicitly defining an orientation for the graph  $\mathcal G$  (labeling and orientation given by the entries in x)
- Let  $p = (p_1^T, \dots, p_N^T)^T \in \mathbb{R}^{3N}$  collect all the agent states (momenta)
- Let  $B = diag(B_i) \in \mathbb{R}^{3N \times 3N}$  collect all the damping terms
- Let  $H = \sum_{i=1}^N \mathcal{K}_i + \sum_{i=1}^{N-1} \sum_{j=i+1}^N V(x_{ij})$  be the Total Energy (Hamiltonian)

The overall group of interconnected agents becomes the PHS

$$\begin{cases} \begin{pmatrix} \dot{p} \\ \dot{x} \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} 0 & E(t) \\ -E^T(t) & 0 \end{pmatrix} - \begin{pmatrix} B & 0 \\ 0 & 0 \end{pmatrix} \end{bmatrix} \begin{pmatrix} \frac{\partial H}{\partial p} \\ \frac{\partial H}{\partial x} \end{pmatrix} + GF^e \\ v = G^T \begin{pmatrix} \frac{\partial H}{\partial p} \\ \frac{\partial H}{\partial x} \end{pmatrix}$$

- Here,  $G = \begin{pmatrix} (I_N \otimes I_3)^T & 0^T \end{pmatrix}^T$  and  $E(t) = E_{\mathcal{G}}(t) \otimes I_3$
- The symbol ⊗ denotes the Kronecker product among matrixes

$$A \otimes B = \begin{bmatrix} a_{11}B & \dots & a_{1N}B \\ \vdots & \ddots & \vdots \\ a_{N1}B & \dots & a_{NN}B \end{bmatrix}$$

• And with  $F^e=(F_1^{eT}\dots F_N^{eT})^T\in\mathbb{R}^{3N}$  being the input and  $v=(v_1^T\dots v_N^T)\in\mathbb{R}^{3N}$  the output vectors

The PHS group of agents

$$\begin{cases} \begin{pmatrix} \dot{p} \\ \dot{x} \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} 0 & E(t) \\ -E^T(t) & 0 \end{pmatrix} - \begin{pmatrix} B & 0 \\ 0 & 0 \end{pmatrix} \end{bmatrix} \begin{pmatrix} \frac{\partial H}{\partial p} \\ \frac{\partial H}{\partial x} \end{pmatrix} + GF^e \\ v = G^T \begin{pmatrix} \frac{\partial H}{\partial p} \\ \frac{\partial H}{\partial x} \end{pmatrix}$$

- The port  $(v,\,F^e)$  is the one interacting with the external world (obstacles, external commands)
- Let us then study the passivity of the group w.r.t. the port  $(v,\,F^e)$

- Suppose for now a fixed topology for the graph, i.e., E(t) = E = const
- Since H is lower bounded, the group of agents is passive w.r.t. its external port

$$\dot{H} = -\frac{\partial^T H}{\partial p} B \frac{\partial H}{\partial p} + v^T F^e \le v^T F^e$$

- Does this automatically extend to the general case E(t)?
- Consider first the case of a split  $\sigma_{ij} = 1 \rightarrow \sigma_{ij} = 0$
- The edge (i, j) is lost and the Incidence matrix is updated accordingly  $E \to E'$
- The group dynamics becomes

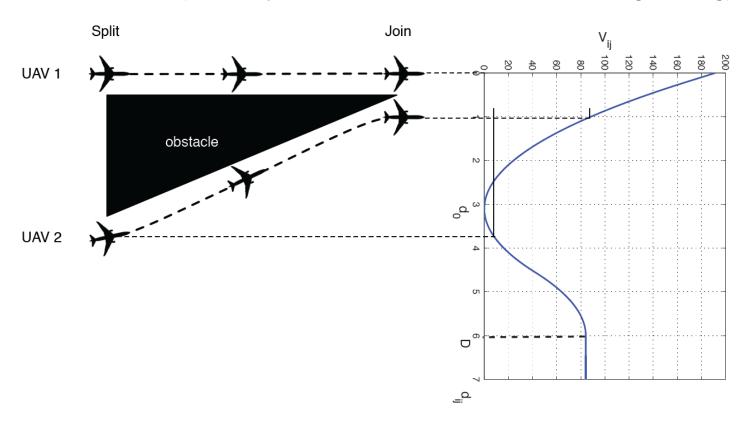
dynamics becomes 
$$\left\{ \begin{array}{l} \left( \dot{p} \atop \dot{x} \right) = \begin{bmatrix} \begin{pmatrix} 0 & E' \\ -E'^T & 0 \end{pmatrix} - \begin{pmatrix} B & 0 \\ 0 & 0 \end{pmatrix} \end{bmatrix} \begin{pmatrix} \frac{\partial H}{\partial p} \\ \frac{\partial H}{\partial x} \end{pmatrix} + GF^e \right.$$
 
$$v = G^T \begin{pmatrix} \frac{\partial H}{\partial p} \\ \frac{\partial H}{\partial x} \end{pmatrix}$$

ullet Since E' appears in a skew-symmetric matrix, overall passivity is preserved

$$\dot{H} = -\frac{\partial^T H}{\partial p} B \frac{\partial H}{\partial p} + v^T F^e \le v^T F^e$$

- Then, exactly the same argument holds for the join case  $\sigma_{ij}=0 o \sigma_{ij}=1$
- Unfortunately, it doesn't!!!
- During a join, the Incidence matrix is updated as before  $E \to E'$
- BUT this is not the only action needed to join
- At the join, the state of the elastic element must be reset to the actual relative position of agents i and j  $x_{ij} \leftarrow x_i x_j$
- This action, in general, costs extra energy! (thus, can violate passivity)

Consider this situation (visibility and interdistance determine neighboring)



- ullet Because of different interdistances at the split and join decisions, it is  $V_{
  m join} > V_{
  m split}$
- A naïve join would inject extra energy into the slave-side  $\Delta V = V_{
  m join} V_{
  m split} > 0$

- How to still implement a join procedure? How to passify it?
- If some  $\Delta V=V_{\rm join}-V_{\rm split}>0$  is needed, this must be drawn from energy sources already present in the agent group
  - Passivity = no internal production of extra energy

ullet Can we find some internal energy storages from which to cover for  $\Delta V$  ?

- Make use of Energy Tanks and Energy Transfer control
  - Store back the agent inherent dissipation  $D_i = p_i^T M_i^{-T} B_i M_i^{-1} p_i$
  - Exploit Tank Energies for passively implement a (otherwise non-passive) join
  - Obviously, everything still to be done in a decentralized way...

- Let us then apply the Tank machinery
- First, augment the agent state with the Tank dynamics, with  $T(x_{t_i}) = \frac{1}{2} x_{t_i}^2 \geq 0$

$$\begin{cases} \dot{p}_{i} = F_{i}^{a} + F_{i}^{e} - B_{i} M_{i}^{-1} p_{i} \\ v_{i} = \frac{\partial \mathcal{K}_{i}}{\partial p_{i}} = M_{i}^{-1} p_{i} \end{cases}$$

$$\begin{cases} \dot{p}_{i} = F_{i}^{a} + F_{i}^{e} - B_{i} M_{i}^{-1} p_{i} \\ \vdots \\ v_{i} = \frac{1}{x_{t_{i}}} D_{i} + w_{ij}^{t} \\ y = \begin{bmatrix} v_{i} \\ x_{t_{i}} \end{bmatrix}$$

• Second, endow the elastic elements with an additional input  $w^x_{ij} \in \mathbb{R}^3$  for exchanging energy with the Tanks

$$\begin{cases} \dot{x}_{ij} = v_{ij} \\ F_{ij}^a = \frac{\partial V(x_{ij})}{x_{ij}} \end{cases} \qquad \qquad \begin{cases} \dot{x}_{ij} = v_{ij} + w_{ij}^x \\ F_{ij}^a = \frac{\partial V(x_{ij})}{x_{ij}} \end{cases}$$

$$\begin{cases} \dot{p}_{i} &= F_{i}^{a} + F_{i}^{e} - B_{i} M_{i}^{-1} p_{i} \\ \dot{x}_{t_{i}} &= \frac{1}{x_{t_{i}}} D_{i} + w_{ij}^{t} \\ y &= \begin{bmatrix} v_{i} \\ x_{t_{i}} \end{bmatrix} \end{cases} \qquad \begin{cases} \dot{x}_{ij} &= v_{ij} + w_{ij}^{x} \\ F_{ij}^{a} &= \frac{\partial V(x_{ij})}{x_{ij}} \end{cases} \qquad \begin{cases} \dot{p}_{j} &= F_{j}^{a} + F_{j}^{e} - B_{j} M_{j}^{-1} p_{j} \\ \dot{x}_{t_{j}} &= \frac{1}{x_{t_{j}}} D_{j} + w_{ji}^{t} \\ y &= \begin{bmatrix} v_{j} \\ x_{t_{j}} \end{bmatrix} \end{cases}$$

- Exploiting the Energy Transfer control:
  - ullet inputs  $w_{ij}^x$  ,  $w_{ij}^t$  and  $w_{ji}^t$  will allow for drawing  $\Delta V$  from the Tanks of agents i and j
  - this allows implementing the join action (and resetting the spring state to the correct value  $x_{ij} \leftarrow x_i - x_j$ )
- Recall, the Energy Transfer control among two PHS was implemented by the coupling

$$\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 & -\alpha y_1(x_1) y_2^T(x_2) \\ \alpha y_2(x_2) y_1^T(x_1) & 0 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}, \quad \alpha \in \mathbb{R}$$

• Likewise, we choose 
$$\begin{bmatrix} w_{ij}^x \\ w_{ij}^t \\ w_{ji}^t \end{bmatrix} = \begin{bmatrix} 0 & -\gamma_{ij}F_{ij}^at_i & -\gamma_{ij}F_{ij}^at_j \\ \gamma_{ij}F_{ij}^{a^T}t_i & 0 & 0 \\ \gamma_{ij}F_{ij}^{a^T}t_j & 0 & 0 \end{bmatrix} \begin{bmatrix} F_{ij}^a \\ t_i \\ t_j \end{bmatrix}, \ \gamma_{ij} \in \mathbb{R}$$

- The parameter  $\gamma_{ij}$  dictates the rate and direction of Energy transfer
- A value  $\gamma_{ij} < 0$  refills the spring energy and draws from the two Tanks
- The machinery easily extends to multiple connections among agents and springs

$$\begin{cases} \dot{p}_i = F_i^a + F_i^e - B_i M_i^{-1} p_i \\ \dot{x}_{t_i} = \frac{1}{x_{t_i}} D_i + \sum_{j=1}^N w_{ij}^t \\ y = \begin{bmatrix} v_i \\ x_{t_i} \end{bmatrix} \end{cases}$$

- Note that the previous interconnection can be implemented in a decentralized way
  - ullet agent i needs to know  $F^a_{ij}$  and  $t_i$  (local and 1-hop information)
  - $\gamma_{ij} = 0$  by convention if  $j \notin \mathcal{N}_i$

- Strategy for implementing a join decision in a passive way among agents (i, j):
  - 1. at the join moment, compute  $\Delta V = V(x_i x_j) V(x_{ij})$
  - 2. if  $\Delta V \leq 0$  , implement the join (and store  $\Delta V$  back into the tanks  $T_i$  and  $T_i$  )
  - 3. if  $\Delta V > 0$ , extract  $\Delta V$  from  $T_i$  and  $T_j$

- What if  $T_i + T_j < \Delta V$  ?
- Must take a decision:
  - Do not join (and wait for better conditions)
  - Ask the rest of the group for "help"



- How to ask for "help" in a decentralized and passive way?
  - A possibility: run a consensus on all the Tank Energies
  - This redistributes the energies within the group
  - But it doesn't change the total amount of energy

Additional (and last) modification to the agent dynamics

and last) modification to the agent dynamics 
$$\begin{cases} \dot{p}_i &= F_i^a + F_i^e - B_i M_i^{-1} p_i \\ \dot{x}_{t_i} &= \left(1 - \beta_i\right) \left(\frac{1}{x_{t_i}} D_i + \sum_{j=1}^N w_{ij}^t\right) + \beta_i c_i \end{cases}$$
 
$$y &= \begin{bmatrix} v_i \\ x_{t_i} \end{bmatrix}$$

- The parameter  $\beta_i \in \{0, 1\}$  enables/disables the consensus mode
- ullet During consensus (  $eta_i=1$  ), we want  $\dot{T}_i=-\sum{(T_i-T_j)}$
- This is achieved by setting  $c_i = -\frac{1}{t_i} \sum_{j \in \mathcal{N}_i} (T_i(t_i) T_j(t_j))$

Compact form of the Passive Join procedure (decentralized and passive)

#### **Procedure** PassiveJoin

- Note: if after the consensus still not enough energy (line 6)
  - The agents do not join
  - They can switch to a high damping mode for more quickly refilling the Tanks

 By considering the Tank dynamics and the PassiveJoin Procedure, the group dynamics becomes

$$\begin{cases} \begin{bmatrix} \dot{p} \\ \dot{x} \\ \dot{x}_t \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 0 & E(t) & 0 \\ -E^T(t) & 0 & \Gamma^T \\ 0 & -\Gamma & 0 \end{bmatrix} - \begin{bmatrix} B & 0 & 0 \\ 0 & 0 & 0 \\ -(I-\beta)PB & 0 & 0 \end{bmatrix} \end{pmatrix} \begin{bmatrix} \frac{\partial \mathcal{H}}{\partial p} \\ \frac{\partial \mathcal{H}}{\partial x} \\ \frac{\partial \mathcal{H}}{\partial x_t} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \beta c \end{bmatrix} + GF^e$$

$$v = G^T \begin{bmatrix} \frac{\partial \mathcal{H}}{\partial p} \\ \frac{\partial \mathcal{H}}{\partial x} \\ \frac{\partial \mathcal{H}}{\partial x_t} \end{bmatrix}$$

where the new Hamiltonian is 
$$\mathcal{H} = \sum_{i=1}^N \mathcal{K}_i + \sum_{i=1}^{N-1} \sum_{j=i+1}^N V(x_{ij}) + \sum_{i=1}^N T_i$$
 and  $\beta = diag(\beta_i)$ ,  $P = diag(\frac{1}{t_i}p_i^TM_i^{-T})$ , and matrix  $\Gamma \in \mathbb{R}^{N \times \frac{3N(N-1)}{2}}$  representing

the interconnection between Tanks and springs

 Proposition: the group dynamics (with <u>Tanks</u>, <u>Energy Transfer</u>, <u>Consensus</u>, and PassiveJoin Procedure)

is still passive  $\dot{\mathcal{H}} < v^T F^e$ 

Proof: left as exercise

Additional remarks:

• We can always enforce a limiting strategy for the Tank refilling action by means of a

parameter  $\alpha_i \in \{0, 1\}$ 

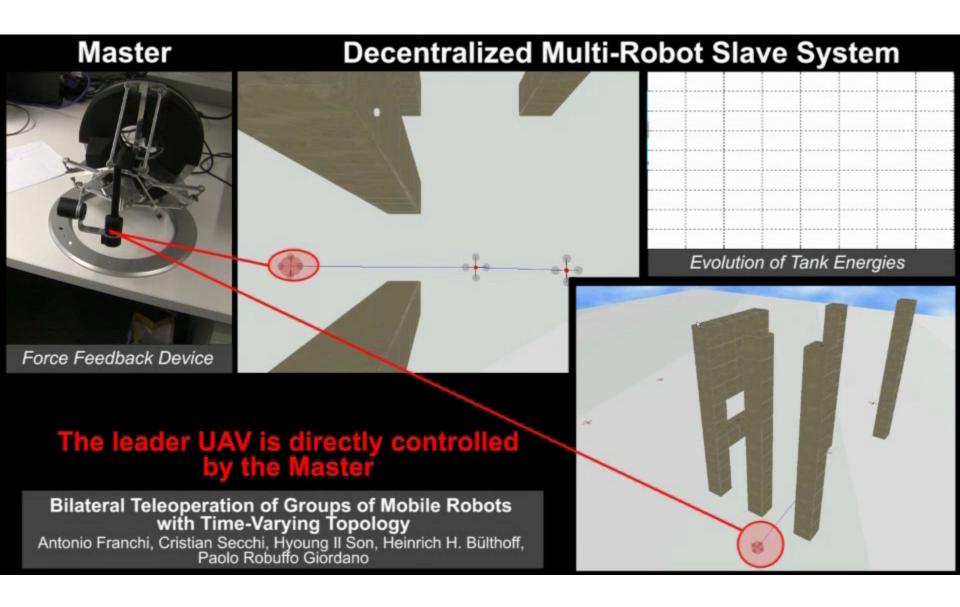
$$\begin{cases} \dot{p}_i = F_i^a + F_i^e - B_i M_i^{-1} p_i \\ \dot{x}_{t_i} = \alpha_i \frac{1}{x_{t_i}} D_i + \sum_{j=1}^N w_{ij}^t \\ y = \begin{bmatrix} v_i \\ x_{t_i} \end{bmatrix} \end{cases}$$

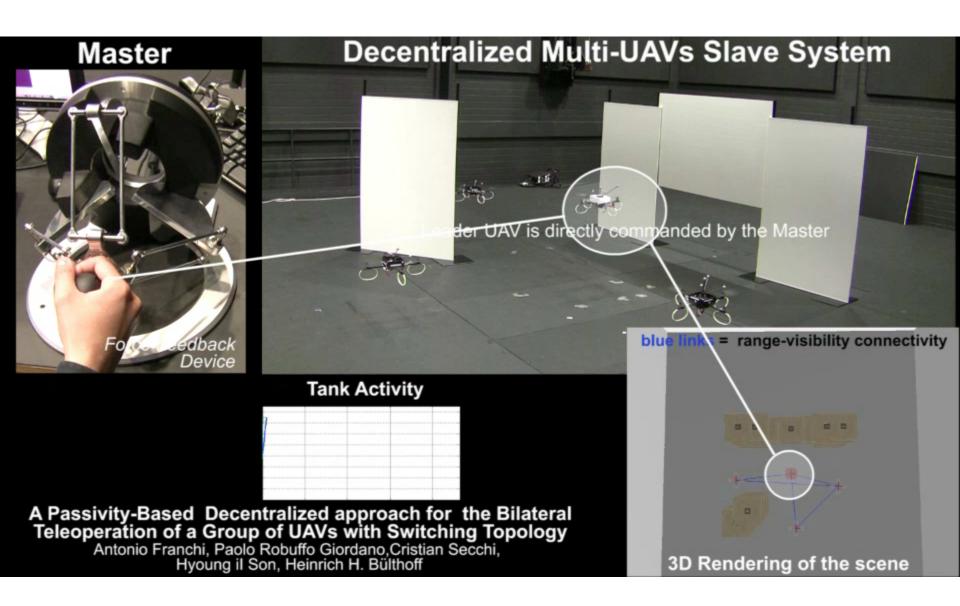
such that 
$$\alpha_i = \left\{ \begin{array}{ll} 0, & \text{if} & T_i \geq \bar{T}_i \\ 1, & \text{if} & T_i < \bar{T}_i \end{array} \right.$$
 where  $\bar{T}_i$  is a suitable upper bound for the Tank energy level

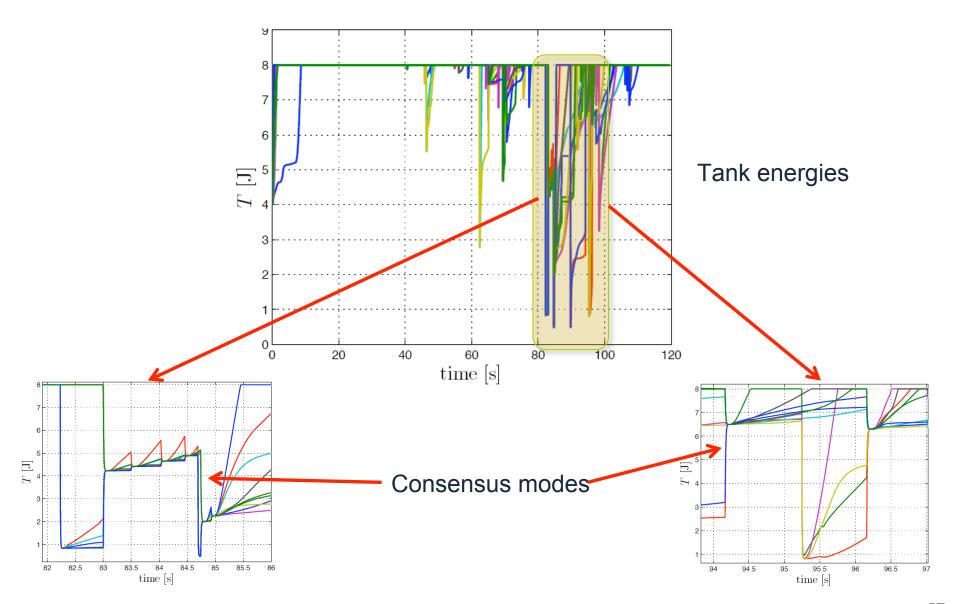
• This way, we can avoid a too large accumulation and prevent <u>practical</u> non-passive behaviors over short periods of time

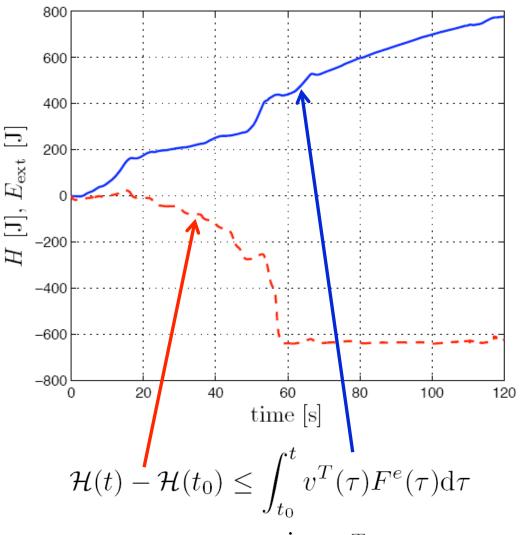
- Consider one leader, and split its external force as  $F_l^e = F_s + F_l^{\mathrm{env}}$
- ullet Assume the leader must track a given velocity command  $r_M \in \mathbb{R}^3$
- This can be achieved by adding this "force" to the leader  $F_s=b_T(r_M-v_l)$  where  $v_l$  is the leader velocity

ullet Essentially: proportional controller on the velocity error  $r_M-v_l$ 









Slave-side Passivity condition

(Integral version of  $\dot{\mathcal{H}} \leq v^T F^e$  )

- Assume a constant velocity command for the leader  $r_M = const$
- Do the agents, at steady-state, synchronize with this velocity command?

$$v_i \to r_M, \quad \forall i ?$$

We must characterize the steady-state of the system (if it exists)

- •Assumptions for the steady-state:
  - 1)  $F_i^{
    m env}=0, \quad orall i=1,\ldots,N$  (no environmental forces no close obstacles)
  - 2) Tanks are full to  $ar{T}_i$  and  $\Gamma=0$  (no joins, no energy exchanges with elastic elements)
  - ullet 3)  ${\cal G}$  is **connected** (can always reduce to the connected component of the leader)
- Also assume (w.l.o.g.) that the leader is agent 1
  - For the leader,  $F_1^e = F_s = b_T(r_M v_1)$
  - For all the others,  $F_i^e = F_i^{\mathrm{env}} = 0$  (because of Assumption 1)

• Step 1: with  $r_M=const$  and Assumptions 1), 2), 3), prove existence of a steady-state

- It can be proven that a steady-state exists such that  $(\dot{p}, \dot{x}, \dot{t}) = (0, 0, 0)$ 
  - follows from "exosystem"-like arguments + output strictly passivity of the slaveside (see, e.g., Isidori's book Nonlinear Control Systems)

- At steady-state:
  - Velocities stay constant  $(\dot{p}=\dot{v}=0)$  (assuming constant mass for the agents)
  - Spring lengths (relative positions) stay constant ( $\dot{x} = 0$ )
  - ullet Tank energies stay constant  $(\dot{t}=0)$  . This follows from Assumption 2)

• To which steady-state velocity do the agents converge? Is it  $v_i = r_M = const$  for all of them?

• Under these assumptions, and splitting  $F_s$  into the two contributions  $b_T r_M$  and  $-b_T v_1$ , one can rewrite the agent group dynamics as

$$\begin{pmatrix} \dot{p} \\ \dot{x} \\ \dot{t} \end{pmatrix} = \begin{pmatrix} -B' & E & 0 \\ -E^T & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{\partial \mathcal{H}}{\partial p} \\ \frac{\partial \mathcal{H}}{\partial x} \\ \frac{\partial \mathcal{H}}{\partial t} \end{pmatrix} + u$$

where  $B'=\mathrm{diag}(B_i')$ ,  $B_1'=B_1+b_TI_3$ ,  $B_i'=B_i$  and  $u=\left(b_Tr_M^T\ 0\dots 0\right)^T\in\mathbb{R}^{3N}$ 

- And then impose the steady-state condition  $(\dot{p}, \dot{x}, \dot{t}) = (0, 0, 0)$
- The first "row" becomes  $B'\frac{\partial \mathcal{H}}{\partial p} E\frac{\partial \mathcal{H}}{\partial x} = u$
- The second "row" becomes  $E^T \frac{\partial \mathcal{H}}{\partial n} = 0$

• Two conditions: 
$$B'\frac{\partial \mathcal{H}}{\partial p} - E\frac{\partial \mathcal{H}}{\partial x} = u \text{ and } E^T\frac{\partial \mathcal{H}}{\partial p} = 0$$

- We know that, for connected graphs,  $\ker E^T=\mathbf{1}_{N_3}$  where  $\mathbf{1}_{N_3}=\mathbf{1}_N\otimes I_3$
- Therefore,  $\dfrac{\partial \mathcal{H}}{\partial p}=\mathbf{1}_{N_3}v_{ss}$  for some  $v_{ss}\in\mathbb{R}^3$  . All the agents have the same velocity
- By plugging this result into the first condition, we get  $B'\mathbf{1}_{N_3}v_{ss}-E\frac{\partial\mathcal{H}}{\partial x}=u$
- Pre-multiply both sides by  $\mathbf{1}_{N_3}^T$  to get  $\mathbf{1}_{N_3}^TB'\mathbf{1}_{N_3}v_{ss}=\mathbf{1}_{N_3}^Tu=b_Tr_M$
- This finally results into the sought value  $v_{ss}=(\mathbf{1}_{N_3}^TB'\mathbf{1}_{N_3})^{-1}b_Tr_M$

• Conclusions: at steady-state (Assumptions 1), 2), 3) and  $r_M = const$ ), all the agent velocities reach

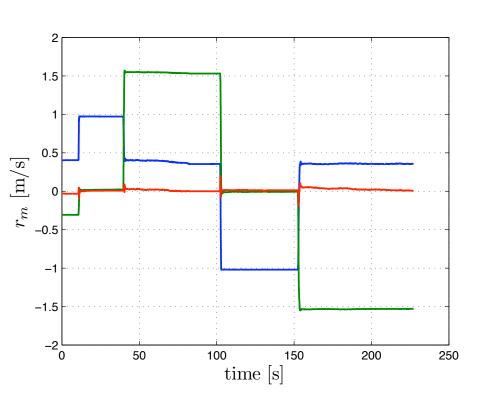
$$v_i \to v_{ss} = (\mathbf{1}_{N_3}^T B' \mathbf{1}_{N_3})^{-1} b_T r_M$$

ullet One can check that  $\|v_{ss}\|<\|r_M\|$ 

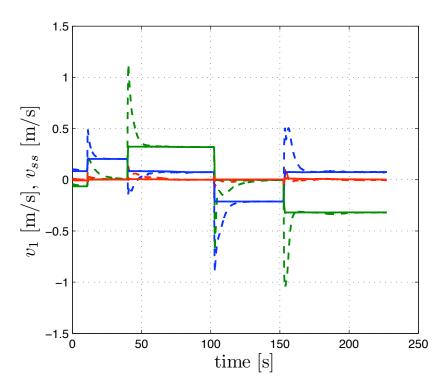
• For instance, for "scalar" damping terms  $B_i = b_i I_3$  this reduces to

$$v_{ss} = \frac{b_T r_M}{b_T + \sum b_i}$$

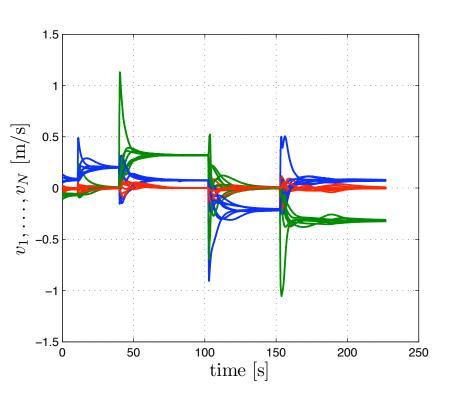
- The agents always travel "slower" than the commanded  $r_M$
- Perfect synchronization only if  $b_i = 0$  (no damping on any agent!)



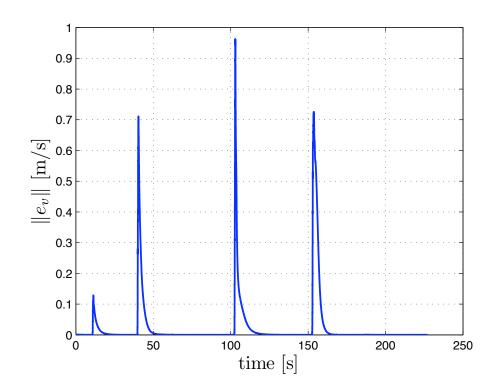
Leader velocity command  $r_M$ 



Leader vel.  $v_1$  vs. predicted  $v_{ss}$ 



All agent velocities



Norm of velocity synchronization error

$$||e_v|| = ||v - \mathbf{1}_{N_3} v_{ss}||$$

- How to synchronize velocities with  $r_M$  (at steady-state)?
- The damping terms  $B_i$  are
  - good for stabilization and Tank refill
  - bad for vel. synchronization, as they "slow down" the agents....
  - ....it seems they should be "switched off"
- Must modify the agent dynamics: consider

$$\begin{cases} \dot{p}_{i} &= F_{i}^{a} + F_{i}^{e} - B_{i} M_{i}^{-1} p_{i} \\ \dot{x}_{t_{i}} &= \frac{1}{x_{t_{i}}} D_{i} + \sum_{j=1}^{N} w_{ij}^{t} \end{cases}$$

$$\begin{cases} \dot{p}_{i} &= F_{i}^{a} + F_{i}^{e} + F_{i}^{s} + F_{i}^{d} \\ \dot{x}_{t_{i}} &= \frac{1}{x_{t_{i}}} D_{i} + \sum_{j=1}^{N} w_{ij}^{t} \end{cases}$$

$$\begin{cases} \dot{p}_{i} &= F_{i}^{a} + F_{i}^{e} + F_{i}^{s} + F_{i}^{d} \\ \dot{x}_{t_{i}} &= \frac{1}{x_{t_{i}}} D_{i} + \sum_{j=1}^{N} w_{ij}^{t} \end{cases}$$

$$\begin{cases} \dot{p}_{i} &= F_{i}^{a} + F_{i}^{e} + F_{i}^{s} + F_{i}^{d} \\ \dot{x}_{t_{i}} &= \frac{1}{x_{t_{i}}} D_{i} + \sum_{j=1}^{N} w_{ij}^{t} \end{cases}$$

$$\begin{cases} \dot{p}_{i} &= F_{i}^{a} + F_{i}^{e} + F_{i}^{s} + F_{i}^{d} \\ \dot{x}_{t_{i}} &= \frac{1}{x_{t_{i}}} D_{i} + \sum_{j=1}^{N} w_{ij}^{t} \end{cases}$$

where  $F_i^d=-B_i(t_i)M_i^{-1}p_i$  is the "damping" force, but with a variable damping

term

$$B_i(t_i) = \begin{cases} 0 & \text{if} \quad T(t_i) = \bar{T}_i \\ \bar{B}_i & \text{if} \quad T(t_i) < \bar{T}_i \end{cases}$$

ullet The damping  $B_i$  is now active only when needed to refill the Tank  $T_i$ 

$$\begin{cases} \dot{p}_i &= F_i^a + F_i^e + F_i^s + F_i^d \\ \dot{x}_{t_i} &= \frac{1}{x_{t_i}} D_i + \sum_{j=1}^N w_{t_j}^t \\ y &= \begin{bmatrix} v_i \\ x_{t_i} \end{bmatrix} \end{cases}$$

- The additional (synchronization) force  $F_i^s$  is designed as  $F_i^s = -b \sum_{j \in \mathcal{N}_i} (v_i v_j)$  (consensus among velocities)
- The group dynamics takes the form

$$\begin{cases} \begin{pmatrix} \dot{p} \\ \dot{x} \\ \dot{t} \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} 0 & E & 0 \\ -E^T & 0 & \Gamma^T \\ 0 & -\Gamma & 0 \end{pmatrix} - \begin{pmatrix} \mathcal{L} + B & 0 & 0 \\ 0 & 0 & 0 \\ -PB & 0 & 0 \end{pmatrix} \end{bmatrix} \nabla \mathcal{H} + GF^e \\ v = G^T \nabla \mathcal{H} \end{cases}$$

• Matrix  $\mathcal{L} = bL \otimes I_3$  where L is the Laplacian of the Graph  $\mathcal{G}$ 

$$\begin{cases}
\begin{pmatrix} \dot{p} \\ \dot{x} \\ \dot{t} \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} 0 & E & 0 \\ -E^T & 0 & \Gamma^T \\ 0 & -\Gamma & 0 \end{pmatrix} - \begin{pmatrix} \mathcal{L} + B & 0 & 0 \\ 0 & 0 & 0 \\ -PB & 0 & 0 \end{pmatrix} \end{bmatrix} \nabla \mathcal{H} + GF^e \\
v = G^T \nabla \mathcal{H}
\end{cases}$$

Exercise: prove that the system is passive

$$\dot{\mathcal{H}} = -\frac{\partial^T \mathcal{H}}{\partial p} \mathcal{L} \frac{\partial \mathcal{H}}{\partial p} + v^T F^e \le v^T F^e$$

What can be said about the steady-state regime?

- Assumptions (analogously to before):
  - 1)  $F_i^{\text{env}} = 0$ ,  $\forall i = 1, ..., N$  (no external forces no close obstacles)
  - 2)  $B_i(t_i) = 0$  and  $\Gamma = 0$  (tanks full and no energy exchange with elastic elements)
  - 3)  $\mathcal{G}$  is connected

- •Then, at steady-state:
  - 1)  $v_i \rightarrow r_M = const$  (all agents synchronize with the commanded velocity)
  - 2)  $\dot{x} = 0$  (all spring lengths/relative positions stay constant)

- Proof: apply the change of coordinates  $(p,\,x,\,t) o (\tilde{p},\,x,\,t)$  where  $\tilde{p}_i = p_i M_i r_M$
- The quantity  $\tilde{p}_i$  is the "momentum (velocity) synchronization error"

• New "energy" 
$$\tilde{\mathcal{K}}_i = \frac{1}{2} \tilde{p}_i^T M_i^{-1} \tilde{p}_i, \quad \tilde{H} = \sum_{i=1}^N \tilde{\mathcal{K}}_i + \sum_{i=1}^{N-1} \sum_{j=i+1}^N V(x_{ij}) + \sum_{i=1}^N T_i$$

- What is the dynamics of  $\tilde{p}$ ?  $\dot{\tilde{p}} = \dot{p} = E \frac{\partial \mathcal{H}}{\partial x} (\mathcal{L} + B) \frac{\partial \mathcal{H}}{\partial p} + GF^e$

• 1) 
$$\frac{\partial \mathcal{H}}{\partial x} = \frac{\partial \mathcal{H}}{\partial x}$$
 and

• Facts: 
$$\bullet \text{ 1) } \frac{\partial \mathcal{H}}{\partial x} = \frac{\partial \tilde{\mathcal{H}}}{\partial x} \text{ and } \frac{\partial \tilde{\mathcal{H}}}{\partial \tilde{p}} = v - \mathbf{1}_{N_3} r_M = \frac{\partial \mathcal{H}}{\partial p} - \mathbf{1}_{N_3} r_M$$

• 2) 
$$\mathcal{L} \frac{\partial \tilde{\mathcal{H}}}{\partial \tilde{p}} = \mathcal{L} \frac{\partial \mathcal{H}}{\partial p}$$
 and  $E^T \frac{\partial \tilde{\mathcal{H}}}{\partial \tilde{p}} = E^T \frac{\partial \mathcal{H}}{\partial p}$ 

• 3) B=0 and  $\Gamma=0$  (assumption 2))

 Then, the group dynamics can be rewritten in terms of new coordinates and new energy function

$$\dot{\tilde{p}} = E \frac{\partial \tilde{\mathcal{H}}}{\partial x} - \mathcal{L} \frac{\partial \tilde{\mathcal{H}}}{\partial \tilde{p}} + GF^e \qquad \dot{x} = -E^T \frac{\partial \tilde{\mathcal{H}}}{\partial \tilde{p}}$$

$$\dot{x} = -E^T \frac{\partial \mathcal{H}}{\partial \tilde{p}}$$

• New dynamics 
$$\left\{ \begin{array}{l} \left(\dot{\tilde{p}} \atop \dot{x} \atop \dot{t} \right) = \begin{bmatrix} \begin{pmatrix} 0 & E & 0 \\ -E^T & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} - \begin{pmatrix} \mathcal{L} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right] \nabla \tilde{H} + GF^e \\ v = G^T \nabla \tilde{H} \end{array} \right.$$

- Let us study the asymptotic stability:  $\dot{\tilde{H}} = -\frac{\partial^T \mathcal{H}}{\partial \tilde{n}} \mathcal{L} \frac{\partial \mathcal{H}}{\partial \tilde{n}} + \frac{\partial^T \mathcal{H}}{\partial \tilde{n}} F^e$
- By using Assumption 1) and the expression of  $F_s=b_T(r_M-v_1)=-b_T\frac{\partial \mathcal{H}}{\partial \tilde{z}}$

we obtain 
$$\dot{\tilde{\mathcal{H}}} = -\frac{\partial^T \tilde{\mathcal{H}}}{\partial \tilde{p}} \mathcal{L} \frac{\partial \tilde{\mathcal{H}}}{\partial \tilde{p}} - \frac{\partial^T \tilde{\mathcal{H}}}{\partial \tilde{p}_1} b_T \frac{\partial \tilde{\mathcal{H}}}{\partial \tilde{p}_1} \leq 0$$

Energy function non-increasing -> system trajectories are bounded

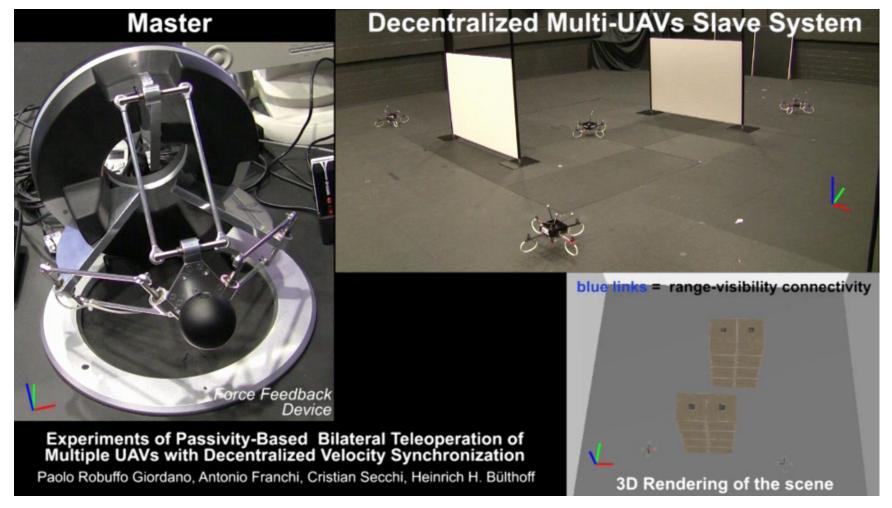
$$\dot{\tilde{\mathcal{H}}} = -\frac{\partial^T \tilde{\mathcal{H}}}{\partial \tilde{p}} \mathcal{L} \frac{\partial \tilde{\mathcal{H}}}{\partial \tilde{p}} - \frac{\partial^T \tilde{\mathcal{H}}}{\partial \tilde{p}_1} b_T \frac{\partial \tilde{\mathcal{H}}}{\partial \tilde{p}_1} \le 0$$

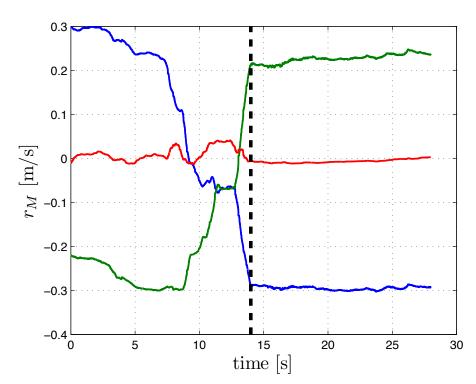
- Must study the properties of the set  $S = \{(\tilde{p}, x, t) \mid \tilde{H} = 0\}$  (~ LaSalle)
- In this set, it is  $\frac{\partial \mathcal{H}}{\partial \tilde{n}} \in \mathrm{ker}\mathcal{L}$  and  $\frac{\partial \mathcal{H}}{\partial \tilde{n}_1} = 0$
- Since  $\ker \mathcal{L} = \mathbf{1}_{N_3}$  , the set S is characterized by  $\frac{\partial \mathcal{H}}{\partial \tilde{n}} = 0$

$$\frac{\partial \tilde{\mathcal{H}}}{\partial \tilde{p}} = 0$$

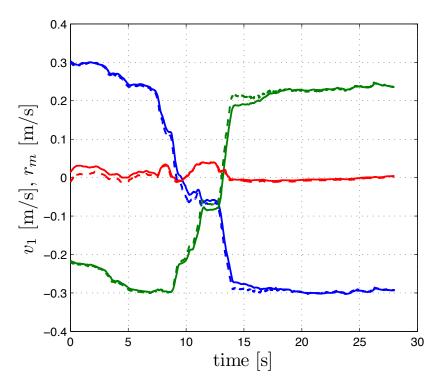
- From the dynamics ->  $\dot{x}=-E^T\frac{\partial\mathcal{H}}{\partial\tilde{n}}=0$  (proof of Item 2)
- The condition  $\frac{\partial \mathcal{H}}{\partial \tilde{p}}=0$  implies  $v-\mathbf{1}_{N_3}r_M=M(v-\mathbf{1}_{N_3}r_M)=\tilde{p}=0$ and  $\dot{\tilde{p}} = 0$  (proof of Item 1)

• Therefore, the system converges towards a steady-state condition  $(\dot{\tilde{p}},\,\dot{x},\,\dot{t})=(0,\,0,\,0)$  and  $v=\mathbf{1}_{N_3}r_M$  (perfect synchronization with leader velocity commands)

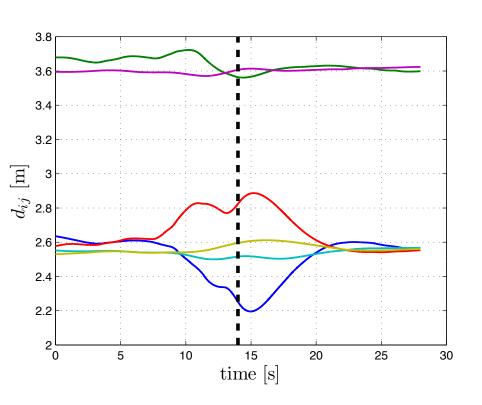


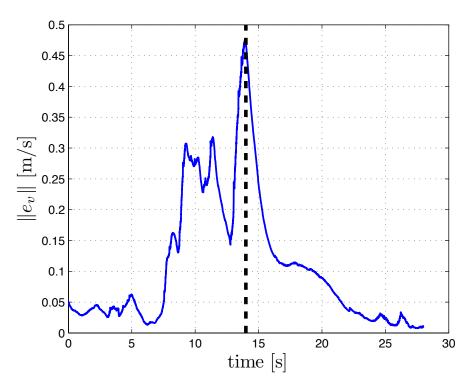


Master velocity commands  $r_M$ 



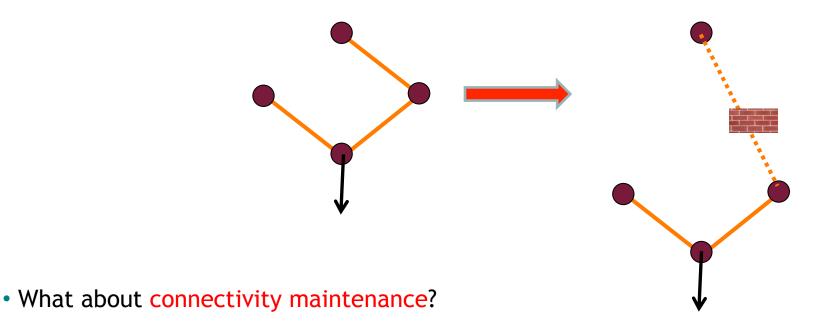
Leader vel.  $v_1$  vs.  $r_M$ 





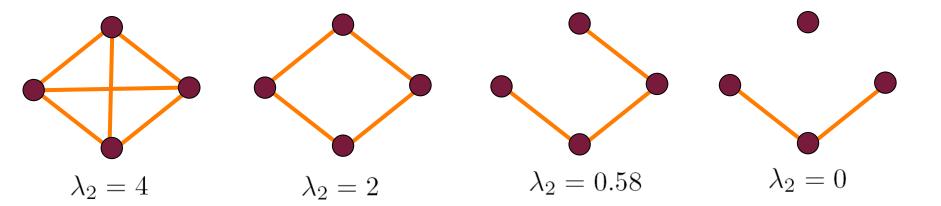
Interdistances

Norm of velocity synchronization error  $\|e_v\| = \|v - \mathbf{1}_{N_3} r_M\|$ 



- Can the graph  $\mathcal G$  stay connected while still allowing arbitrary split and join as before?
- And...
- How to do it in a decentralized and stable/passive way?

- Connected graph ->  $\lambda_2 > 0$  (second smallest eigenvalue of the graph Laplacian L)
- $ullet \lambda_2$  is a measure of the degree of connectivity in a graph
  - The larger its value, the "more connected" the graph



- However:
  - $\lambda_2$  is a global quantity  $\longrightarrow$  against decentralization?
  - $\lambda_2$  does not vary smoothly over time  $\longrightarrow$  cannot take "derivatives"

- <u>As illustration</u>, it would be nice if one could have  $\lambda_2=\lambda_2(x)$  and then just implement some gradient-like controller  $u=\frac{\partial \lambda_2}{\partial x}$
- This situation is actually possible: assume the weights of the Adjacency matrix are smooth functions of the state  $A_{ij}=A_{ij}(x)\geq 0$  rather than  $A_{ij}=\{0,\ 1\}$
- Then, the Laplacian itself becomes a smooth function of the state

$$L = \Delta(x) - A(x) = L(x)$$

- Let  $v_2$  be the normalized eigenvector associated to  $\lambda_2$
- By definition, it is  $\lambda_2 = v_2^T L v_2$
- Then,  $\mathrm{d}\lambda_2 = \mathrm{d}v_2^T L v_2 + v_2^T \mathrm{d}L v_2 + v_2^T L \mathrm{d}v_2$

- How can we simplify  $\mathrm{d}\lambda_2 = \mathrm{d}v_2^T L v_2 + v_2^T \mathrm{d}L v_2 + v_2^T L \mathrm{d}v_2$  ?
- Fact 1: since L is symmetric, it is  $\mathrm{d}v_2^T L v_2 = v_2^T L \mathrm{d}v_2$
- Fact 2:  $dv_2^T L v_2 = \lambda_2 dv_2^T v_2 = 0$  since  $v_2$  is a normalized vector ( $||v_2|| = 1$ )
- Then,  $\mathrm{d}\lambda_2 = v_2^T \mathrm{d}Lv_2$
- This implies that  $\frac{\partial \lambda_2}{\partial x_i} = \sum_{(i,j) \in \mathcal{E}} \frac{\partial A_{ij}}{\partial x_i} (v_{2_i} v_{2_j})^2$  (follows from the definition of L)
- Note the nice "decentralized structure": sum over the neighbors

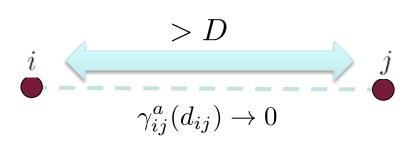
- Now, we are just left with a proper design of the weights  $A_{ij}(x)$
- The weights  $A_{ij}(x)$  should possess the following features:
  - 1) they should be function of relative quantities, e.g.,  $A_{ij}(x_i x_j)$
  - 2) they should smoothly vanish as a disconnection is approaching
    - for example,  $A_{ij}(x_i-x_j)\to 0$  as  $d_{ij}\to D$  for the max. range constraint

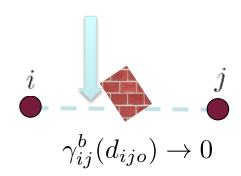
- ullet One can exploit and extend this idea in order to embed in the weights  $A_{ij}$ 
  - presence of physical limitations for interacting (e.g., occlusions, maximum range)
  - additional agent requirements which should be preferably met (e.g., keeping a desired interdistance)
  - additional agent requirements which must be necessarily met (avoiding collisions with obstacles and other agents)
- Everything achieved by the sole "maximization" of the unique scalar quantity  $\lambda_2(x)$ 
  - "physical" connectivity + any additional group requirement

• A possibility: define the weights  $A_{ij}$  as the product of three terms

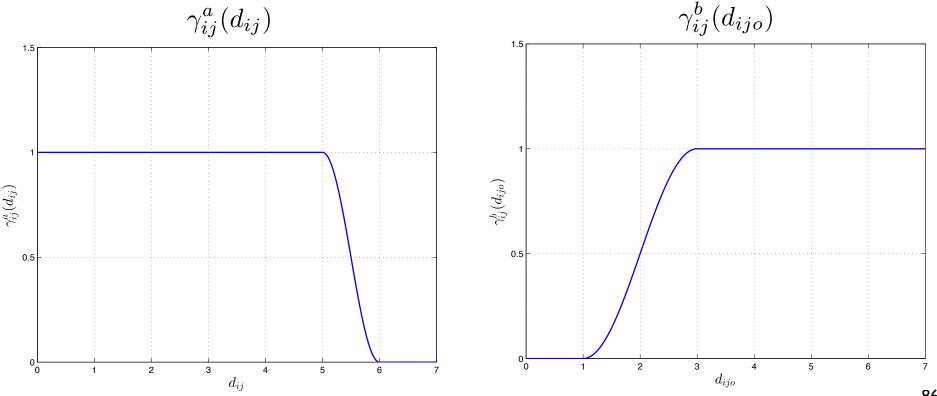
$$A_{ij} = \alpha_{ij}\beta_{ij}\gamma_{ij}$$

- The term  $\gamma_{ij} \geq 0$  accounts for "physical" limitations in the relative sensing/communication, it represents the sensing/communication model
  - For instance, take  $\gamma_{ij}=\gamma^a_{ij}(d_{ij})\gamma^b_{ij}(d_{ijo})$  where  $d_{ijo}$  is the distance from the segment joining agents i and j and the closest obstacle point  $o_{ij}$  and design
  - $\gamma_{ij}^a(d_{ij}) \to 0$  when exceeding the maximum range (  $d_{ij} \to D$ )
  - $\gamma^b_{ij}(d_{ijo}) \to 0$  when being occluded by an obstacle  $(d_{ijo} \to 0)$

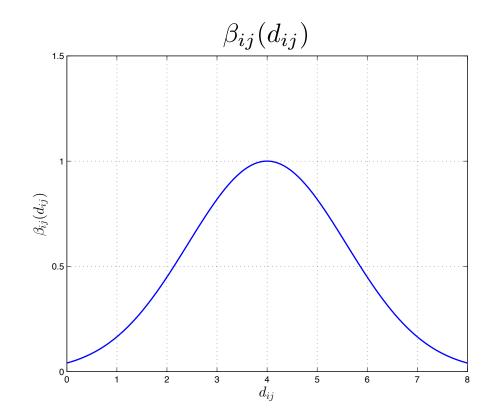




- The weight  $\gamma_{ij}=\gamma_{ij}^a(d_{ij})\gamma_{ij}^b(d_{ijo})$  is made of two terms
- $\gamma_{ij}^a(d_{ij}) \geq 0$  accounts for the maximum range constraint
- $\gamma_{ij}^b(d_{ijo}) \geq 0$  accounts for the minimum distance between line-of-sight and obstacles

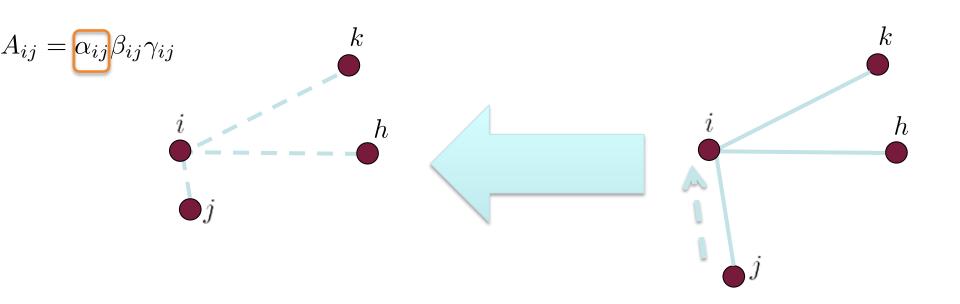


- The term  $\beta_{ij} \geq 0$  accounts for "soft requirements" that should be "preferably" realized by the agents (e.g., keep a desired distance)
  - For instance,  $\beta_{ij}(d_{ij}) \to 0$  as  $\|d_{ij}-d_0\| \to \infty$ , and  $\beta_{ij}(d_{ij})$  has a unique maximum at  $d_{ij}=d_0$



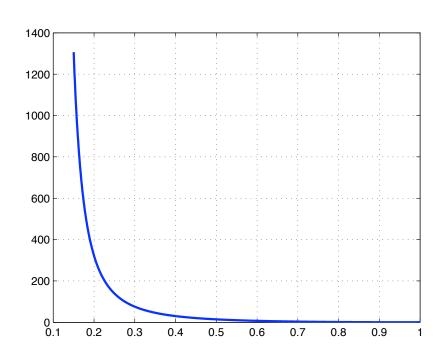


- The last term  $\alpha_{ij} \geq 0$  accounts for "hard/mandatory" requirements that must be necessarily realized by the agents (e.g., avoid collisions)
  - As before,  $\alpha_{ij}(d_{ij}) \to 0$  as  $d_{ij} \to 0$  ( i and j disconnect if they get too close)
  - But also:  $\alpha_{ik} \to 0, \ \forall k \in \mathcal{N}_i$  (all the neighbors of i will disconnect!)
  - Approaching another agent will necessarily lead to a disconnected graph ( $\lambda_2 o 0$ )



- We have almost all the ingredients
- In view of the PHS form of the group dynamics, we still lack an Energy (Hamiltonian) function
- Let us then define a Connectivity Potential function  $V^{\lambda}(\lambda_2) \geq 0$  which
  - ullet vanishes for  $\lambda_2 o \lambda_2^{
    m max}$
  - grows unbounded for  $\lambda_2 o \lambda_2^{\min} < \lambda_2^{\max}$
- This will be the Storage function for our passivity arguments
- Its gradient (connectivity force) is

$$F_i^{\lambda}(x) = -\frac{\partial V^{\lambda}(\lambda_2(x))}{\partial x_i}$$



•Thanks to the structure  $\boxed{ \frac{\partial \lambda_2}{\partial x_i} = \sum_{(i,j) \in \mathcal{E}} \frac{\partial A_{ij}}{\partial x_i} (v_{2_i} - v_{2_j})^2 } \text{ the resulting}$  connectivity force  $F_i^{\lambda} = -\frac{\partial V^{\lambda}(\lambda_2(x))}{\partial x_i} = -\frac{\partial V^{\lambda}(\lambda_2)}{\partial \lambda_2} \frac{\partial \lambda_2(x)}{\partial x_i}$ 

can be shown to possess the following features:

- function of only relative quantities (relative positions among robots and between robots/obstacle)
- almost decentralized evaluation (local and 1-hop information plus current value of  $\lambda_2$ , and of the relative entries of  $v_2$ )
- one can resort to a <u>decentralized estimation</u> to obtain  $\hat{\lambda}_2$ ,  $\hat{v}_{2_i}$ ,  $\hat{v}_{2_j}$ ,  $j\in\mathcal{N}_i$  and then  $\hat{F}_i^\lambda$

- Stability of the closed-loop dynamics can by resorting to passivity theory (energetic considerations)
- In particular, tank machinery exploited to cope with estimation errors

- Let  $\hat{v}_2$  be the current estimate of the eigenvector  $v_2$
- The estimation algorithm is a continuous-time version of the Power Iteration Procedure for computing eigenvectors and eigenvalues of a matrix
- It consists of three steps:
- 1) Deflation  $\dot{\hat{v}}_2 = -rac{k_1}{N} \mathbf{1} \mathbf{1}^T \hat{v}_2$  for removing the components spanned by  $v_1 = \mathbf{1}$
- 2) Direction update  $\dot{\hat{v}}_2 = -k_2 L \hat{v}_2$  for moving towards  $v_2$
- 3) Renormalization  $\dot{\hat{v}}_2 = -k_3 \left( \frac{\hat{v}_2^T \hat{v}_2}{N} 1 \right) \hat{v}_2$  from staying away from the null-vector
- Altogether:  $\dot{\hat{v}}_2 = -\frac{k_1}{N} \mathbf{1} \mathbf{1}^T \hat{v}_2 k_2 L \hat{v}_2 k_3 \left( \frac{\hat{v}_2^T \hat{v}_2}{N} 1 \right) \hat{v}_2$
- And it can be shown that  $\hat{\lambda}_2 = \frac{k_3}{k_2} \left(1 \|\hat{v}_2\|^2\right)$

• Is 
$$\dot{\hat{v}}_2 = -\frac{k_1}{N} \mathbf{1} \mathbf{1}^T \hat{v}_2 - k_2 L \hat{v}_2 - k_3 \left( \frac{\hat{v}_2^T \hat{v}_2}{N} - 1 \right) \hat{v}_2$$
 decentralized?

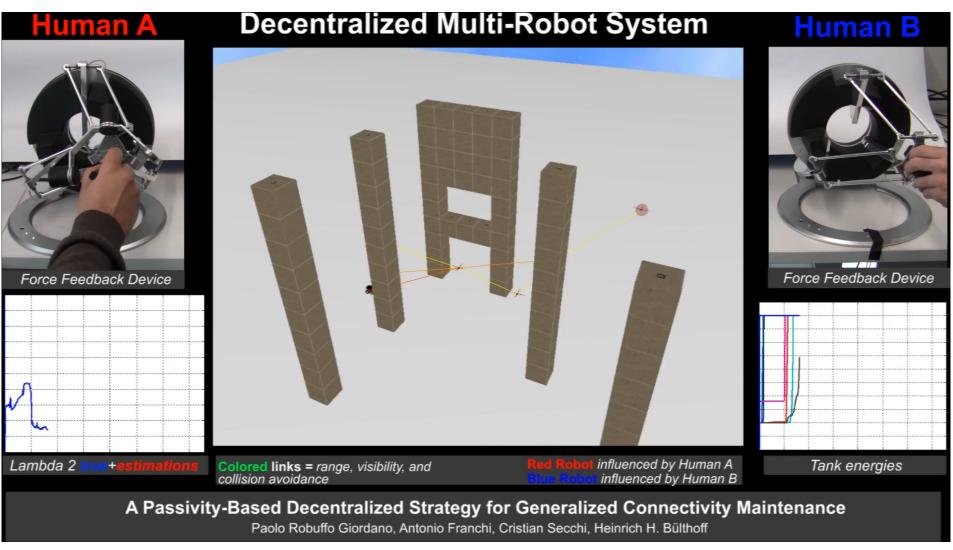
- Almost: everything is decentralized apart from
  - the average  $\frac{\mathbf{1}^T \hat{v}_2}{N}$  the average norm  $\frac{\hat{v}_2^T \hat{v}_2}{N}$
- These last two quantities can be (themselves) estimated in a decentralized way by making use of the PI-ACE estimator (proportional/integral-Average Consensus Estimator)

$$\begin{cases} \dot{z}^i = \gamma(\alpha^i - z^i) - K_P \sum_{j \in \mathcal{N}_i} (z^i - z^j) + K_I \sum_{j \in \mathcal{N}_i} (w^i - w^j) \\ \dot{w}^i = -K_I \sum_{j \in \mathcal{N}_i} (z^i - z^j) \end{cases}$$

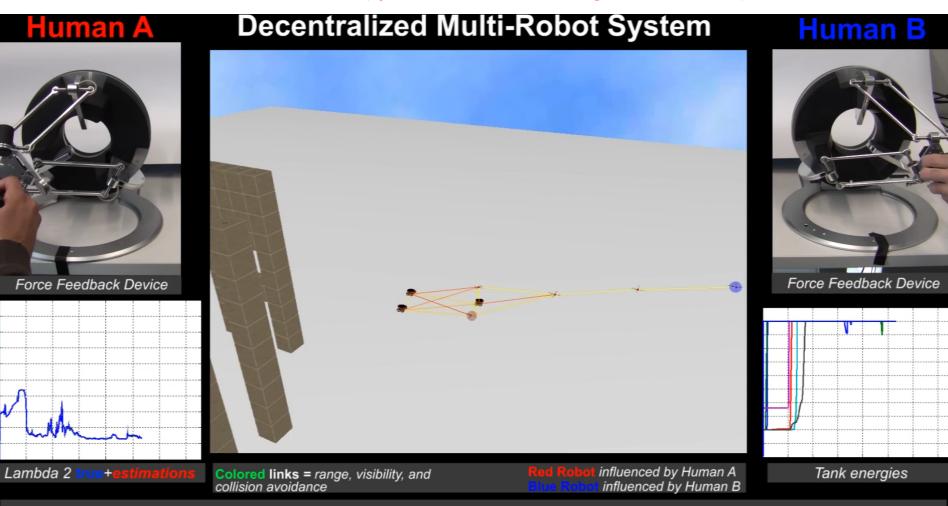
• The quantities  $(z^i, w^i)$  are the PI-ACE states, and  $\alpha_i = \{\hat{v}_{2_i}, \hat{v}_{2_i}^2\}$  are the external signals of which a moving average is taken (in a decentralized way)

- Let us then see some results of this Connectivity Maintenance algorithm
- Summarizing: the single scalar quantity  $\lambda_2$  encodes
  - physical connectivity (max. range, line-of-sight occlusion)
  - extra "soft-requirements" (keep a desired interdistance)
  - extra "hard-requirements" (avoid collisions with obstacles and agents)
  - still, possibility to split/join at anytime as long as the graph  $\mathcal G$  stays connected
  - everything decentralized
  - everything passive (in PHS form, by making use of the Tank machinery)
- In the next simulations/videos, the usual group of N quadrotor UAVs
- Two of them are also commanded by two human operators
- The whole group must keep connectivity (as defined before)

• Simulations with N=8 robots (quadrotor UAVs and ground robots)

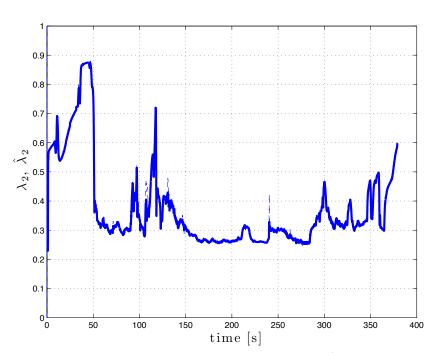


• Simulations with N=8 robots (quadrotor UAVs and ground robots)

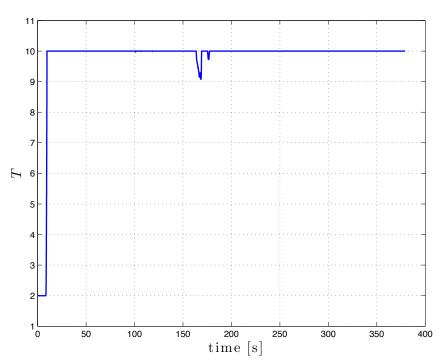


A Passivity-Based Decentralized Strategy for Generalized Connectivity Maintenance

Paolo Robuffo Giordano, Antonio Franchi, Cristian Secchi, Heinrich H. Bülthoff



Real  $\lambda_2$  (solid) vs. estimated  $\hat{\lambda}_2^i$  (dashed)



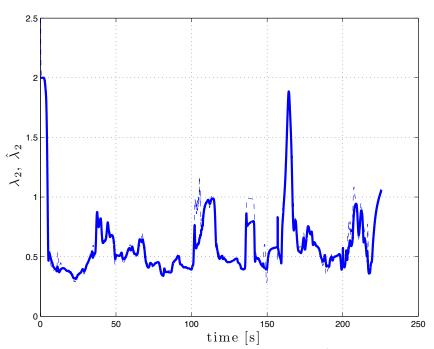
Tank energies  $T(x_t)$ 

• Experiments with  $N=4\,$  quadrotor UAVs

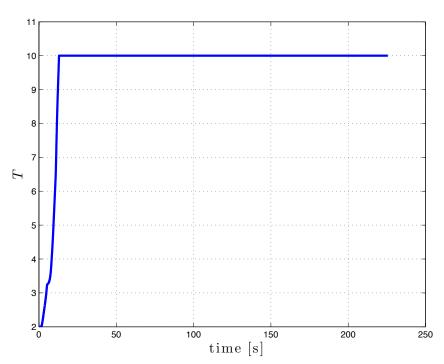
Bilateral Teleoperation of Groups of Mobile Robots with Decentralized Connectivity Maintainance Paolo Robuffo Giordano, Antonio Franchi, Cristian Secchi, Heinrich H. Bülthoff

Human-in-the-Loop Experiments

4 quadrotors in a cluttered environment

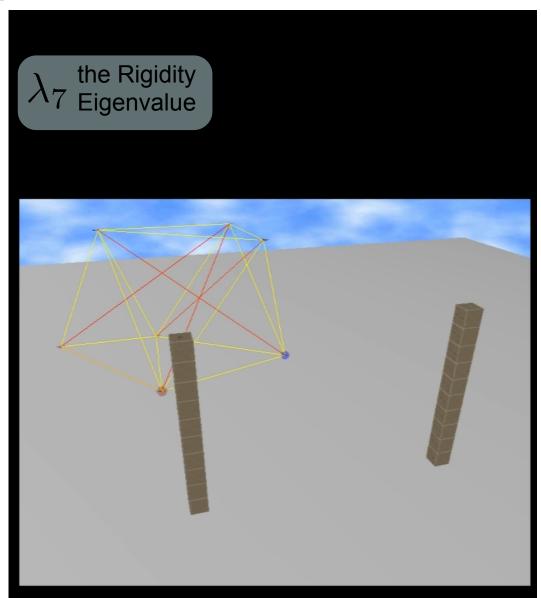


Real  $\lambda_2$  (solid) vs. estimated  $\hat{\lambda}_2^i$  (dashed)



Tank energies  $T(x_t)$ 

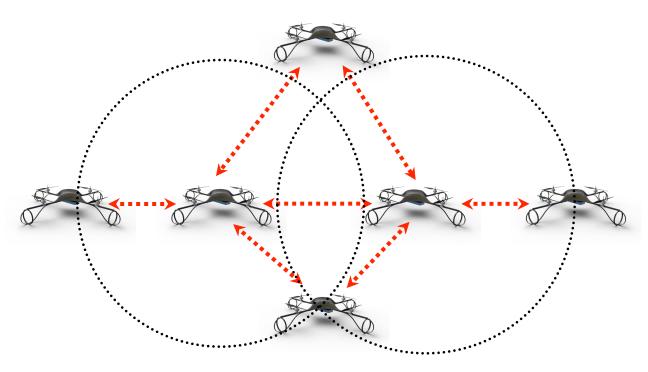
- An extension (RSS 2012, IJRR (in preparation))
- one can also define a "Rigidity Eigenvalue"  $\lambda_7$  and apply the same machinery
- rigidity maintenance with the same constraints and requirements as before
- Still flexibility in the graph topology  $\lambda_7>0$



#### What is rigidity?



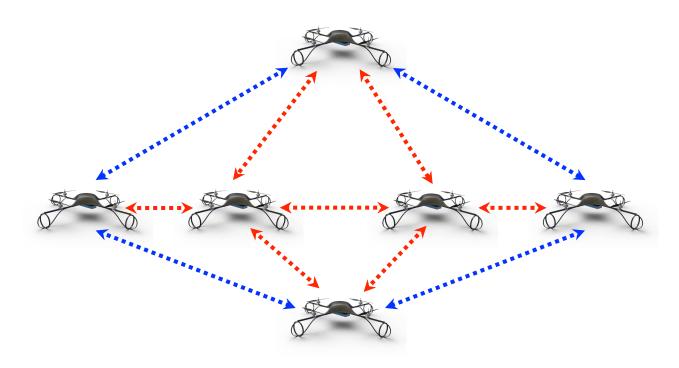
#### What is rigidity?



Can the desired formation be maintained using only the available distance measurements?



#### What is rigidity?



A minimum number of distance measurements are required to uniquely determine the desired formation!

#### **Graph Rigidity**

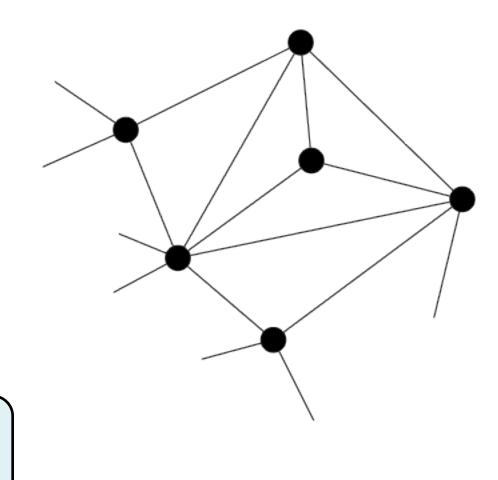
The Symmetric Rigidity Matrix

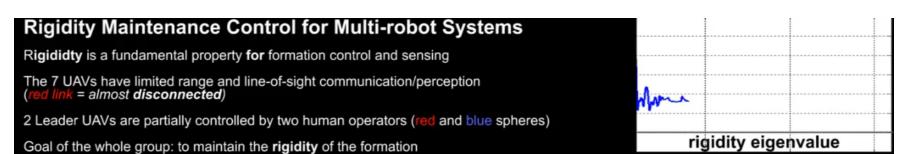
$$\mathcal{R} = R(p)^T R(p)$$

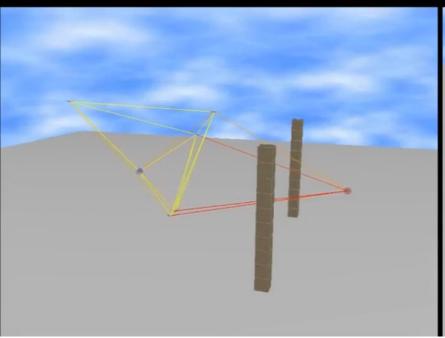
$$\lambda_7$$
 the Rigidity Eigenvalue

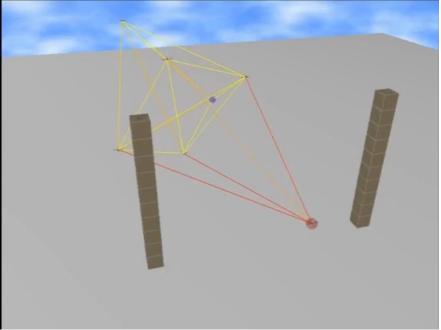
velocity command

$$u_i = -\frac{\partial V^{\lambda}}{\partial \lambda_7} \frac{\partial \lambda_7}{\partial p_i}$$







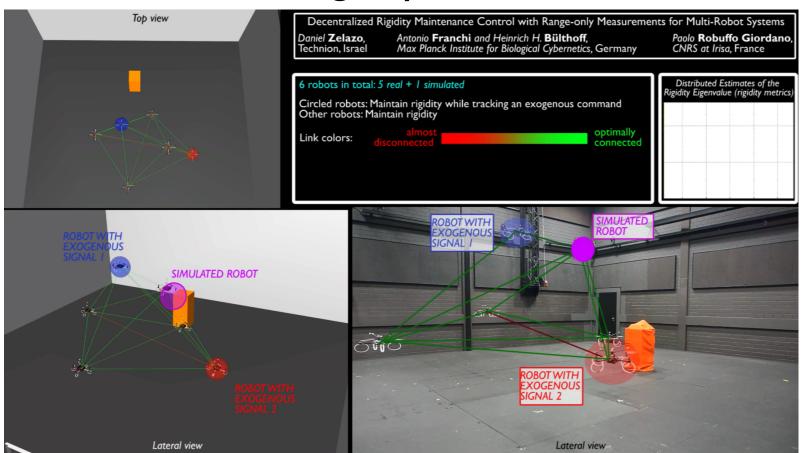


RSS 2012

In collaboration with



D. Zelazo Technion, Isreal



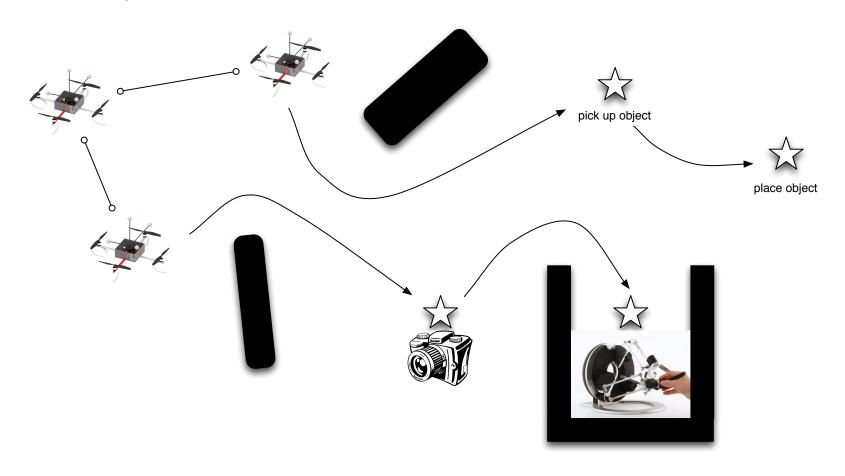
IJRR 2014

- The quadrotors are maintaining formation rigidity
- This allows them to run a decentralized estimator able to obtain relative positions out of measured relative distances
- Relative positions are then needed by the rigidity controller

In collaboration with

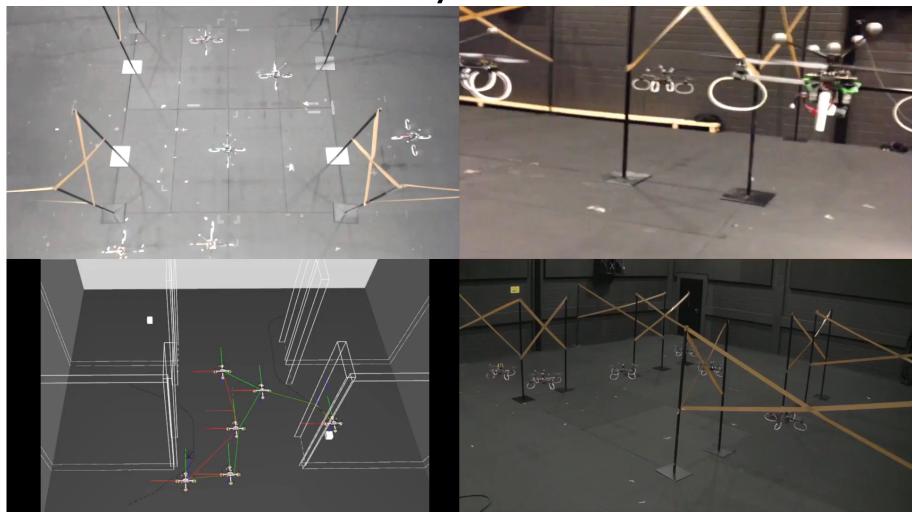


 Decentralized Multi-target Exploration and Connectivity Maintenance with a Multi-robot System









#### Acknowledgments

 The presented material (ideas, theory, applications, experiments) has been mainly conceived and developed together with



Dr. A. Franchi MPI for Biological Cybernetics



Dr. C. Secchi Università di Modena e Reggio Emilia

#### and with contributions also from



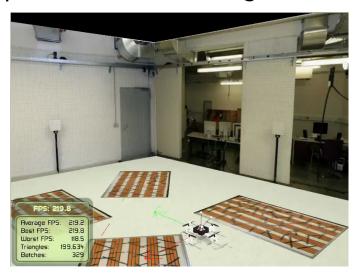
Dr. H. Il Son MPI for Biological Cybernetics



Dr. D.Zelazo
University of Stuttgart

#### Acknowledgments

• The simulation environment and middleware software for running simulations and experiments was co-designed with



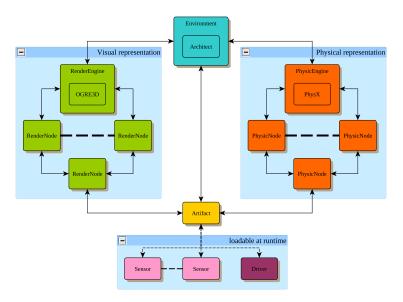


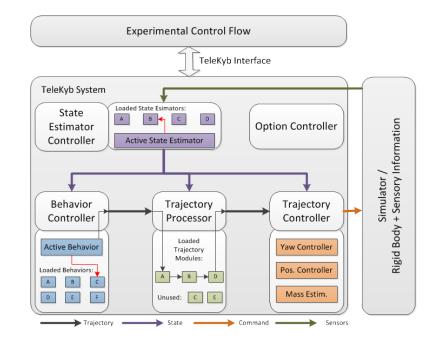
Johannes Lächele



Martin Riedel

MPI for Biological Cybernetics MPI for Biological Cybernetics





#### Main References

- P. Robuffo Giordano, A. Franchi, C. Secchi, and H. H. Bülthoff, "A Passivity-Based Decentralized Strategy for Generalized Connectivity Maintenance", International Journal of Robotics Research, 2013
- A. Franchi, C. Secchi, M. Ryll, H. H. Bülthoff, and P. Robuffo Giordano, "Bilateral Shared Control of Multiple Quadrotors" cond. accepted at the IEEE Robotics and Automation Magazine, Special issue on Aerial Robotics and the Quadrotor Platform, 2012
- D. Zelazo, A. Franchi, F. Allgöwer, H. H. Bülthoff, and P. Robuffo Giordano, "Rigidity Maintenance Control for Multi-Robot Systems", RSS 2012
- A. Franchi, C. Secchi, H. Il Son, H. H. Bülthoff, and P. Robuffo Giordano, "Bilateral Teleoperation of Groups of Mobile Robots with Time-Varying Topology", IEEE Transactions on Robotics, 2012 (accepted)
- C. Secchi, A. Franchi, H. H. Bülthoff, and P. Robuffo Giordano "Bilateral Teleoperation of a Group of UAVs with Communication Delays and Switching Topology", ICRA 2012
- P. Robuffo Giordano, A. Franchi, C. Secchi and H. H. Bülthoff, "Experiments of Passivity-Based Bilateral Aerial Teleoperation of a Group of UAVs with Decentralized Velocity Synchronization", IROS 2011
- P. Robuffo Giordano, A. Franchi, C. Secchi, and H. H. Bülthoff, "Bilateral Teleoperation of Groups of UAVs with Decentralized Connectivity Maintenance", RSS 2011
- A. Franchi, P. Robuffo Giordano, C. Secchi, H. I. Son, and H. H. Bülthoff, "A Passivity-Based Decentralized Approach for the Bilateral Teleoperation of a Group of UAVs with Switching Topology", ICRA 2011