
20/10/14

1

Giorgio Grisetti, Maurilio Di Cicco

Robot Sensors in ROS
MARRtino

Outline

§  Robot Devices
§ Overview of Typical sensors and Actuators
§ Operating Devices in ROS

§  Mobile Bases
§  MARRTino

§ Hardware
§  Firmware
§ ROS interface

§  Simulation: Stage
§  Homework

Mobile Base
§  A mobile platform is a

device capable of moving in
the environment and
carrying a certain load
(sensors and actuators)

§  At low level the inputs are
the desired velocities of the
joints, and the output is the
state of the joints

§  At high level it can be
controlled with linear/
angular velocity, and
provides the relative
position of the mobiel base
w.r.t. an initial instant,
obtained by integrating the
joint’s states (odometry).

Proprioceptive Sensors for
Ego-Motion
§  Wheel encoders mounted on

the wheels
§  IMU:

§  Accelerometers
§  Gyros

§  The estimate of ego-motion
is obtained by integrating
the sensor measurements of
these devices. This results
in an accumulated drift due
to the noise affecting the
measurement

§  In absence of an external
reference there is no way
to recover from these errors

20/10/14

2

Perception of the environment

Active:

§  Ultrasound
§  Laser range finder
§  Structured-light cameras
§  Infrared

Passive:
§  RGB Cameras
§  Tactiles

Exteroceptive Sensors

Time of flight

Intensity-based

Laser Range Scanner

Properties

§  High precision
§  Wide field of view
§  Approved security for collision

detection

Robots Equipped with Laser
Scanners

Herbert: Zora: Groundhog:

20/10/14

3

Typical Scans RGB Monocular Camera

RGB Monocular Camera

§  Cameras measure the intensity of the
light projected onto a (typically
planar) ccd through a system of lenses
and/or mirrors

§  Provide a lot of information
§  Project 3D onto 2D, which results in

the unobservability of the depth
§  The scene can eb reconstructed by

multiple images (see SfM)

§  Stereo cameras are combination of 2 monocular
cameras that allow triangulation, given a known
geometry.

§  If the corresponding points in the images are
known, we can reconstruct the 3D scene.

§  Error in the depth depends on the distance!
§  Sensible to lack of texture

Stereo Camera reconstruction
from top

20/10/14

4

§  Stereo cameras are combination of 2 monocular
cameras that allow triangulation, given a known
geometry.

§  If the corresponding points in the images are
known, we can reconstruct the 3D scene.

§  Error in the depth depends on the distance!
§  Sensible to lack of texture

Stereo Camera reconstruction
from top

§  Stereo cameras are combination of 2 monocular
cameras that allow triangulation, given a known
geometry.

§  If the corresponding points in the images are
known, we can reconstruct the 3D scene.

§  Error in the depth depends on the distance!
§  Sensible to lack of texture

Stereo Camera reconstruction
from top

RGBD Cameras
§  Cameras that are able to

sense the color and the
depth even with poor/no
texture

§  Use an active light source
and retrieve the depth
either
§  via stereo triangulation

(emitter and source are in
different positions)

§  Time of flight (emitter and
source are in the same
position)

§  Environment conditions
should allow to sense the
emitted light.

§  Typically OK indoors

How to access a Device in ROS?
§  Each device is a node
§  The input topics are the commands that the device can output
§  The output topics are the feedback given by the device.

§  In sensor_msgs/ many messages for the common sensors are
defined.

§  Use rosmsg show <message_name> to see the format of a
message.

§  To start a device it is sufficient to start the corresponding
node and to give it the necessary configuration parameters.
These include
§  Specific devices parameters (e.g. which serial port/usb device ,

the resolution of an image, and so on..)
§  The name of the reference frame in the sensor

20/10/14

5

Mobile Base in ROS

§  Typical mobile bases are mapped as ROS
nodes that
§  Publish messages of type

§  nav_msgs/Odometry
These messages specify the odometry

§  Subscribes to messages of type
§  geometry_msgs/Twist
 That specify the desired translational and rotational
velocities

All this looks very similar to TurtleSim, but the
transforms and the velocities are computed in 3D

MARRtino

§  Is a simple but
complete mobile base
designed to be used in
the MARR course.

§  The cost of the parts is
around 300 euro

§  It is entirely open
source

§  It is integrated in ros
through a simple node
that publishes/
subscribes standard
topics

MARRtino

§  Is a simple but
complete mobile base
designed to be used in
the MARR course.

§  The cost of the parts is
around 300 euro

§  It is entirely open
source

§  It is integrated in ros
through a simple node
that publishes/
subscribes standard
topics

§  The frame of
MARRtino is realized
with T-slot
alluminium bars
that can be
assembled together
by screws, bolts and
junction elements,
without the need of
cutting or soldering

MARRtino: Frame

20/10/14

6

§  The frame of
MARRtino is realized
with T-slot
alluminium bars
that can be
assembled together
by screws, bolts and
junction elements,
without the need of
cutting or soldering

MARRtino: Frame MARRtino: Electronics
Left

Motor
Left

Encoder
Right

Encoder
Right
Motor

Controller
Board

½
H-Bridge

½
H-Bridge

PC

R
S

-2
32

MARRtino: Electronics
Left

Motor
Left

Encoder
Right

Encoder
Right
Motor

Controller
Board

½
H-Bridge

½
H-Bridge

PC

R
S

-2
32

MARRtino: Electronics

Up to 40 MIPS operation

Architecture 16-bit

Program Memory (KB) 128

RAM Bytes 16,384

20/10/14

7

MARRtino: Electronics

Serial Port ↔ USB ↔ PC ↔ ROS

PWM ↔ Motors

Encoders

MARRtino: Power

§  Control Board: 6V
from one of the
batteries

§  H bridges: 12 V
from both batteres,
5V from logic

§  The system can
either charge the
batteries or be
powered ON.

Left
Motor

Left
Encoder

Right
Encoder

Right
Motor

Controller
Board

½
H-Bridge

½
H-Bridge

Battery1
6v

Battery2
6v

+ + - -

ON

C
ha

rg
e

co
nn

ec
to

r

ch
arg

e

+

+

+

-

-

-

MARRtino: Encoders

§  Each encoder has two
signals (A, B) and
requires a 5V voltage
supplied by the
controller board

§  The encoders are
managed by the
Quadrature Encoder
Module (QEI) of the
controller, that takes
care of counting ticks
and direction

Encoder

Controller
Board

A B 5V

MARRtino: Encoders

§  Each encoder has two
signals (A, B) and
requires a 5V voltage
supplied by the
controller board

§  The encoders are
managed by the
Quadrature Encoder
Module (QEI) of the
controller, that takes
care of counting ticks
and direction

Encoder

Controller
Board

A B 5V

20/10/14

8

MARRtino: Encoders

§  Each encoder has two
signals (A, B) and
requires a 5V voltage
supplied by the
controller board

§  The encoders are
managed by the
Quadrature Encoder
Module (QEI) of the
controller, that takes
care of counting ticks
and direction

Encoder

Controller
Board

A B 5V

MARRtino: H Bridge
§  The motor is connected to

the H Bridge, that provides
the necessary voltage and
current to drive it.

§  The H bridge requires 12V
power directly from the
battery

§  The controller board
controls the H bridge by*
§  A square wave whose duty

cycle is proportional to the
voltage applied to the
motor, that controls the
speed (PWM)

§  A direction pin, that reverts
the voltage when asserted,
causing the motor to rotate
in the opposite direction

* Other modes are possible, please refer to the wiki for details

Controller
Board

PWM

12V

Motor

½
H-Bridge

dir

MARRtino: PC connection

§  The robot
communicates with
the PC through an
RS232 interface at
TTL levels (0-5V)

§  The TTL-RS232 is
converted in USB
through an FTDI
chip

§  The device is visible
on Linux as /dev/
ttyUSB0

Controller
Board

PC

R
S

-2
32

TX

R
X

gn
d

FTDI

U
S

B

MARRTino: Firmware
§  The controller runs an event driven C program that

§  Executes PID controllers on both wheels
§  Integrates the odometry
§  Communicates with the PC
§  Implements a watchdog

§  The PC periodically sends to the controller the
desired translational/rotational velocities

§  The controller periodically sends to the PC state
packets that include the integrated odometry since
the last message and the battery state

§  If the controller does not receive any message from
the PC for a while it sets the speed to 0 (safety
measure)

20/10/14

9

MARRTino: Wiki
§  The wiki describes all the steps to:

§  obtain the firmware code
§  flash the firmware on the board
§  Obtain the ROS node
§  Use the ROS node

§  www.dis.uniroma1.it/~spqr/MARRtino

Simulation: Stage

§  There are many simulators integrated in
ROS, but in this lecture we will focus on
Stage.

§  Stage is a 2D simulator that allows to
operate a large number of simple robots
and simulates their sensors

§  To work, stage requires a configuration file
(.world), that describes the configuration
and the position of each robot.

§  The .world includes a bitmap, that
represents the environment where the robot
is operating

Stage
§  To launch stage

§  $> roscore
§  $> roscd stage
§  $> rosrun stage stageros words/

willow_erratic word

§  With rostopic you will see
that there is a /cmd_vel
argument. Publishing on
this topic allows you to set
the the robot speed

§  The robot sends you the

odometry feedback by the /
odom topic, and potentially
some additional state
packet.

Homework
§  Do a simple program that listens to the

keyboard or the joystick and allows to
control the robot by sending /cmd_vel
messages

§  First try it in simulation (needed to pass the

homework)

§  Start the viewer (rviz), and try to visualize
the laser scan

§  Once this is running, test it on MARRtino.

