SAPIENZA

UNTVERSITA DI ROMA

Elective in A.I. - Robot Programming

2014/2015 - Prof: Daniele Nardi

Perception with RGB-D sensors — Jacopo Serafin
Point Cloud Library (PCL), Surface Normals, Generalized ICP

I Contact

Jacopo Serafin
Ph.D. Student in Engineering in Computer Science

Department of Computer, Control and Management

Engineering "Antonio Ruberti", Sapienza University of Rome,
Via Ariosto 25, 00185 Rome, Italy

Room B120 | Ro.Co.Co. Laboratory
Email: serafin@dis.uniromal.it
Phone: +39-06-77274157

Web Page: http://www.dis.uniromal.it/~serafin

11/04/14 Elective in A.IL. - Robot Programming 2

I Organized Point Cloud

e Goal: maintain same
structure (rows and
columns) of the depth image

* Necessary for many
algorithms that suppose to
have an organized point
cloud

/* Image-like organized structure,
with 640 rows and 480 columns */

cloud.width = 640;

° Depth lmages contain not /* thus 640*480=307200 points total

valid values (e.g. zero in the dataset */
pixels), thus the cloud is cloud.height = 480;
not dense

11/04/14 Elective in A.IL. - Robot Programming

Surface Normal

 Vector normal to the surface where the point lies

e Provide additional information about the structure
around the point

11/04/14 Elective in A.IL. - Robot Programming

How to Compute the Surface
Normals

* Approximate the
neighborhood of a point e
with a surface: O . P

- Compute the O _
covariance matrix p? O P,

- Compute singular O ;
value decomposition P, . OPw . O P,

g
- -
~ -
-y -
Ll

- Take the normal as the
eigenvector associated Ops OP;
to the smallest
eigenvalue

11/04/14 Elective in A.L. - Robot Programming

Curvature

« Can be computed as a
function of the
eigenvalues of the
covariance matrix:

o=\ / (A, +\, +1\,)€[0,1]

11/04/14 Elective in A.IL. - Robot Programming

I KdTree °

e Data structure to
organize points in a 4 .
space with k dimensions !

2t .
« Very useful for range ‘
and nearest neighbor oL
Searches pcl: :KdTreeFLANN<pcl::PointXYZ> kdtree;

kdtree.setInputCloud (cloud);

’ COSt for SearCh one // K nearest neighbor search
nearest nelghbor 1S equal kdtree.nearestKSearch (searchPoint, K,

pointIdxNKNSearch,

to O(log n) pointNKNSquaredDistance);

// Neighbors within radius search

kdtree.radiusSearch (searchPoint, radius,
pointIdxRadiusSearch,
pointRadiusSquaredDistance);

11/04/14 Elective in A.IL. - Robot Programming 7

Surface Normals Computation:
KdTree Based Code

// Create the normal estimation class, and give it the input dataset
pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> ne;
ne.setInputCloud (cloud);

// Create an empty kdtree, and pass it to the normal estimation object
pcl::search: :KdTree<pcl::PointXYZ>::Ptr tree (new

pcl::search: :KdTree<pcl::PointXYZ> ());

ne.setSearchMethod (tree);

// Output datasets
pcl::PointCloud<pcl::Normal>::Ptr cloud normals (new

pcl::PointCloud<pcl::Normal>);

// Use all neighbors in a sphere of radius 3cm
ne.setRadiusSearch (0.03);

// Compute the features
ne.compute (*cloud normals);

11/04/14 Elective in A.L. - Robot Programming

I Integral Image

e It is a particular image where
each pixel contains the sum
of the pixels of the upper left
part of the image

» Allows fast computation of
the surface normals

* Once the integral image the
cost for a surface normal
computation is constant O(1)

« The main drawback is a loss
of precision in the neighbors
computation

e S(A, B, C, D) =s(A) +s(D) -
s(B) - s(C)

11/04/14 Elective in A.IL. - Robot Programming 9

Surface Normals Computation:
Integral Images Based Code

//

estimate normals

pcl::PointCloud<pcl::Normal>::Ptr normals (new
pcl::PointCloud<pcl::Normal>);

//

create a surface normals integral image estimator object

pcl::IntegralImageNormalEstimation<pcl::PointXYZ, pcl::Normal> ne;

//

ne

ne.
.setInputCloud(cloud);

ne

//

ne.

set some parameters

.setNormalEstimationMethod (ne.AVERAGE 3D GRADIENT);

setMaxDepthChangeFactor(0.02f);

compute the surface normals
compute (*normals);

11/04/14 Elective in A.L. - Robot Programming

10

Fast Point Features Histograms
(FPFH)

 Encode the point’s k-
neighborhood
geometrical properties

 Fast computation
allowing real-time
execution

11/04/14 Elective in A.IL. - Robot Programming

Fast Point Features Histograms
(FPFH): Code

// Create the FPFH estimation class, and pass the input dataset + normals to it
pcl: :FPFHEstimation<pcl::PointXYZ, pcl::Normal, pcl::FPFHSignature33> fpfh;
fpfh.setInputCloud (cloud);

fpfh.setInputNormals (normals);

// alternatively, if cloud is of tpe PointNormal, do fpfh.setInputNormals (cloud);

// Create an empty kdtree representation, and pass it to the FPFH estimation object.
// Its content will be filled inside the object, based on the given input dataset (as
// no other search surface is given).

pcl::search: :KdTree<PointXYZ>::Ptr tree (new pcl::search::KdTree<PointXYZ>);

fpfh.setSearchMethod (tree);

// Output datasets
pcl::PointCloud<pcl::FPFHSignature33>::Ptr fpfhs (new
pcl::PointCloud<pcl::FPFHSignature33> ());

// Use all neighbors in a sphere of radius 5cm

// IMPORTANT: the radius used here has to be larger than the radius used to estimate
// the surface normals!!!

fpfh.setRadiusSearch (0.05);

// Compute the features
fpfh.compute (*fpfhs);

11/04/14 Elective in A.L. - Robot Programming

12

Region Growing Segmentation
Based on Surface Normals

 Merge the points that are close
enough in terms of smoothness
constraints

« Until all the points not in a region are
parsed:

- Select a point as seed

- Check recursively if its neighbors
satisfy the constraints (angle
difference between the surface
normals):

 If at least one, or more
neighbors are good, add them
to the region

» If not, generate a new seed and
create a new region

11/04/14 Elective in A.I. - Robot Programming 13

Region Growing Segmentation
Based on Surface Normals: Code

// create the object that implements the surface normals region growing algorithm
pcl::RegionGrowing<pcl::PointXYZ, pcl::Normal> reg;

// Set some parameters

reg.setMinClusterSize (50);
reg.setMaxClusterSize (1000000);
reg.setSearchMethod (tree); // e.g. KdTree
reg.setNumberOfNeighbours (30);
reg.setInputCloud (cloud);

reg.setInputNormals (normals);
reg.setSmoothnessThreshold (3.0 / 180.0 * M PI);
reg.setCurvatureThreshold (1.0);

// Perform the segmentation
std::vector <pcl::PointIndices> clusters;
reg.extract (clusters);

// Print some information

std::cout << "Number of clusters is equal to " << clusters.size () << std::endl;
std::cout << "First cluster has " << clusters[0].indices.size () << " points." << endl;

11/04/14 Elective in A.IL. - Robot Programming 14

Difference of Normals for
Segmentation

- Estimate the normals for every point using a large support radius r,
- Estimate the normals for every point using a small support radius r,

« Compute the normalized difference of normals for every point, as shown
in the image

 Filter the resulting vector field to isolate points belonging to the
scale/region of interest.

P = {plap27"'7pN}

gifEEEEREEEEESR y"EEEEEEEEEER

; Aﬁ(p,’rsjﬁ)

large radius small radius difference of normals

11/04/14 Elective in A.I. - Robot Programming 15

Difference of Normals for
Segmentation: Code

// Create Difference of Normal operator
pcl::DifferenceOfNormalsEstimation<PointXYZRGB, PointNormal, PointNormal> don;

don.setInputCloud (cloud);
don.setNormalScaleLarge (normals large radius);
don.setNormalScaleSmall (normals small radius);

// Check possible failures
if (!don.initCompute ())

{
std::cerr << "Error: Could not intialize DoN feature operator" << std::endl;
exit (EXIT FAILURE);

}

// Compute Difference of Normals
don.computeFeature (*doncloud);

// Filter by magnitude

11/04/14 Elective in A.L. - Robot Programming

16

I Point Cloud Registration

We want to find the translation and the rotation that
maximize the overlap between two point clouds

11/04/14 Elective in A.IL. - Robot Programming

17

I Point Cloud Registration

We want to find the translation and the rotation that
maximize the overlap between two point clouds

° % 2o
© ©
‘.

11/04/14 Elective in A.IL. - Robot Programming

18

I Point Cloud Registration

We want to find the translation and the rotation that
maximize the overlap between two point clouds

11/04/14 Elective in A.IL. - Robot Programming

19

I Point Cloud Registration

We want to find the translation and the rotation that
maximize the overlap between two point clouds

©
®

11/04/14 Elective in A.IL. - Robot Programming

20

I Point Cloud Registration

We want to find the translation and the rotation that
maximize the overlap between two point clouds

oo
%
® G
Ce
©

11/04/14 Elective in A.IL. - Robot Programming

21

I Point Cloud Registration

We want to find the translation and the rotation that
maximize the overlap between two point clouds

11/04/14 Elective in A.IL. - Robot Programming

22

I [terative Closest Point Algorithm

ICP iteratively refine an initial transformation T by
alternating:

11/04/14

search of
correspondences

between the two point @
clouds... '
and the optimization . %

step to update the
current transformation

Elective in A.IL. - Robot Programming

23

[terative Closest Point Algorithm

ICP iteratively refine an initial transformation T by
alternating:

» search of
correspondences
between the two point
clouds...

 and the optimization
step to update the
current transformation

11/04/14 Elective in A.I. - Robot Programming 24

Point Cloud Registration:
ICP Based Code

// create the object implementing ICP algorithm
pcl::IterativeClosestPoint<pcl::PointXYZ, pcl::PointXYZ> icp;

// set the input point cloud to align
icp.setInputCloud(cloud in);

// set the input reference point cloud
icp.setInputTarget(cloud out);

// compte the point cloud registration
pcl::PointCloud<pcl::PointXYZ> Final;
icp.align(Final);

// print fitness score

std: :cout <<
<<

<<

// print the
std::cout <<

11/04/14

"has converged:" << icp.hasConverged()
" score: "
icp.getFitnessScore() << std::endl;

output transformation
icp.getFinalTransformation() << std::endl;

Elective in A.I. - Robot Programming 25

I Generalized ICP (GICP)

e Variant of ICP

 Assumes that points are
sampled from a locally
continuous and smooth
surfaces

e Since two points are not
the same it is better to
align patches of surfaces
instead of the points

11/04/14 Elective in A.L. - Robot Programming

26

Point Cloud Registration:
GICP Based Code

// create the object implementing ICP algorithm
pcl::GeneralizedIterativeClosestPoint<pcl::PointXYZRGBNormal,
pcl: :PointXYZRGBNormal> gicp;

// set the input point cloud to align
gicp.setInputCloud(cloud in);

// set the input reference point cloud
gicp.setInputTarget(cloud out);

// compte the point cloud registration
pcl::PointCloud<pcl: :PointXYZRGBNormal> Final;
gicp.align(Final);

// print if it the algorithm converged and its fitness score
std::cout << "has converged:" << gicp.hasConverged()

<< " score: "

<< gicp.getFitnessScore() << std::endl;

// print the output transformation
std::cout << gicp.getFinalTransformation() << std::endl;

11/04/14 Elective in A.L. - Robot Programming

27

Homework 1/3

Read a sequence of ordered pairs of images
(RGB + Depth images) and save the
associated point cloud with colors and

surface normals on .pcd files (e.g.
cloud_005.pcd)

 Download one of the datasets (e.g. desk_1.tar) at :

http://rgbd-dataset.cs.washington.edu/dataset/rgbd-scenes/

11/04/14 Elective in A.L. - Robot Programming

28

I Homework 2/3

After, for each file .pcd read sequentially:

» Align the current point cloud with the
previous one by using Generalized ICP

» Save the cloud with its global
transformation (either transforming
directly the cloud or using the
sensor origin and

sensor orientation parameter
provided in the point cloud object)

11/04/14 Elective in A.L. - Robot Programming

29

I Homework 3/3

Apply a voxelization to the totoal point
cloud (necessary to reduce the dimension
in terms of bytes) and visualize it so that
the entire scene reconstructed is shown

11/04/14 Elective in A.IL. - Robot Programming 30

Hints

« Warning: the depth images are stored with 16 bit depth, so in this case calling the
cv::imread() function you should specify the flag Cv_LOAD IMAGE ANYDEPTH (or -1)

« WARNING: the input depth image should be scaled by a 0.001 factor in order to obtain
distances in meters. You could use the opencv function:

input depth img.convertTo(scaled depth img, CV_32F, 0.001);
* As camera matrix, use the following default matrix:

float fx = 512, fy = 512, cx = 320, cy = 240;

Eigen::Matrix3f camera matrix;

camera matrix << fx, 0.0f, cx, 0.0f, fy, cy, 0.0f, 0.0f, 1.0f;
« As re-projection matrix, use the following matrix:

Eigen::Matrix4f t mat;t mat.setIdentity();

t mat.block<3, 3>(0, 0) = camera matrix.inverse();

11/04/14 Elective in A.I. - Robot Programming 31

Hints

 For each pixel (x,y) with depth d, obtain the corresponding 3D point as:

Eigen::Vector4f point = t mat * Eigen::Vector4f(x*d, y*d, d, 1.0);
(the last coordinate of point can be ignored)

« WARNING: Since We are working with organized point clouds, also points with depth
equal to O that are not valid, should be added to the computed cloud as NaN, i.e. in
pseudocode:

const float bad point = std::numeric limits<float>::quiet NaN();
if(depth(x, y) == 0) { p.x = p.y = p.z = bad point; }

« To get the global transform of the current cloud just perform the following multiplication
after you computed the registration:

Eigen::Matrix4f globalTransform = previousGlobalTransform *
alignmentTransform;

previousGlobalTransform is the global transformation found for the previous
point cloud

alignmentTransform is the local transform computed using Generalized ICP

« WARNING: the first global transform has to be initialized to the identity matrix
11/04/14 Elective in A.IL. - Robot Programming 32

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

