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I Organized Point Cloud

e Goal: maintain same
structure (rows and
columns) of the depth image

* Necessary for many
algorithms that suppose to
have an organized point
cloud

/* Image-like organized structure,
with 640 rows and 480 columns */

cloud.width = 640;

° Depth lmages contain not /* thus 640*480=307200 points total

valid values (e.g. zero in the dataset */
pixels), thus the cloud is cloud.height = 480;
not dense
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Surface Normal

 Vector normal to the surface where the point lies

e Provide additional information about the structure
around the point
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How to Compute the Surface
Normals

* Approximate the
neighborhood of a point e
with a surface: O . P

- Compute the O _
covariance matrix p? O P,

- Compute singular O ;
value decomposition P, . OPw . O P,

g
- -
~ -
-y -
Ll

- Take the normal as the
eigenvector associated Ops OP;
to the smallest
eigenvalue
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Curvature

« Can be computed as a
function of the
eigenvalues of the
covariance matrix:

o=\ / (A, +\, +1\,)€[0,1]
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I KdTree °

e Data structure to
organize points in a 4 .
space with k dimensions !

2t .
« Very useful for range ‘
and nearest neighbor oL
Searches pcl: :KdTreeFLANN<pcl::PointXYZ> kdtree;

kdtree.setInputCloud (cloud);

’ COSt for SearCh one // K nearest neighbor search
nearest nelghbor 1S equal kdtree.nearestKSearch (searchPoint, K,

pointIdxNKNSearch,

to O(log n) pointNKNSquaredDistance);

// Neighbors within radius search

kdtree.radiusSearch (searchPoint, radius,
pointIdxRadiusSearch,
pointRadiusSquaredDistance);
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Surface Normals Computation:
KdTree Based Code

// Create the normal estimation class, and give it the input dataset
pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> ne;
ne.setInputCloud (cloud);

// Create an empty kdtree, and pass it to the normal estimation object
pcl::search: :KdTree<pcl::PointXYZ>::Ptr tree (new

pcl::search: :KdTree<pcl::PointXYZ> ());

ne.setSearchMethod (tree);

// Output datasets
pcl::PointCloud<pcl::Normal>::Ptr cloud normals (new

pcl::PointCloud<pcl::Normal>);

// Use all neighbors in a sphere of radius 3cm
ne.setRadiusSearch (0.03);

// Compute the features
ne.compute (*cloud normals);
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I Integral Image

e It is a particular image where
each pixel contains the sum
of the pixels of the upper left
part of the image

» Allows fast computation of
the surface normals

* Once the integral image the
cost for a surface normal
computation is constant O(1)

« The main drawback is a loss
of precision in the neighbors
computation

e S(A, B, C, D) =s(A) +s(D) -
s(B) - s(C)
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Surface Normals Computation:
Integral Images Based Code

//

estimate normals

pcl::PointCloud<pcl::Normal>::Ptr normals (new
pcl::PointCloud<pcl::Normal>);

//

create a surface normals integral image estimator object

pcl::IntegralImageNormalEstimation<pcl::PointXYZ, pcl::Normal> ne;

//

ne

ne.
.setInputCloud(cloud);

ne

//

ne.

set some parameters

.setNormalEstimationMethod (ne.AVERAGE 3D GRADIENT);

setMaxDepthChangeFactor(0.02f);

compute the surface normals
compute (*normals);
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Fast Point Features Histograms
(FPFH)

 Encode the point’s k-
neighborhood
geometrical properties

 Fast computation
allowing real-time
execution
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Fast Point Features Histograms
(FPFH): Code

// Create the FPFH estimation class, and pass the input dataset + normals to it
pcl: :FPFHEstimation<pcl::PointXYZ, pcl::Normal, pcl::FPFHSignature33> fpfh;
fpfh.setInputCloud (cloud);

fpfh.setInputNormals (normals);

// alternatively, if cloud is of tpe PointNormal, do fpfh.setInputNormals (cloud);

// Create an empty kdtree representation, and pass it to the FPFH estimation object.
// Its content will be filled inside the object, based on the given input dataset (as
// no other search surface is given).

pcl::search: :KdTree<PointXYZ>::Ptr tree (new pcl::search::KdTree<PointXYZ>);

fpfh.setSearchMethod (tree);

// Output datasets
pcl::PointCloud<pcl::FPFHSignature33>::Ptr fpfhs (new
pcl::PointCloud<pcl::FPFHSignature33> ());

// Use all neighbors in a sphere of radius 5cm

// IMPORTANT: the radius used here has to be larger than the radius used to estimate
// the surface normals!!!

fpfh.setRadiusSearch (0.05);

// Compute the features
fpfh.compute (*fpfhs);
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Region Growing Segmentation
Based on Surface Normals

 Merge the points that are close
enough in terms of smoothness
constraints

« Until all the points not in a region are
parsed:

- Select a point as seed

- Check recursively if its neighbors
satisfy the constraints (angle
difference between the surface
normals):

 If at least one, or more
neighbors are good, add them
to the region

» If not, generate a new seed and
create a new region
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Region Growing Segmentation
Based on Surface Normals: Code

// create the object that implements the surface normals region growing algorithm
pcl::RegionGrowing<pcl::PointXYZ, pcl::Normal> reg;

// Set some parameters

reg.setMinClusterSize (50);
reg.setMaxClusterSize (1000000);
reg.setSearchMethod (tree); // e.g. KdTree
reg.setNumberOfNeighbours (30);
reg.setInputCloud (cloud);

reg.setInputNormals (normals);
reg.setSmoothnessThreshold (3.0 / 180.0 * M PI);
reg.setCurvatureThreshold (1.0);

// Perform the segmentation
std::vector <pcl::PointIndices> clusters;
reg.extract (clusters);

// Print some information

std::cout << "Number of clusters is equal to " << clusters.size () << std::endl;
std::cout << "First cluster has " << clusters[0].indices.size () << " points." << endl;
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Difference of Normals for
Segmentation

- Estimate the normals for every point using a large support radius r,
- Estimate the normals for every point using a small support radius r,

« Compute the normalized difference of normals for every point, as shown
in the image

 Filter the resulting vector field to isolate points belonging to the
scale/region of interest.

P = {plap27"'7pN}

gifEEEEREEEEESR y"EEEEEEEEEER

; Aﬁ(p,’rsjﬁ)

large radius small radius difference of normals
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Difference of Normals for
Segmentation: Code

// Create Difference of Normal operator
pcl::DifferenceOfNormalsEstimation<PointXYZRGB, PointNormal, PointNormal> don;

don.setInputCloud (cloud);
don.setNormalScaleLarge (normals large radius);
don.setNormalScaleSmall (normals small radius);

// Check possible failures
if (!don.initCompute ())

{
std::cerr << "Error: Could not intialize DoN feature operator" << std::endl;
exit (EXIT FAILURE);

}

// Compute Difference of Normals
don.computeFeature (*doncloud);

// Filter by magnitude
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I Point Cloud Registration

We want to find the translation and the rotation that
maximize the overlap between two point clouds
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I Point Cloud Registration
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I [terative Closest Point Algorithm

ICP iteratively refine an initial transformation T by
alternating:

11/04/14

search of
correspondences

between the two point @
clouds... '
and the optimization . %

step to update the
current transformation
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[terative Closest Point Algorithm

ICP iteratively refine an initial transformation T by
alternating:

» search of
correspondences
between the two point
clouds...

 and the optimization
step to update the
current transformation
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Point Cloud Registration:
ICP Based Code

// create the object implementing ICP algorithm
pcl::IterativeClosestPoint<pcl::PointXYZ, pcl::PointXYZ> icp;

// set the input point cloud to align
icp.setInputCloud(cloud in);

// set the input reference point cloud
icp.setInputTarget(cloud out);

// compte the point cloud registration
pcl::PointCloud<pcl::PointXYZ> Final;
icp.align(Final);

// print fitness score

std: :cout <<
<<

<<

// print the
std::cout <<

11/04/14

"has converged:" << icp.hasConverged()
" score: "
icp.getFitnessScore() << std::endl;

output transformation
icp.getFinalTransformation() << std::endl;
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I Generalized ICP (GICP)

e Variant of ICP

 Assumes that points are
sampled from a locally
continuous and smooth
surfaces

e Since two points are not
the same it is better to
align patches of surfaces
instead of the points
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Point Cloud Registration:
GICP Based Code

// create the object implementing ICP algorithm
pcl::GeneralizedIterativeClosestPoint<pcl::PointXYZRGBNormal,
pcl: :PointXYZRGBNormal> gicp;

// set the input point cloud to align
gicp.setInputCloud(cloud in);

// set the input reference point cloud
gicp.setInputTarget(cloud out);

// compte the point cloud registration
pcl::PointCloud<pcl: :PointXYZRGBNormal> Final;
gicp.align(Final);

// print if it the algorithm converged and its fitness score
std::cout << "has converged:" << gicp.hasConverged()

<< " score: "

<< gicp.getFitnessScore() << std::endl;

// print the output transformation
std::cout << gicp.getFinalTransformation() << std::endl;
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Homework 1/3

Read a sequence of ordered pairs of images
(RGB + Depth images) and save the
associated point cloud with colors and

surface normals on .pcd files (e.g.
cloud_005.pcd)

 Download one of the datasets (e.g. desk_1.tar) at :

http://rgbd-dataset.cs.washington.edu/dataset/rgbd-scenes/
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I Homework 2/3

After, for each file .pcd read sequentially:

» Align the current point cloud with the
previous one by using Generalized ICP

» Save the cloud with its global
transformation (either transforming
directly the cloud or using the
sensor origin and

sensor orientation parameter
provided in the point cloud object)
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I Homework 3/3

Apply a voxelization to the totoal point
cloud (necessary to reduce the dimension
in terms of bytes) and visualize it so that
the entire scene reconstructed is shown
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Hints

« Warning: the depth images are stored with 16 bit depth, so in this case calling the
cv::imread() function you should specify the flag Cv_LOAD IMAGE ANYDEPTH (or -1)

«  WARNING: the input depth image should be scaled by a 0.001 factor in order to obtain
distances in meters. You could use the opencv function:

input depth img.convertTo(scaled depth img, CV_32F, 0.001);
* As camera matrix, use the following default matrix:

float fx = 512, fy = 512, cx = 320, cy = 240;

Eigen::Matrix3f camera matrix;

camera matrix << fx, 0.0f, cx, 0.0f, fy, cy, 0.0f, 0.0f, 1.0f;
« As re-projection matrix, use the following matrix:

Eigen::Matrix4f t mat;t mat.setIdentity();

t mat.block<3, 3>(0, 0) = camera matrix.inverse();
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Hints

 For each pixel (x,y) with depth d, obtain the corresponding 3D point as:

Eigen::Vector4f point = t mat * Eigen::Vector4f(x*d, y*d, d, 1.0);
(the last coordinate of point can be ignored)

«  WARNING: Since We are working with organized point clouds, also points with depth
equal to O that are not valid, should be added to the computed cloud as NaN, i.e. in
pseudocode:

const float bad point = std::numeric limits<float>::quiet NaN();
if( depth(x, y) == 0) { p.x = p.y = p.z = bad point; }

« To get the global transform of the current cloud just perform the following multiplication
after you computed the registration:

Eigen::Matrix4f globalTransform = previousGlobalTransform *
alignmentTransform;

previousGlobalTransform is the global transformation found for the previous
point cloud

alignmentTransform is the local transform computed using Generalized ICP

«  WARNING: the first global transform has to be initialized to the identity matrix
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