
20/10/14

1

Giorgio Grisetti

Transforms and Sensors
in ROS

The material of this slides is taken from the Robotics 2 lectures given by
G.Grisetti, W.Burgard, C.Stachniss, K.Arras, D. Tipaldi and M.Bennewitz

Outline
§  Robot Devices

§  Overview of Typical sensors and Actuators
§  Operating Devices in ROS

§  Describing your Robot
§  Transform Tree
§  Transform Publisher

§  Transforms and Time
§  Interpolating Transforms
§  TF library
§  Publishing and reading transforms

§  Hands on a robot
§  Displaying sensor data (rviz)
§  Recording real data with a robot

Specifying the Arrangement of
Devices
§  All these devices are mounted on a

robot in an articulated way.
§  Some devices are mounted on other

devices that can move.
§  In order to use all the sensors/

actuators together we need to
describe this configuration.
§  For each “device” specify one or more

frames of interest
§ Describe how these frames are located

w.r.t each other

Defining the Structure
§  You have to specify the

kinematics of the robot,
according to what you learned
in the Robotics course.

§  Each “Link” is a reference

frame of a sensor

§  Each “joint” defines the

transformation that maps the
child link in the parent link.

§  ROS does not handle closed

kinematic chains, thus only a
“tree” structure is allowed

§  The root of the tree is usually

some convenient point on the
mobile base (or on its
footprint)

20/10/14

2

Transform Publishers
§  A transform can be published by any ros node.

§  The local configuration of a robot (e.g. the position of the sensors/actuators w.r.t a

frame on the robot platform) is usually published by a convenience node: the
robot_state_publisher.

§  The robot state publisher:
§  takes a description of the robot (the kinematics), that specifies for each frame:

§  the parent frame
§  the type of joint

§  Listens the state of the joints
§  Computes the transforms for all the frames.

§  If the robot has no movable devices (except the base) one can use the

static_transform_publisher.

§  The static transform publisher is a node that can be invoked like that

 $> rosrun tf static_transform_publisher fromFrame toFrame x y z roll pitch yaw hz

 e.g.
 $> rosrun tf static_transform_publisher baseFrame cameraFrame 0 0 0.3 0 0 3.14 10
 will start a node that publishes a transform between the baseFrame and the
camera, telling that the camera is mounted at 30 cm above the mobile base
and is looking backwards (yaw = M_PI).(*)

(*) check the online documentation for an updated command line

Visualizing The Data

§  Once all sensors are started and the
robot description is correctly done, we
can visualize the data.

§  To this end, we will use the RVIZ ros
tool.

§  I will give a practical example, you can
look at the ros wiki, for rviz.

Interpolation

§  A robot is a complex system consisting in a
potentially large set of devices

§  These devices typically run in an
asynchronous fashion. Each of them outputs
the data when available.

§  In many tasks, we are interested in knowing
the position of the robot when a specific
information is gathered by the sensor

§  At this time, however there might not be a
valid transformation, thus we have to
determine the sensor position by
interpolation.

20/10/14

3

Interpolation (II)

§  To interpolate the position of a joint at
time t we need to know
§  The position at time tm < t
§  The position at time tM > t
§  The velocities and
§  The kinematic constraints

§  All these informations are available in
the tf messages

§  ROS provides a tf client library to
interpolate and publish transforms.

TF Main Facts
§  To perform interpolation it installs a set of

transform buffers, one for each frame.
§  It allows to send/receive transform messages
§  One can obtain the interpolated position between

any pair of frames.
§  The tf package contains several useful programs to

debug the system
§  view_frames: generates a pdf file by listening all

transforms
 $> rosrun tf view_frames

§  static_transform_publisher: is a node that streams a
specific transform given as argument.

Using TF
§  TF has an own Listener that sets up the buffers

 TransformListener(
 ros::Duration max_cache_time=ros::Duration(DEFAULT_CACHE_TIME),
 bool spin_thread=true)

§  To see if you can compute the position of a frame w.r.t. another one you should first

check that the buffers are consistend with the query
 bool tf::TransformListener::canTransform (
 const std::string &target_frame,
 const std::string &source_frame,
 const ros::Time &time,
 std::string *error_msg=NULL) const

§  To compute a transform between to frames use the following function

 void tf::TransformListener::lookupTransform (
 const std::string &target_frame,
 const ros::Time &target_time,
 const std::string &source_frame,
 const ros::Time &source_time,
 const std::string &fixed_frame,
 StampedTransform &transform) const

Recording a Dataset

§ With rosbag you can record in a bag
all the messages about a specific topic

§ We will now record a bag of a moving
robot

§  This bag will be made available to you

20/10/14

4

Transform Tree in the Bag

New base frame.
Transform from odom to base_footprint
Is published by the base robot driver.

Launch Files
§  A system running on ROS

may consist in a large
number of nodes, each with
its parameters

§  To start these nodes, one
might use the .launch files
(See roslaunch).

§  Launch files are xml scripts
used to start and configure
a large number of nodes

§  They need to reside in the /

launch directory of a
package

§  They can be started with
§  roslaunch <package_name>

<launch_file>

<launch>

 <node name="map_server" pkg="map_server" type="map_server"
args="$(find dis_navigation)/maps/dis-B1-2011-09-27.yaml"/>

 <group ns="erratic1">
 <param name="tf_prefix" value="erratic1" />

 <include file="$(find dis_robots)/launch/
erratic_hokuyo.launch" />

 <param name="hokuyo/frame_id" type="str" value="/
erratic1/laser_frame"/>

 <include file="$(find dis_navigation)/config/

localization/glocalizer_node.xml" />
 <include file="$(find dis_navigation)/config/

navigation/move_base.xml" />
 <node pkg="tf" type="static_transform_publisher"

name="link_broadcaster_0" args="0 0 0 0 0 0 /map /erratic1/
map 100" />

 </group>

 <group ns="erratic1">
 <param name="glocalizer/initial_pose_x"

value="0" />
 <param name="glocalizer/initial_pose_y"

value="1.8" />
 <param name="glocalizer/initial_pose_a"

value="0" />
 </group>

</launch>

Homework (2)

§ Write a ros node that writes in a text
format the 3D location of the sensor
when a depth image arrives, and the
timestamp

§  FORMAT:
§ One line per message
§  DEPTHIMAGE
<timestamp.sec>.<timestamp.usec>
<camera pose w.r.t. odom frame
(x,y,z,qx,qy,qz,qw)>

