@ SAPIENZA| DIPARTIMENTO DI INFORMATICA g i
WP Gwawmiokown| g SISTEMISTICA ANTONTO RUBERTI -4 .
> Outline
= Robot Devices
= Overview of Typical sensors and Actuators
Tl‘anSfOl‘mS and SenSOI‘S = Operating Devices in ROS
H = Describing your Robot
n ROS = Transform Tree
= Transform Publisher
Giorgio Grisetti = Transforms and Time
= Interpolating Transforms
= TF library
= Publishing and reading transforms
= Hands on a robot
= Displaying sensor data (rviz)
= Recording real data with a robot
The material of this slides is taken from the Robotics 2 lectures given by
G.Grisetti, W.Burgard, C.Stachniss, K.Arras, D. Tipaldi and M.Bennewitz
Specifying the Arrangement of .
Devices Defining the Structure
= All these devices are mounted on a T mematies o the tobo.
robot in an articulated way. e Shoieanat you leared
= Some devices are mounted on other - Each “Link” is a reference
devices that can move. frame of a sensor
= In order to use all the sensors/ T Easdation that maps the
actuators together we need to child fink in the parent fink.
describe this configuration. = ROS does not handle closed_
= For each “device” specify one or more “iree" structure 1s allowed
frames Of interest = The root of the tree is usually
= Describe how these frames are located roobiis bace (or ohStar o the
w.r.t each other footprint)

Transform Publishers

A transform can be published by any ros node.

The local configuration of a robot (e.g. the position of the sensors/actuators w.r.t a
frame on the robot platform) is usually published by a convenience node: the
robot_state_publisher.
The robot state publisher:
= takes a description of the robot (the kinematics), that specifies for each frame:
= the parent frame
* the type of joint
= Listens the state of the joints
= Computes the transforms for all the frames.

If the robot has no movable devices (except the base) one can use the
static_transform_publisher.

The static transform publisher is a node that can be invoked like that
> rosrun tf static_transform publisher fromFrame toFrame x y z roll pitch yaw hz

eg.
$> rosrun tf static_f iblish 000.300 3.14 10
will start a node that publishes a transform between the baseFrame and the
camera, telling that the camera is mounted at 30 cm above the mobile base
and is looking backwards (yaw = M_PI).(*)

(*) check the online documentation for an updated command line

Visualizing The Data

= Once all sensors are started and the
robot description is correctly done, we
can visualize the data.

= To this end, we will use the RVIZ ros
tool.

= I will give a practical example, you can
look at the ros wiki, for rviz.

Interpolation

A robot is a complex system consisting in a
potentially large set of devices

These devices typically run in an
asynchronous fashion. Each of them outputs
the data when available.

In many tasks, we are interested in knowing
the position of the robot when a specific
information is gathered by the sensor

At this time, however there might not be a
valid transformation, thus we have to
determine the sensor position by
interpolation.

Interpolation (II)

= To interpolate the position of a joint at
time t we need to know
* The position at time t,, < t
= The position at time £, > t
= The velocities and
= The kinematic constraints

= All these informations are available in
the tf messages

= ROS provides a tf client library to
interpolate and publish transforms.

TF Main Facts

= To perform interpolation it installs a set of
transform buffers, one for each frame.
= It allows to send/receive transform messages
= One can obtain the interpolated position between
any pair of frames.
= The tf package contains several useful programs to
debug the system
= view_frames: generates a pdf file by listening all
transforms
$> rosrun tf view_frames
= static_transform_publisher: is a node that streams a
specific transform given as argument.

Using TF

= TF has an own Listener that sets up the buffers
TransformListener (
ros::Duration max_cache_time=ros::Duration (DEFAULT_CACHE TIME),
bool spin_thread=true)

= To see if you can compute the position of a frame w.r.t. another one you should first
check that the buffers are consistend with the query
bool tf:: istener:: (
const std::string &target frame,
const std::string &source_frame,
const ros::Time &time,
std::string *error_msg=NULL) const

= To compute a transform between to frames use the following function
void tf:: istener::1,

const std::string &target frame,

const ros::Time &target_time,

const std::string &source frame,

const ros::Time &source_time,

const std::string &fixed frame,

&) const

Recording a Dataset

= With rosbag you can record in a bag
all the messages about a specific topic

= We will now record a bag of a moving
robot

= This bag will be made available to you

Transform Tree in the Bag

View_frames Result

Recorded at time: 131

New base frame.
Transform from odom to base_footprint
Is published by the base robot driver.

Cemionsie >

ek

te_putlisher

1
Dasi

6 sec dld
@ 4,939 sec

e v
i . .

ster robar,_tate_ pubiher

Average rate: 50.211 Hz

3 .48 secald
Bt length: 4,935 sec

Launch Files

= A system runnin% on ROS
may consist in a large
number of nodes, each with
its parameters

= To start these nodes, one
might use the .launch files
(See roslaunch).

= Launch files are xml scripts
used to start and configure
a large number of nodes

= They need to reside in the /
launch directory of a
package

= They can be started with

® roslaunch <package_name>
<launch_file>

<Launch>

</1auncn>

Homework (2)

= Write a ros node that writes in a text
format the 3D location of the sensor
when a depth image arrives, and the
timestamp

= FORMAT:

= One line per message

= DEPTHIMAGE
<timestamp.sec>.<timestamp.usec>
<camera pose w.r.t. odom frame

(x,y,2z,9%,9y,92,9wW) >

