Software development in robotics:
frameworks and tools

Daniele Calisi and Daniele Nardi

DIPARTIMENTO DI
E SISTEMISTICA AN

SAPIENZA

UNIVERSITA DI ROMA

Complexity of robotic software development (2)
m Different hardware devices
0 Different protocols and interfaces
m Inherently complex setting
O e.g. visualizing sensor data requires to:
= Connect to the sensor

= Understand and implement the protocol
= Build a GUI

m A lot of system engineering
1 Challenging programming
1 Debugging and testing
m Heterogeneous Team of developers

Software development in robotics 3

03/10/14

Complexity of robotic software development (1)

m Complex heterogeneous distributed systems

0 Complex algorithms but limited computation and
memory

[Requires data sharing mechanism (middleware)
0 Concurrent execution of processes/threads
m The robot is “embodied” in the real world

[0 The world is uncertain: sensor readings, action
outcomes, unexpected events, etc.

0 Physics cannot be delayed: strict time constraints
m Challenging problems

O Trial and error

0 Method/algorithm tuning

O Fast prototyping

Software development in robotics 2

gl
Software frameworks

m A software framework is an abstraction in which
common code providing generic functionalities that can
be selectively overridden or specialized by user code

m Frameworks are similar to software libraries in that they
are reusable abstractions of code wrapped in a well-
defined API.

m Unlike libraries, however, the overall program's
flow of control is not dictated by the caller, but by the
framework. This inversion of control is the distinguishing
feature of software frameworks [Wikipedia]

Software development in robotics 4

" HEE
Modularity

m Divide-et-impera approach
0 Common engineering method
0 A complex problem can be often subdivided in simpler sub-
problems

m Module-level tests and debugging
O Local search space for bugs

m Key features
O Abstraction and common interfaces
0 Code reuse
O Encapsulation
0 Decoupling

Software development in robotics 5

Software frameworks for robotics

= Aims
O Promote standard design techniques
0 Code reusability (components)
0 Ready-to-use design techniques
O Rapid prototyping
0 Concurrent engineering

= Examples

0 OROCOS (EURON project), CLARAty (NASA), OpenRTM-aist
(Japanese project), YARP, MS Robotic Studio, ...

O Orca, Player/Stage, MARIE, MOAST, ...
0 ROS (Willow Garage)
0 OpenRDK (DIS RoCoCo ...)

= Main elements of a framework
O Concurrency model
O Information sharing model
O Libraries and tools
O Interoperability

Software development in robotics 7

03/10/14

Example of module decomposition in robotics

IC Mission/Task

Coordination

World modeling

=22 /

Vision

Planning

Motion

Path/Trajectory l Manipulation

Software development in robotics

" EEE
Concurrency model

m Call-backs
= Processes

= Threads {——

Process

= Threads features
O Are easy to write
O Information sharing is fast
O Less robust than processes

O Need facilities for concurrent data
access

Process

Module Module Module

// a callback is called by a scheduler
void callback() {
// do your work quickly

Frameworks that
use threads:

// and return the control %’;g%%}é)
// to the scheduler ‘
(OpenRTM)

Software development in robotics 8

" EE
Information sharing model
= Data ports <—3
= Blackboard <:]

= Use of third-party middleware
o e.g., CORBA, ICE, OMG DDS
O Ready-to-use
o Different goals

= Services = Developing ad-hoc middleware
O It's a complex task
0 Allows for application-oriented tuning
Module Module Module
\\ T l l %meworks that
use a blackboard:
OpenRDK,
Blackboard i

Software development in robotics)

" EE
Interoperability

= No “best” framework, it depends on
0 Different applications (service robotics, multi-robot teams, etc.)
0 Different focus (low-level real-time control, high-level artificial
intelligence, machine learning, image processing, etc.)
O Different people (students, researchers, control experts, etc.)
0 Different set of robot compatibility (mobile robots, robotic arms,
frameworks for a single model of robot)

m Interoperability

O The ability of heterogeneous systems to suitably exchange
information, using common protocols and abstractions

Player — OpenRDK ROS

Robot driver «—— agent module

Software development in robotics 11

03/10/14

" EE
Libraries and tools

m Libraries reduce programming time
O Frameworks include libraries for geometrical
computations, control, filesystem utilities, operations
on maps, images, etc.

0 Often external libraries are used (e.g., OpenCV,
libgsl, libxml, ImageMagick, etc.) <=
m Tools speed-up development and debugging
phases
0 Graphical tools for debugging and inspection <:]
O Simulators or connection to simulators<:]
0 Logging and replaying <=——=

0 Profiling <=1

Software development in robotics 10

An example of frameworks comparison
= OpenRDK = ROS

O Real-time not supported O Real-time not supported

0 Compatibility with a large O Compatibility with a large
set of robots set of robots

O Multi-threaded process 0 One module = one process

0 Module development O Free module development
guided/constrained

O Pluggable inter-process
communication (rdk, dds,
http, file, etc.)

0 Core libraries for robotic
applications

O Proprietary protocol for
inter-process
communication

O Large set of libraries for
robotic applications

0 Small community 0 Large community

0 GPLv3 license 0 BSD license

o... o ...

Software development in robotics 12

03/10/14

" EEE
A short history of OpenRDK Questions
m SPQR-RDK (first commit to the CVS repository)
0 April, 2nd 2003 Questions?

= SPQR-RDK 2

1 September, 30th 2005
We are on SourceForge

= OpenRDK (SourceForge) http://openrdk.sourceforge.net
O February, 25th 2008

Software development in robotics 13 Software development in robotics 14

