
03/10/14

1

Software development in robotics:
frameworks and tools

Daniele Calisi and Daniele Nardi

Software development in robotics 2

Complexity of robotic software development (1)

n  Complex heterogeneous distributed systems
¨ Complex algorithms but limited computation and

memory
¨ Requires data sharing mechanism (middleware)
¨ Concurrent execution of processes/threads

n  The robot is “embodied” in the real world
¨ The world is uncertain: sensor readings, action

outcomes, unexpected events, etc.
¨ Physics cannot be delayed: strict time constraints

n  Challenging problems
¨ Trial and error
¨ Method/algorithm tuning
¨ Fast prototyping

Software development in robotics 3

Complexity of robotic software development (2)

n  Different hardware devices
¨ Different protocols and interfaces

n  Inherently complex setting
¨ e.g. visualizing sensor data requires to:

n  Connect to the sensor
n  Understand and implement the protocol
n  Build a GUI

n  A lot of system engineering
¨ Challenging programming
¨ Debugging and testing

n  Heterogeneous Team of developers

Software development in robotics 4

Software frameworks
n  A software framework is an abstraction in which

common code providing generic functionalities that can
be selectively overridden or specialized by user code

n  Frameworks are similar to software libraries in that they

are reusable abstractions of code wrapped in a well-
defined API.

n  Unlike libraries, however, the overall program's
flow of control is not dictated by the caller, but by the
framework. This inversion of control is the distinguishing
feature of software frameworks [Wikipedia]

03/10/14

2

Software development in robotics 5

Modularity
n  Divide-et-impera approach

¨  Common engineering method
¨  A complex problem can be often subdivided in simpler sub-

problems

n  Module-level tests and debugging
¨  Local search space for bugs

n  Key features
¨  Abstraction and common interfaces
¨  Code reuse
¨  Encapsulation
¨  Decoupling

Software development in robotics 6

Example of module decomposition in robotics

Motion

World modeling

Mission/Task

Interface

Vision

1

2

3

Localization Mapping

Path/Trajectory Manipulation

Coordination

Planning

Software development in robotics 7

Software frameworks for robotics
n  Aims

¨  Promote standard design techniques
¨  Code reusability (components)
¨  Ready-to-use design techniques
¨  Rapid prototyping
¨  Concurrent engineering

n  Examples
¨  OROCOS (EURON project), CLARAty (NASA), OpenRTM-aist

(Japanese project), YARP, MS Robotic Studio, …
¨  Orca, Player/Stage, MARIE, MOAST, …
¨  ROS (Willow Garage)
¨  OpenRDK (DIS RoCoCo …)

n  Main elements of a framework
¨  Concurrency model
¨  Information sharing model
¨  Libraries and tools
¨  Interoperability

Software development in robotics 8

Process

Concurrency model
n  Call-backs
n  Processes
n  Threads

n  Call-backs features
¨  Provide for tight execution

control (real-time)
¨  Hard to write and maintain

Module Module Module

// a callback is called by a scheduler
void callback() {
 // do your work quickly
 // and return the control
 // to the scheduler
}

Process

n  Processes features
¨  Very easy to write
¨  Max freedom of development
¨  Robust to single module crashes
¨  Information sharing is slow

n  Threads features
¨  Are easy to write
¨  Information sharing is fast
¨  Less robust than processes
¨  Need facilities for concurrent data

access

Frameworks that
use call-backs:
OROCOS,
(OpenRTM)

Frameworks that
use processes:
Orca, MIRO,
Player/Stage, …

Frameworks that
use threads:
OpenRDK,
(OROCOS),
(OpenRTM)

03/10/14

3

Software development in robotics 9

Information sharing model
n  Data ports
n  Blackboard

n  Services

n  Use of third-party middleware
¨  e.g., CORBA, ICE, OMG DDS
¨  Ready-to-use
¨  Different goals

n  Developing ad-hoc middleware
¨  It’s a complex task
¨  Allows for application-oriented tuning

Module Module Module

Blackboard

Frameworks that
use data ports:
OROCOS,
OpenRTM, Orca,
…

Frameworks that
use a blackboard:
OpenRDK,
MIRO

Software development in robotics 10

Libraries and tools
n  Libraries reduce programming time

¨ Frameworks include libraries for geometrical
computations, control, filesystem utilities, operations
on maps, images, etc.

¨ Often external libraries are used (e.g., OpenCV,
libgsl, libxml, ImageMagick, etc.)

n  Tools speed-up development and debugging
phases
¨ Graphical tools for debugging and inspection
¨ Simulators or connection to simulators
¨ Logging and replaying
¨ Profiling

Software development in robotics 11

Interoperability
n  No “best” framework, it depends on

¨  Different applications (service robotics, multi-robot teams, etc.)
¨  Different focus (low-level real-time control, high-level artificial

intelligence, machine learning, image processing, etc.)
¨  Different people (students, researchers, control experts, etc.)
¨  Different set of robot compatibility (mobile robots, robotic arms,

frameworks for a single model of robot)

n  Interoperability
¨  The ability of heterogeneous systems to suitably exchange

information, using common protocols and abstractions

Player
driver

OpenRDK
agent Robot Camera ROS

module

Software development in robotics 12

An example of frameworks comparison
n  OpenRDK

¨  Real-time not supported
¨  Compatibility with a large

set of robots
¨  Multi-threaded process
¨  Module development

guided/constrained
¨  Pluggable inter-process

communication (rdk, dds,
http, file, etc.)

¨  Core libraries for robotic
applications

¨  Small community
¨  GPLv3 license
¨  …

n  ROS
¨  Real-time not supported
¨  Compatibility with a large

set of robots
¨  One module = one process
¨  Free module development

¨  Proprietary protocol for
inter-process
communication

¨  Large set of libraries for
robotic applications

¨  Large community
¨  BSD license
¨  …

03/10/14

4

Software development in robotics 13

A short history of OpenRDK

n  SPQR-RDK (first commit to the CVS repository)
¨ April, 2nd 2003

n  SPQR-RDK 2
¨ September, 30th 2005

n  OpenRDK (SourceForge)
¨ February, 25th 2008

Software development in robotics 14

Questions

Questions?

We are on SourceForge
http://openrdk.sourceforge.net

