
Programming NAO-Robots

October 7th 2014

Francesco Riccio

Master in Artificial Intelligence and Robotics (MARR)
- Elective in AI, Robot Programming

Programming NAO-Robots

2

SPL – Standard Platform League

Programming NAO-Robots

S.P.Q.R. (Soccer Player Quadruped
Robots) is the RoboCup team of the
Department of Computer, Control,
and Management Engineering
“Antonio Ruberti” at Sapienza
university of Rome

- Middle-size 1998-2002;
- Four-legged 2000-2007;
- Real-Rescue robots since 2003;
- Virtual-Rescue robots since 2006;
- Standard Platform League since
2008;

3

The Aldebaran Nao robot

 Nao is an autonomous,
programmable, medium-
sized humanoid robot.

Programming NAO-Robots

 ATOM Z530 1.6GHz CPU 1
GB RAM / 2 GB flash
memory / 4 to 8 GB flash
memory dedicated to user
purposes

Camera Nao

4
Programming NAO-Robots

5

Inertial unit

Programming NAO-Robots

• 2 axes gyrometers
• 1 axis accelerometers

The Inertial unit is located in the torso

6

FSR – Force Sensitive Resistor

Programming NAO-Robots

These sensors measure a resistance change according to the pressure
applied.

7

Sonars

Programming NAO-Robots

• Resolution: 1cm;
• Frequency: 40kHz;
• Detection range: 0.25m -

2.55m;
• Effective cone: 60°;

8

Nao Robot Software support

Programming NAO-Robots

9
Programming NAO-Robots

Naoqi API

https://community.aldebaran-robotics.com/doc/

https://community.aldebaran-robotics.com/doc/
https://community.aldebaran-robotics.com/doc/
https://community.aldebaran-robotics.com/doc/
https://community.aldebaran-robotics.com/doc/

10
Programming NAO-Robots

Naoqi API

11
Programming NAO-Robots

Naoqi API

A broker is an object that provides two main roles:
• It provides directory services: Allowing you to find modules and

methods.
• It provides network access: Allowing the methods of attached modules

to be called from outside the process.

A proxy is an object that will behave as the module it represents.
For instance, if you create a proxy to the ALMotion module, you will get an
object containing all the ALMotion methods.

A Module is a class within a library. When the library is loaded from the
autoload.ini, it will automatically instantiate the module class.

12
Programming NAO-Robots

Choregraphe

B-human Framework Architecture

o Based on the original framework of the GermanTeam, developed by:
• University of Bremen;
• German Research Center for Artificial Intelligence (DFKI).

o Since 2009 used in the Standard Platform League by many teams as a

base framework.

o Documentation:
• http://www.b-human.de/downloads/publications/2014/CodeRelease2014.pdf

• http://www.b-human.de/downloads/publications/2013/CodeRelease2013.pdf

13
Programming NAO-Robots

B-Human Framework Architecture

13
Programming NAO-Robots

http://www.b-human.de/downloads/publications/2014/CodeRelease2014.pdf
http://www.b-human.de/downloads/publications/2014/CodeRelease2014.pdf
http://www.b-human.de/downloads/publications/2014/CodeRelease2014.pdf
http://www.b-human.de/downloads/publications/2014/CodeRelease2014.pdf
http://www.b-human.de/downloads/publications/2013/CodeRelease2013.pdf
http://www.b-human.de/downloads/publications/2013/CodeRelease2013.pdf
http://www.b-human.de/downloads/publications/2013/CodeRelease2013.pdf
http://www.b-human.de/downloads/publications/2013/CodeRelease2013.pdf

14
Programming NAO-Robots

B-Human Framework Architecture

Naoqi communication

Processes

15
Programming NAO-Robots

o Cognition:
• Inputs: Camera images, Sensor data;
• Outputs: High-level motion commands.

o Motion:
Process high-level motion commands and generates the target
vector q for the 25 joints of the Nao.

o Debug:
 Communicates with the host PC providing debug information
 (e.g. raw image, segmented image, robot pose, etc.)

Modules and Representations

16
Programming NAO-Robots

• The robot control program consists of several modules, each
performing a certain task.

• Modules usually require inputs and produce one or more
outputs, i.e. representations.

The framework uses a Scheduler to automatically determines the
right execution sequence, which depends on the inputs and the
outputs of the modules.

Modules and Representations

17
Programming NAO-Robots

18
Programming NAO-Robots

Representation template

Path to representations :
/spqrnao2014/Src/Represent
ations/

19
Programming NAO-Robots

Update BlackBoard

Remember to update the BlackBoard.cpp

20
Programming NAO-Robots

Update modules.cfg

Path to representations :
/spqrnao2014/Config/Locations/<location>/

21
Programming NAO-Robots

Module template

Path to modules: /spqrnao2014/Src/Modules/

Modules performs a certain task requiring specific inputs and
providing specific outputs:

• 0...n Inputs (REQUIRES or USES)
• 1…m Outputs (PROVIDES)

It must defines an update function for each provided
representation.

22
Programming NAO-Robots

Modules template

23
Programming NAO-Robots

Module template

24
Programming NAO-Robots

Scheduler

The execution order is defined by the required representations.
In this case module B cannot be executed before A.

Therefore the order is A and then B

25
Programming NAO-Robots

Scheduler

Considering input Foo3 as available:

the order is C and then B

26
Programming NAO-Robots

Scheduler

D cannot be executed before B.
B cannot be executed before D.

 Deadlock, the code compiles but it does not execute.

How can we discover deadlock in the structure?

27
Programming NAO-Robots

Scheduler

D can be executed before B.

 Warning: USES macro does not guarantees that the
representation Foo2 is updated up to the last value.

Tip: pay attention to the initialization of the “used”
representations

28
Programming NAO-Robots

Compiler

The compiler is clang based,
which is an open source project
and it is designed to be
highly compatible with gcc;

Links:
• http://clang.llvm.org/
• https://gcc.gnu.org/

The code can be compiled in different configuration:

Make CONFIG=<Debug/Develop/Release>

http://clang.llvm.org/
http://clang.llvm.org/
https://gcc.gnu.org/
https://gcc.gnu.org/

29
Programming NAO-Robots

SimRobot

30
Programming NAO-Robots

SimRobot: functionalities

 Simulate the code;

 Connect the robot;

 Calibrate the color table;

 Calibrate the camera
parameters;

 Calibrate sensors;

31
Programming NAO-Robots

SimRobot: camera calibration

32
Programming NAO-Robots

SPQR code: tips and useful paths

 bash_aliases;
 compile in Develop;
 Use grep: $ grep –r “<string>” .*

Paths (move to the RoboCup/spqrnao2014/ folder)
• SimRobot: Build/ SimRobot/Linux/<Debug/Release/Develop>
• Make: Make/Linux/
• Install: install/
• Scenes: Config/Scenes/
• Locations: Config/Locations/
• Behaviours: Src/Modules/BehaviorControl/
• Options.h: Src/Modules/BehaviorControl/BehaviorControl2103/Options.h

Look at this file if you want to add options

33
Programming NAO-Robots

Game states

34
Programming NAO-Robots

SimRobot console commands

• gc ready: the robot runs the ready behavior and gets into
 their default position;

• gc set: places the robot into the default set positions;

• gc playing: starts the game;

• mr RobotPose CognitionLogDataProvider: if you want to
provide a perfect localization.

10 mins break?

Programming NAO-Robots

36
Programming NAO-Robots

C-based Agent Behavior
Spefication Language (CABSL)

• It is a derivative of XABSL: eXtensible Agent Behavior
Specification Language

• It is designed to describe and develop an agent's behavior as
a hierarchy of state machines.

• CABSL solely consists of C++ preprocessor macros and can be
compiled with a normal C++ compiler.

• A behavior consists of a set of options that are arranged in an
option graph.

37
Programming NAO-Robots

CABSL

Adopted by the German Team
since the RoboCup 2002

Good choice to describe
behaviors for autonomous robots
or NPCs in computer games.

Code downloadable at: http://www.xabsl.de

38
Programming NAO-Robots

CABSL: Options

General structure
CABSL comprises few basic elements: options, states,
transitions, actions.

Each option is a finite state machine that describes a specific
part of the behavior such as a skill or a head motion of the
robot, or it combines such basic features.

Tip: Deeply debug the inner state machine in order to avoid
loops.

39
Programming NAO-Robots

CABSL: Options

Each state has a decision tree
with transitions to other states.

For the decisions, other sensory
information (representations)
can be used.

Tip: take into account how long
the state has been active

40
Programming NAO-Robots

CABSL

Task of the option graph:
activate one of the leaf behaviors (proceeding top-down),
which is then executed.

Pseudo-code:
Foreach iteration

{

 the execution of the tree starts

 from the root and controls the flux

 of the option grah top-down;

 do

 {

 if the transition is within the

 current node continue the

 execution;

 else jump to the lower level;

 } until current_node is a leaf node;

}

41
Programming NAO-Robots

CABSL:
Option Activation Tree

Options are activated at a specific
time step from a rooted tree.

Such tree is a sub-tree of the more
general option graph and it’s called
option activation tree.

42
Programming NAO-Robots

CABSL: Libraries

• A library is a normal C++ class,
a single object of which is
instantiated as part of the
behavior control and that is
accessible by all options.

• Libraries can have variables
that keep their values beyond
a single execution cycle.

CABSL examples and templates

Programming NAO-Robots

44
Programming NAO-Robots

CABSL: Options

45
Programming NAO-Robots

CABSL: Options

Warning: Pay attention to this kind of states.

46
Programming NAO-Robots

CABSL: Options

Parallelism through the activation graph.

47
Programming NAO-Robots

CABSL: Options

Arguments can generalize the options.

48
Programming NAO-Robots

CABSL: Options

49
Programming NAO-Robots

CABSL: add representations to the
Behaviors Engine

Motion interface: Bike scene

• Bikes: spqrnao2014/Config/Bike/

50
Programming NAO-Robots

Ball recognition and evaluation

51
Programming NAO-Robots

• BallPercept.h
o USES BallModel
o PROVIDES BallPercept

• BallModel.h

o REQUIRES BallPercept
o USES BallModel
o PROVIDES BallModel

1. Evaluate ball spots;
2. Check noise;
3. Calculate ball in

image;
4. Calculate ball on field;
5. Check jersey;

52
Programming NAO-Robots

Homeworks

1.A Make an account on github.com, send me an email with your
 git username (“[Elective RoboCup] Name LastName” as email
 subject) and install the software;

1.B Create a new Representation and a new Module: the update
 function of the module has to display:

o the robot pose <x, y, theta>;
o the ball position <x, y> (both relative and global);
o joints value;

2.A Filter the ball perception and make the robot disregard balls
 that are more then 2 meters away from the robot;

53
Programming NAO-Robots

Homeworks

2.B Use the previously written module to save some images
 acquired from the camera;

2.C Detect the edges contained in the pictures using OpenCV;

3.A Write a behaviour that makes the robot “WalkTo” the ball;

3.B Extend the previous behaviour and make the robot walk
 around the ball;

4.A Write a striker behavior that makes the robot kicking the ball
 towards its own goal;

4.B Test everything simulating two robots (striker and goalie).

