SAPIENZA

Master in Artificial Intelligence and Robotics (MARR) UNIVERSITA DI ROMA

- Elective in Al, Robot Programming

Programming NAO-Robots

Francesco Riccio

October 7th 2014

Programming NAO-Robots

SPL — Standard Platform League

S.P.Q.R. (Soccer Player Quadruped
Robots) is the RoboCup team of the
Department of Computer, Control,
and Management Engineering
“Antonio Ruberti” at Sapienza
university of Rome

- Middle-size 1998-2002;

- Four-legged 2000-2007;

- Real-Rescue robots since 2003;

- Virtual-Rescue robots since 2006;
- Standard Platform League since
2008;

SAPIENZA

UNIVERSITA DI ROMA

DIPARTIMENTO Df INGEGNERIA INFORMATICA,
AUTOMATICA

Programming NAO-Robots

The Aldebaran Nao robot

Nao is an autonomous,
programmable, medium-
sized humanoid robot.

ATOM Z530 1.6GHz CPU 1
GB RAM / 2 GB flash
memory / 4 to 8 GB flash
memory dedicated to user
purposes

Programming NAO-Robots

Camera Nao

) / 58.71

Programming NAO-Robots

Inertial unit

* 2 axes gyrometers
e 1 axis accelerometers

The Inertial unit is located in the torso

Programming NAO-Robots

FSR — Force Sensitive Resistor

These sensors measure a resistance change according to the pressure
applied.

LFsrFL LFsrFR

LFsrRL LFsrRR RFsrRL RFsrRR

Programming NAO-Robots
6

Sonars

* Resolution: 1cm; US Sensor 1
 Frequency: 40kHz; [Transmitter]
* Detection range: 0.25m -

2.55m; US Sensor 2
e Effective cone: 60°; [Receiver]

US Sensor 3
[Transmitter]

US Sensor 4
[Receiver]

Programming NAO-Robots

Nao Robot Software support

Programming NAO-Robots

Naoqi API

Broker Libraries Modules
"NAQOqgi"
ALMemory
libalbase. so AlLLogger
toload.ini
aulaload.ini ™oL
[cora) i
albase
launchis liblaunchar.so ALLauncher
albonjour
[extra)
framemanager
lads libalbonjour.so ALBonjour
Sensars
T://——
libframemanager.so ALFrameManager
libleds.so AlLeds

https://community.aldebaran-robotics.com/doc/

Programming NAO-Robots

https://community.aldebaran-robotics.com/doc/
https://community.aldebaran-robotics.com/doc/
https://community.aldebaran-robotics.com/doc/
https://community.aldebaran-robotics.com/doc/

Naoqi API

Broker Modules
AlLMemory
-—
Metwork ,
Access ALMotion
Al eds

Methods

insertDatal...)

getDatal...)

raiseEvent(...)

walkTo(...)

anglelnterpolation|...)

getAngle(...)

satintensity...)

\

Programming NAO-Robots

fadel...)

Naoqi API

A broker is an object that provides two main roles:

* It provides directory services: Allowing you to find modules and
methods.

* It provides network access: Allowing the methods of attached modules
to be called from outside the process.

A proxy is an object that will behave as the module it represents.
For instance, if you create a proxy to the ALMotion module, you will get an
object containing all the ALMotion methods.

A Module is a class within a library. When the library is loaded from the
autoload.ini, it will automatically instantiate the module class.

Programming NAO-Robots

Choregraphe

[“re sremt” - Darop aie
Pk Bt Conmectmn Bwdowoer 30 View Windon Hep

Q08 300 2ol

Choregraphe

Bui Lt 0E 5 ls
P .

: 3 Stow
A sseun
A 3t

Programming NAO-Robots

B-Human Framework Architecture

o Based on the original framework of the GermanTeam, developed by:
* University of Bremen;
* German Research Center for Artificial Intelligence (DFKI).

o Since 2009 used in the Standard Platform League by many teams as a

base framework.

o Documentation:
* http://www.b-human.de/downloads/publications/2014/CodeRelease2014.pdf

* http://www.b-human.de/downloads/publications/2013/CodeRelease2013.pdf

Programming NAO-Robots

http://www.b-human.de/downloads/publications/2014/CodeRelease2014.pdf
http://www.b-human.de/downloads/publications/2014/CodeRelease2014.pdf
http://www.b-human.de/downloads/publications/2014/CodeRelease2014.pdf
http://www.b-human.de/downloads/publications/2014/CodeRelease2014.pdf
http://www.b-human.de/downloads/publications/2013/CodeRelease2013.pdf
http://www.b-human.de/downloads/publications/2013/CodeRelease2013.pdf
http://www.b-human.de/downloads/publications/2013/CodeRelease2013.pdf
http://www.b-human.de/downloads/publications/2013/CodeRelease2013.pdf

B-Human Framework Architecture

Video for Cognition

Camera

Robot
Control
Program

Motion

TCP/IP

\ Naogi communication

Programming NAO-Robots

Processes

o Cognition:
* Inputs: Camera images, Sensor data;
* OQOutputs: High-level motion commands.

o Motion:
Process high-level motion commands and generates the target
vector q for the 25 joints of the Nao.

o Debug:
Communicates with the host PC providing debug information
(e.g. raw image, segmented image, robot pose, etc.)

Programming NAO-Robots

Modules and Representations

* The robot control program consists of several modules, each
performing a certain task.

* Modules usually require inputs and produce one or more
outputs, i.e. representations.

The framework uses a Scheduler to automatically determines the

right execution sequence, which depends on the inputs and the
outputs of the modules.

Programming NAO-Robots

Modules and Representations

Dive
Handle

Blackboard

Modules

Dive
Handler

Image
Provider

Ball
Locator

Representations

Programming NAO-Robots

Representation template

class Foo : public Streamable
(U
private:
void serialize(In* in, Out* out)
{
STREAM REGISTER BEGIN;
Path to representations : STREAM(a) ;
/spqrnao2014/Src/Represent STREAM(b) ;
ations/ STREAM REGISTER FINISH;
}
public:
float a;
int b;
~ Foo() : a(0.0), b(0) {;}
}s

Programming NAO-Robots

Update BlackBoard

/...
class GlobalBallEstimation;

class Coordination;
class RobotPoseSpgrFiltered;
class Foo;

//. ..
class Blackboard

{

protected:

//. ..
const GlobalBallEstimation& theGlobalBallEstimation;

const Coordination& theCoordination;
const RobotPoseSpgrFiltered& theRobotPoseSpqrFiltered;
const Foo& theFoo;

/7. ..
I¥

Remember to update the BlackBoard.cpp

Programming NAO-Robots

Update modules.cfg

Path to representations :
/spgrnao2014/Config/Locations/<location>/

representationProviders = L

{representation = RobotInfo; provider = GameDataPrevider;},

{repreeentatien = Coordination; provider = Ceerdinater;},

{representation = Foo; provider = FooModule; }

1;

Programming NAO-Robots

Module template

Path to modules: /spgrnao2014/Src/Modules/

Modules performs a certain task requiring specific inputs and
providing specific outputs:

e 0...nInputs (REQUIRES or USES)

e 1..m Outputs (PROVIDES)

It must defines an update function for each provided
representation.

Programming NAO-Robots

Modules template

#include "Tools/Module/Module.h"
#include "Representations/Perception/BallPercept.h"
#include "Representations/SP(R-Representations/Foo.h"

MODULE (FooModule)
REQUIRES (BallPercept)

PROVIDES (Foo)
END_MODULE

class FooModule : public FooModuleBase

{

private:
//. ..
public:
FooModule () ;
void update(Foo& foo);

b

Programming NAO-Robots

Module template
#include "FooModule.h"
MAKE_MODULE(FooModule, SPQR-Modules)

FooModule: :FooModule() {;}

void FooModule: :update(Foo& foo)
1 if (theBallPercept.wasSeen)

{
foo.a = 1.0;
foo.b = 10;
}
else
{
foo.a = 2.0;
foo.b = b;
}

}

Programming NAO-Robots

Scheduler

MODULE (B)
MODULE (A) REQUIRES (Foo1l)
PROVIDES (Foo1l) PROVIDES (Foo2)
END_MODULE END_MODULE

The execution order is defined by the required representations.
In this case module B cannot be executed before A.

Therefore the order is A and then B

Programming NAO-Robots

Scheduler

MODULE(C) MODULE (B)
REQUIRES (Foo3) REQUIRES (Foo1l)
PROVIDES (Fool) PROVIDES (Foo2)

END_MODULE END_MODULE

Considering input Foo3 as available:

the order is C and then B

Programming NAO-Robots

Scheduler

MODULE (D) MODULE(B)
REQUIRES (Foo2) REQUIRES (Foo1l)
PROVIDES (Fool) PROVIDES (Foo2)

END_MODULE END_MODULE

D cannot be executed before B.
B cannot be executed before D.

— Deadlock, the code compiles but it does not execute.

How can we discover deadlock in the structure?

Programming NAO-Robots

Scheduler

MODULE (D) MODULE (B)
USES (Foo?2) REQUIRES (Fool)
PROVIDES (Fool) PROVIDES (Foo2)
END_MODULE END_MODULE

D can be executed before B.

Warning: USES macro does not guarantees that the
representation FooZ2 is updated up to the last value.

Tip: pay attention to the initialization of the “used”
representations

Programming NAO-Robots

Compiler

The compiler is clang based,
which is an open source project
and it is designed to be

highly compatible with gcc;

Links:
* http://clang.llvm.org/
* https://gcc.gnu.org/

The code can be compiled in different configuration:
Make CONFIG=<Debug/Develop/Release>

Programming NAO-Robots

http://clang.llvm.org/
http://clang.llvm.org/
https://gcc.gnu.org/
https://gcc.gnu.org/

SimRobot

SimRobot

Open an existing file

Programming NAO-Robots

SimRobot: functionalities

v Simulate the code;
v' Connect the robot;
v’ Calibrate the color table;

v’ Calibrate the camera
parameters;

v’ Calibrate sensors;

Programming NAO-Robots

SimRobot: camera calibration

RemoteRobot - SimRobot

Jue B 2 &

4 L
Scens Graph @ ® Remotemage.raw 2% ¥ call CameraCalbration
¥ Console B setrepresentationCameradalibeation
camevaTikCocrection = -0.00752124;
8 ﬂ'é\"vi\‘ﬂ camerafoBorrection = 0.0155811;
TS cameraPanCarnrection =0 boadyTixCorrection =
[0.0705123; bodyRoliCorrection = -0.0134334;
bodyTransiationComection={x=Q y=q 2=0),
U upperZiowerfotation = {x = -0.0413465 y = 0.68827;
\ 2 =-0,04430801), upper HowerTrarslation = {x =5.1;
» . modufes y=0; 2 = 44.09); colorTemperature = default;
colvspoce call Camevadaibratos
ot r Tk dr module:CameraCalibeator:collactPoints
> re.v ' wid raw module:CameraCalibrator:drawfleldlines
a "‘"“ a dr medule:Cameradalibrator optimize
9 dr module:CameraCalibrator:stop
» Fa Cameradalibratorrandler activated for raw”
f L mageView
v faeld 9t representation RobotPose
‘ set representationcRobotPose rotation = 0;
) trarslation = {« =-2700, y =0} valdity = 1; desiation
- 100000;
-
B
Z
9
v
Remote: connected to 192.168.20.14, 15112 kb/s unkn rendecer 0 collidions A3 tep/s 3483 staps

Programming NAO-Robots

SPQR code: tips and useful paths

v’ bash_aliases;
v’ compile in Develop;
v’ Use grep: S grep —r “<string>" .*

Paths (move to the RoboCup/spgrnao2014/ folder)

* SimRobot: Build/ SimRobot/Linux/<Debug/Release/Develop>

* Make: Make/Linux/

* |nstall: install/

e Scenes: Config/Scenes/

e Locations: Config/Locations/

* Behaviours: Src/Modules/BehaviorControl/

* Options.h: Src/Modules/BehaviorControl/BehaviorControl2103/Options.h

\ Look at this file if you want to add options

Programming NAO-Robots

Game states

/_

-I.JEL‘J]IEI-

\\t

Penalized

Programming NAO-Robots

SimRobot console commands

e gcready: the robot runs the ready behavior and gets into
their default position;

e gcset: places the robot into the default set positions;
* gc playing: starts the game;

 mr RobotPose CognitionLogDataProvider: if you want to
provide a perfect localization.

Programming NAO-Robots

10 mins break?

Programming NAO-Robots

C-based Agent Behavior
Spefication Language (CABSL)

* |tis a derivative of XABSL: eXtensible Agent Behavior
Specification Language

* |tis designed to describe and develop an agent's behavior as
a hierarchy of state machines.

* CABSL solely consists of C++ preprocessor macros and can be
compiled with a normal C++ compiler.

* A behavior consists of a set of options that are arranged in an
option graph.

Programming NAO-Robots

CABSL

Adopted by the German Team
since the RoboCup 2002

Good choice to describe
behaviors for autonomous robots
or NPCs in computer games.

Code downloadable at: http://www.xabsl.de

Programming NAO-Robots

CABSL: Options

General structure
CABSL comprises few basic elements: options, states,
transitions, actions.

Each option is a finite state machine that describes a specific
part of the behavior such as a skill or a head motion of the
robot, or it combines such basic features.

Tip: Deeply debug the inner state machine in order to avoid
loops.

Programming NAO-Robots

CABSL: Options

Each state has a decision tree
with transitions to other states.

For the decisions, other sensory

information (representations)
can be used.

Tip: take into account how long
the state has been active

Programming NAO-Robots

option goalie_playing

state get_to | ball

|

ball seen

ll
ball distance
<15¢cm

oJ 1

=74

ball too
far away

CABSL

Pseudo-code:
Foreach iteration

goalie {
v the execution of the tree starts
£ 3 from the root and controls the flux
floste goalie :
before olaying [~ of the option grah top-down;
kickoff do
return | = ?t'on d . o o
to pinii(;e \L if the transition is within the
g:g\' goal current node continue the

| . execution;

| ") else jump to the lower level;
go go
point ball

} until current_node 1s a leaf node;

Task of the option graph: §

activate one of the leaf behaviors (proceeding top-down),
which is then executed.

Programming NAO-Robots

play

CABSL: VAR

Option Activation Tree play i
supporter striker
Options are activated at a specific go . '.
time step from a rooted tree. point |
: |
Such tree is a sub-tree of the more e);i‘%u;e prepare | |
general option graph and it’s called

option activation tree.

Programming NAO-Robots

CABSL: Libraries

* Alibraryis a normal C++ class, * Libraries can have variables
a single object of which is that keep their values beyond
instantiated as part of the a single execution cycle.

behavior control and that is
accessible by all options.

class LibExample : public LibraryBase
{

public:
LibExample () ;
void preProcess () override;
void postProcess() override;
bool beoolFunction(); // Sample method

Programming NAO-Robots

CABSL examples and templates

Programming NAO-Robots

CABSL: Options

option{(exampleOption)

{
initial_state(firstState)
{
transition
{
if (booleanExpression)
goto secondState;
else if (libExample.boolFunction())
goto thirdState;
+
action
{
providedRepresentation.value = requiredRepresentation.value * 3;
+
1

Programming NAO-Robots

CABSL: Options

state(secondState)
{

action

{
SecondOption () ;

}
}

Warning: Pay attention to this kind of states.

Programming NAO-Robots

CABSL: Options

state(thirdState)
{
transition
{
if (booleanExpression)
goto firstState;
}
action
{
providedRepresentation.value = RequiredRepresentation::someEnumValue;
ThirdOption () ;
}

Parallelism through the activation graph.

Programming NAO-Robots

CABSL: Options

option(OptionWithParameters, int i, bool b, int j
{
initial_state(firstState)
{
action

{

providedRepresentation.intValue = b 7 i : j;

}

0)

Arguments can generalize the options.

Programming NAO-Robots

CABSL: Options

common_transition
{
if (booleanExpression)
goto firstState;
else if(booleanExpression)
goto secondState;

Programming NAO-Robots

CABSL: add representations to the
Behaviors Engine

+ 9 BehaviorControlZ2013.h

#include "Representations/Sensing/FallDownState.h"
#include "Representations/Sensing/FootContactModel . h”
#include “Representatieons/Sensing/GroundfontactState.h”
#include “Representations/Sensing/TorsoMatrix.h"

#include "Representations/SPOR-Representations/ConfigurationParameters.h
#include "Representations/SPOR-Representations/RobotPoseSpgrFiltered.h
#include "Representations/SPOR-Representations/GlobalBallEstimation.h
#include "Representations/SPOR-Representations/Coordination.h”

#include “Representations/SPOR-Representations/DiveHandle.h"

#include "Representations/3POR-Representations/BallPrediction.h”

#include =Core/Processors/Processor. hs

#include <limits=

60 #include <algorithms]
#Finclude =map>
#include =fstream=

MODULE (BehaviorControll@13]
REQUIRES (GlobalBallEstimation]
REQUIRES (RobotPoseSparFiltered
REQUIRES (Coordination]
REQUIRES (DiveHandle)

REQUIRES (BallPredicticn)

REQUIRES (ArmContactModel)
REQUIRES (ArmMotionEnginefutput)
REQUIRES (BallModel)

REQUIRES (BallTakinglutput)
REQUIRES (BikeEnginelutput)
REQUIRES(Cameralnfo)
REQUIRES(CameraMatrix)
REQUIRES(CombinedworldModel)

FAFAITRArES ST T e e T = b

Programming NAO-Robots

Motion interface: Bike scene

* Bikes: spgrnao2014/Config/Bike/

!robotB.BikeView @1 \ I

Phase 5 | Phase 6 | 4/ b} n

Play Motion

Durationi... 100t
v Left Foot
b { Transl:.. Reset Robot
Poi...
Poi... Stand
Poi...
¥ Rotation
Poi...
Poi...
Poi...
¥ Right Foot
¥ Transl...
Poi...
Poi...
Poi... S| B s
¥ Rotation

Poi... Add Phase
Poi...
Poi... Delete Phase ;

Play Motion until Active

Robot Opacity

Poi...
Poi...

.
[

]

v Left Hand ‘

an
£ Record Pose ¥
¥ Transl... &
L]
.]]

Poi...
¥ Rotation
Poi...
Poi...

Pni I3 .
) D Soften Limb...e

Programming NAO-Robots

Ball recognition and evaluation

* BallPercept.h T
o USES BallModel 1. Evaluate ball spots;
o PROVIDES BallPercept J 2. Check noise;

3. Calculate ball in

* BallModel.h image;
o REQUIRES BallPercept 4. Calculate ball on field;
o USES BallModel 5. Check jersey;

o PROVIDES BallModel

RoboCuj ®

pbuf renderer 3 collisions 1 stepsfs 721 steps

Programming NAO-Robots

Homeworks

1.A Make an account on github.com, send me an email with your
git username (“[Elective RoboCup] Name LastName” as email
subject) and install the software;

1.B Create a new Representation and a new Module: the update
function of the module has to display:
o therobot pose <x, y, theta>;
o the ball position <x, y> (both relative and global);
o joints value;

2.A Filter the ball perception and make the robot disregard balls
that are more then 2 meters away from the robot;

Programming NAO-Robots

Homeworks

2.B

2.C

3.A

3.B

4.A

4.B

Use the previously written module to save some images
acquired from the camera;

Detect the edges contained in the pictures using OpenCV;
Write a behaviour that makes the robot “WalkTo” the ball;

Extend the previous behaviour and make the robot walk
around the ball;

Write a striker behavior that makes the robot kicking the ball
towards its own goal,

Test everything simulating two robots (striker and goalie).

Programming NAO-Robots

