
Robotic Simulators

Gabriele Randelli randelli@dis.uniroma1.it

How Many Robots?

But...

- Robots can be damaged
- High Cost
- Test Repeatability
- Environment Factors

Why Simulators?

No physical dependency on the actual machine!

Cost

- No cost for any robot or equipment
- No risk or damage, no maintenance
- No human risk

Time

- Simulations can be run in parallel
- No battery recharge

Experiments

- Any environment, any robot, any sensor
- Experimental repeatability
- Scalability

400.000\$ for a beer???

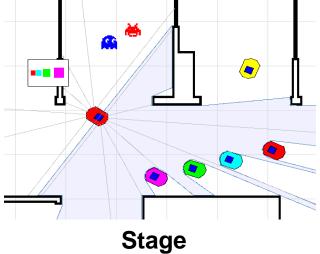
Choosing the Right Simulator

"The best simulator does not have to resemble reality in the most accurate way. The power of a simulator is to fit to our needs." (Elron, 1983)

What are we simulating?

behavior-based, multi-robot, motion, interaction, manipulation,...

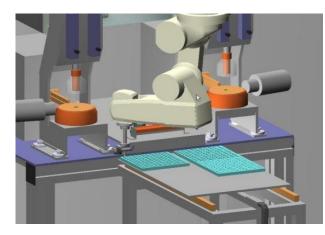
How are we simulating?


rendering (3D, 2D, console), physics, ...

Do we need to migrate to real platforms?

Robotic Simulators

USARSim



Webots

Eile Edit Simulation Wigard Windows Help

MS Robotics Studio

COSIMIR

Player/Stage/Gazebo

Long term project

- Started in 2000
- Moved to SourceForge in 2001
- Gazebo (3D simulator) development started in 2003

Player

A robot device interface (universal driver)

Hides hardware details

Common interfaces

Many devices supported

Stage

Scalable 2.5D multiple robot simulator

Light simulation

Gazebo

High-fidelity 3D multiple robot simulator

Open Dynamics Engine

Large number of robots (O(10) - O(100)) OpenGL

Small number of robots (O(1) - O(10))

Adopted for DARPA Robotics Challenge

