Tecniche della Programmazione, lez.16

Uso dell'allocazione dinamica; gestione di stringhe;
gestione di una struttura dati per una collezione di
stringhe

allocazione dinamica di (tante) stringhe ("esatte™) in un programma
- array di stringhe ("esatte"): operazioni di "aggiunta" e "ricerca"

- programma di gestione stringhe

- struttura dati piu” complessa per una collezione di stringhe

- funzionalita classiche

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 1/80

Tecniche della Programmazione, lez. 16

Prima un esercizio:

possiamo fare un duplicato, str2, di una stringa str

- allocando un array di caratteri della dimensione "esatta"
hecessaria per str

- copiando nel nuovo array quello originale

Una stringa "esatta e una stringa dimensionata esattamente per
contenere 1 suol caratteri significativi, senza locazioni sprecate

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 2/80

duplicazione (esatta) di una stringa

esercizio funzione che
ricevendo una stringa s restituisca una copia (esatta) di s

#include <stdio.h>
#include <stdlib.h>
... (dich.) ...
int main() {
char str[9], *stringa2;
---/* “POCO” 1n stringa2 */
stringa2 = duplicato(str);

return O;

} i

prima

stringa2

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 3/80

duplicazione (esatta) di una stringa

esercizio funzione che
ricevendo una stringa s restituisca

#include <stdio.h>
#include <stdlib.h>
... (dich.) ...
int main() {
char str[9], *stringa2;
---/* “POCO” 1n stringa2 */
stringa2 = duplicato(str);

return O;

}

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

una copia (esatta) di s

O|\O

dopo

$% [plo

C

O|\O

stringa2

duplicazione (esatta) di una stringa

esercizio funzione che
ricevendo una stringa s restituisca

#include <stdio.h>
#include <stdlib.h>
(dich.)
int main() {
char str[9], *stringa2;
---/* “POCO” 1n stringa2 */
stringa2 = duplicato(str);

return O;

}

Alg

O) 1l1a funzione riceve la stringa da duplicare e
restituisce I1"indirizzo della stringa
duplicato
nuovaStringa var. locale
char * duplicato (char *s) {}

1) malloc per nuovaStringa, esattamente
di strlen(s)+1

2) strcpy di s In nuovaStringa

3) return nuovaStringa

una copia (esatta) di s

AN P]O|CIONO

stringa2=duplicato(str);

stringa2

I oo o e e o e e e o e e e e e mm e e e mm e e mm e e e mm e e e Em e e e e e e =

duplicazione (esatta) di una stringa

esercizio funzione che
ricevendo una stringa s restituisca una copia (esatta) di s

#include <stdio.h>
#include <stdlib.h> .
... (dich.) ...
int main() {
char str[9], *stringa2;
---/* “POCO” 1n stringa2 */
stringa2 = duplicato(str);

stringa2=duplicato(str);

i S AN PAR g i
| > |
return O; | VAR |
} char * duplicato (char *s) { | newstring |

char * newString; ! i
© | i

i stringa2 i

;eturn newString; o memoria !

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 6/80

duplicazione (esatta) di una stringa

esercizio funzione che

ricevendo una stringa s restituisca

#include <stdio.h>
#include <stdlib.h>
... (dich.) ...
int main() {
char str[9], *stringa2;
---/* “POCO” 1n stringa2 */
stringa2 = duplicato(str);

return O;

} char * duplicato (char *s) {
char * newString;

newString=malloc(strlen(s) + 1);

1T(newString)
strcpy(newString, S);

return newString;

}

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

una copia (esatta) di s

O|\O

stringa2=duplicato(str);

S

NN\

PAR

newString

VAR

$$

vad

$$

stringa2

I oo o e e o e e e o e e e e e mm e e e mm e e mm e e e mm e e e Em e e e e e e =

duplicazione (esatta) di una stringa

esercizio funzione che

ricevendo una stringa s restituisca

#include <stdio.h>
#include <stdlib.h>
... (dich.) ...
int main() {
char str[9], *stringa2;
---/* “POCO” 1n stringa2 */
stringa2 = duplicato(str);

return O;

} char * duplicato (char *s) {
char * newString;

newString=malloc(strlen(s) + 1);

1T(newString)
strcpy(newString, S);

return newString;

}

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

una copia (esatta) di s

O|\O

stringa2=duplicato(str);

S

NN\

PAR

newString

VAR

$$

vad

$$ 5

O|C

stringa2

I oo o e e o e e e o e e e e e mm e e e mm e e mm e e e mm e e e Em e e e e e e =

duplicazione (esatta) di una stringa

esercizio funzione che
ricevendo una stringa s restituisca una copia (esatta) di s

#include <stdio.h>
#include <stdlib.h» -

... (dich.) ... st
int main(Q) { ' An|P|O[C[ONO
char str[9], *stringa2; :
- . ./* “POCO” in stringa2 */ —seopare
stringa2 = duplicato(str); \Smngaz:dum'cato(su);
s AR PAR|ZE
" . | >
return O; ~fimane VAR
} i newString
char * duplicato (char *s) { | s
char * newString; :
QewStrlngfmalIoc(strlen(s) + 1); " $$ [5TolcTomo
1T(nhewString) :
strcpy(newString, S); ' stringa2 [88
return newString; i
b e e nemoria _

}

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 9/80

I oo o e e o e e e o e e e e e mm e e e mm e e mm e e e mm e e e Em e e e e e e =

duplicazione (esatta) di una stringa

esercizio funzione che
ricevendo una stringa s restituisca una copia (esatta) di s

#include <stdio.h>
#include <stdlib.h» -

] |

... (dich.) ... L str !

- - |

int main() { ! An[P|O|C|O[NO !

char str[9], *stringa?2; : :

- _ ..scompare !

- - -/ "POCO" In stringaz */ i stringa2=duplicato(str) :
. - =dupli ;

stringa2 = duplicato(str); \ 2 0 o !

LS AN PAR|S |

=TT) I > |

return O; ~fimane | VAR|

} i newString i

char * duplicato (char *s) { ! $$!

char * newString; : :

newString=malloc(strlen(s) + 1); ! i

1T(newString) : 3 :

strcpy(newString, s); ! PI|O[C]ONO !

return newString; i :

¥ . - 1 stringa2 $$ |

Vedi Esercizi ! ;

per altri due modi di realizzare la : : :

gemoria _ _.

duplicazione esatta di una stringa. R

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 10/80

Tecniche della Programmazione, lez. 16

Gestione di molte stringhe, usando le stringhe "esatte"

quando allochiamo stringhe della dimensione esattamente
necessaria ... invece di allocare array abbondanti

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 11/80

Allocazione Dinamica: Stringhe Esatte

GESTIONE DI MOLTE STRINGHE alfanumeriche, dimensionate "esattamente” per i caratteri

che contengono;
le stringhe possono essere di lunghezza diversa, ma non oltre una lunghezza massima nota

I______-___-_____:______I SPRECO
1 ... di dimensione | A
ST S S .
CIASCUNA STRINGA e~ | ___--==""~ fissata a priori ' _______ .
memorizzata in un suo k2~~~
array di char ... \\\\\\\‘ ... dimensionato ESATTAMENTE
per la lunghezza effettiva |«
della stringa
RISPARMIO

SCHEMA DI REALIZZAZIONE

- viene definito un "sostegno" di memoria, composto da tante stringhe,
come puntatori a memoria che verra’ allocata esattamente;
esempio char * str, *str2, *str3, *str4; /* per 4 stringhe */

- viene definita una "stringa buffer" abbastanza grande per contenere
qualunque stringa da gestire; char buffer[LUNGMAX+1]

~ per ogni stringa da memorizzare, prima la si legge usando buffer e poi
si alloca e assegna una stringa esatta che duplichi buffer.

E poi si usa buffer per un altro input.
12/80

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

Allocazione Dinamica: Stringhe Esatte SCHEMA DI REALIZZAZIONE

Problema gestione di MOLTE STRINGHE ...

#include <stdio.h>
#define LUNGMAX 50 /* stringhe mai piu~ lunghe di 50 */

e o o e o mm mm e mm e mm e e o Em e e mm e e e e e e = e o

memorial

01 50

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 13/80

Allocazione Dinamica: Stringhe Esatte SCHEMA DI REALIZZAZIONE

Problema gestione di MOLTE STRINGHE ...

#include <stdio.h>
#define LUNGMAX 50 /* stringhe mai piu~ lunghe di 50 */

(1) char buffer[LUNGMAX+1], *str, *str2 ...

e o o e o mm mm e mm e mm e e o Em e e mm e e e e e e = e o

! memaorial

T . buffer !
@scanf(---%s---", buffer); . |[Plolc|oNo !
01 50 :

i str i

i str2 i

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 14/80

Allocazione Dinamica: Stringhe Esatte SCHEMA DI REALIZZAZIONE

Problema gestione di MOLTE STRINGHE ...

#include <stdio.h>
#define LUNGMAX 50 /* stringhe mai piu~ lunghe di 50 */

(1) char buffer[LUNGMAX+1], *str, *str2 ...

e o o e o mm mm e mm e mm e e o Em e e mm e e e e e e = e o

| memoria
| . buffer !
@scanf(---%s---", buffer); . |[Plolc|oNo !
. 01 strien(buffer): 4 50 :

(3) str=malloc(strlen(buffer)+1); | gy !
T © i

i str2 i

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 15/80

Allocazione Dinamica: Stringhe Esatte SCHEMA DI REALIZZAZIONE

Problema gestione di MOLTE STRINGHE ...

#include <stdio.h>
#define LUNGMAX 50 /* stringhe mai piu~ lunghe di 50 */

(1) char buffer[LUNGMAX+1], *str, *str2 ...

e o o e o mm mm e mm e mm e e o Em e e mm e e e e e e = e o

! memaorial

- . buffer !
@scanf(---%s---", buffer); . |[Plolc|oNo !
. 01 strien(buffer): 4 50 :

(3) str=malloc(strlen(buffer)+1); | gy |
if (str) A 7 3 A 4 !

. P[Oo[C[ONO] |

strcpy(str, buffer);(:) " str2 i

else ... /,~ messaggio di errore*/ : :

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 16/80

Allocazione Dinamica: Stringhe Esatte SCHEMA DI REALIZZAZIONE
Problema gestione di MOLTE STRINGHE ...

#include <stdio.h>
#define LUNGMAX 50 /* stringhe mai piu~ lunghe di 50 */

(1) char buffer[LUNGMAX+1], *str, *str2 ...

(:)scanf(---%s---", buffer);

(:)str:malIoc(strlen(buffer)+1);

it (str)
strcpy(str, buffer);(:)
else ... /,~ messaggio di errore*/
- :' """""""""""" memoria (2a fas é)':
(:)scanf(---%s---", buffer); ' buffer (®) |
i |NJefa]|r |C]O|\O I
01 50 i
i str i
: N P[O[C[ONO] |
istr2 i

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 17/80

Allocazione Dinamica: Stringhe Esatte SCHEMA DI REALIZZAZIONE
Problema gestione di MOLTE STRINGHE ...

#include <stdio.h>
#define LUNGMAX 50 /* stringhe mai piu~ lunghe di 50 */

(1) char buffer[LUNGMAX+1], *str, *str2 ...

(:)scanf(---%s---", buffer);

(:)str:malIoc(strlen(buffer)+1);

it (str)

strcpy(str, buffer);(:)

else ... /,~ messaggio di errore*/
- :' """""""""""" memoria (2a fas é)':
(:)scanf(---%s---", buffer); . buffer ® |
i |NJefa]|r |C]O|\O I
01 50 :
(:)strZ:malIoc(strlen(buffer)+1); : str :
: N P[O[Cc[ONo| |
istr2 (6 i

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 18/80

Allocazione Dinamica: Stringhe Esatte SCHEMA DI REALIZZAZIONE
Problema gestione di MOLTE STRINGHE ...

#include <stdio.h>
#define LUNGMAX 50 /* stringhe mai piu~ lunghe di 50 */

(1) char buffer[LUNGMAX+1], *str, *str2 ...

(:)scanf(---%s---", buffer);

(:)str:malIoc(strlen(buffer)+1);

1T (str)

strcpy(str, buffer);(:)

else ... /,~ messaggio di errore*/
e o~ memoria (2afase)
(5) scanf(...%s...", buffer); . buffer (5) i
1 [N]efa]|r [C]O\O !
. 01 50 :
(:)strZ:malIoc(strlen(buffer)+1); i str i
it (str2) A pTO[C[OND] |
strcpy(str2, buffer)(:) ! i
else ... 1Str2 N6 @Near cloha:

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 19/80

Tecniche della Programmazione, lez. 16

Possiamo fare meglio: invece di tane variabili staccate,
usiamo un "Array di stringhe"

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 20/80

Gestione di tante stringhe: Array di stringhe

Array di stringhe array di puntatori;

char * arrStr[6]; ogni elemento punta ad una stringa
(una stringa e un blocco/array di caratteri)

arrStr[5] = malloc(10); ®/* allocazione della

memoria esattamente K
necessaria per una delle arrstr

stringhe (9 char + 1l *\0") */
iIT (arrStr[5] == NULL)
printf("'ERRORE IN ALLOCAZIONE MEMORIA\N");

else /* la memoria disponibile viene
riempita esattamente */

strcpy(arrStr[5], "PROMOZion™);

N

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

21/80

Gestione di tante stringhe: Array di stringhe

Array di stringhe array di puntatori;

char * arrStr[6]; ogni elemento punta ad una stringa
(una stringa e un blocco/array di caratteri)

arrStr[5] = malloc(10); ®/* allocazione della

memoria esattamente

necessaria per una delle arrStr
stringhe (9 char + i1l "\0") */ |~

iIT (arrStr[5] == NULL)
printf("'ERRORE IN ALLOCAZIONE MEMORIA\N");

N

else /* la memoria disponibile viene
riempita esattamente */
strcpy(arrStr[5], "PROMOZion'); e TN

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

22/80

Gestione di tante stringhe: Array di stringhe

Array di stringhe array di puntatori;

char * arrStr[6]; ogni elemento punta ad una stringa
(una stringa e un blocco/array di caratteri)

arrStr[5] = malloc(10); ®/* allocazione della

memoria esattamente

necessaria per una delle arrStr
stringhe (9 char + i1l "\0") */ |~

iIT (arrStr[5] == NULL)
printf("'ERRORE IN ALLOCAZIONE MEMORIA\N");

N

else /* la memoria disponibile viene
riempita esattamente */
strcpy(arrStr[5], "PROMOZion'); e TN

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

23/80

Gestione di tante stringhe: Array di stringhe

Array di stringhe array di puntatori;
char * arrStr[6]; ogni elemento punta ad una stringa
(una stringa e un blocco/array di caratteri)

memoria esattamente

arrStr[5] = malloc(10); ®/* allocazione della

necessaria per una delle
stringhe (9 char + il "\0%) */ | Aa”s”
it (arrStr[5] == NULL) ",
printf("'ERRORE IN ALLOCAZIONE MEMORIA\N"); —
else /* la memoria disponibile viene -
riempita esattamente */ S
strcpy(arrStr[5], "PROMOZion™); e TN
(A

analogamente si puo’ fare per
arrStr[2], arrStr[4], arrStr[1]

........... 24/80

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

Gestione di tante stringhe: Array di stringhe

Array di stringhe array di puntatori;
char * arrStr[6]; ogni elemento punta ad una stringa
(una stringa e un blocco/array di caratteri)

arrStr[5] = malloc(10); /* allocazione della
@ memoria esattamente .
necessaria per una delle < arrstr
stringhe (9 char + i1l "\0") */ |~ R
iIT (arrStr[5] == NULL)
printf(""ERRORE IN ALLOCAZIONE MEMORIA\N'); —
else /* la memoria disponibile viene . -
riempita esattamente */ ~rn|P]O|C|ONO
strcpy(arrStr[5], "PROMOZion™); R~
10

arrStr[0]

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 25/80

Gestione di tante stringhe: Array di stringhe

Array di stringhe
char * arrStr[6];

array di puntatorti;

ogni elemento punta ad una stringa

(una stringa e un blocco/array di caratteri)

arrStr[5] = malloc(10); ®/* allocazione della

memoria esattamente
necessaria per una delle

stringhe (9 char + 1l *\0") */
iIT (arrStr[5] == NULL)
printf("'ERRORE IN ALLOCAZIONE MEMORIA\N");

else /* la memoria disponibile viene
riempita esattamente */

strcpy(arrStr[5], "PROMOZion™);

arrStr[1]

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

N

arrStr
NN\ 7
AAA_
AA O[C|O[\O
-
A
nnnls i NO
. PIR|O|M|O ijlo|n[\O
: .|o|rR|O\O
memona -------

26/80

Gestione di tante stringhe: Array di stringhe

Array di stringhe
char * arrStr[6];

array di puntatorti;

ogni elemento punta ad una stringa

(una stringa e un blocco/array di caratteri)

arrStr[5] = malloc(10); ®/* allocazione della

memoria esattamente

necessaria per una delle
stringhe (9 char + 1l *\0") */

iIT (arrStr[5] == NULL)
printf("'ERRORE IN ALLOCAZIONE MEMORIA\N");
else /* la memoria disponibile viene

N

riempita esattamente */

strcpy(arrStr[5], "PROMOZion™);

NB - arrStr[6] non e una locazione dell*array
- qualunque arrStr[1](1=0...5) e un puntatore;

- quando arrStr[5] punta ad un blocco di (9+1) caratteri,
arrStr[5] e I1*indirizzo 1niziale di un array di 10 char:

passando questo indirizzo a strcpy, si puo~ copiare nell"array -

puntato una stringa di al massimo 9 caratteri (+ un carattere
di fine stringa, "\0%);

- 1n particolare, abbiamo dimensionato I"array puntato da
arrStr[5] esattamente per contenere 9 caratteri significativi!

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

R |E|s|T|0O\o
arrStr
e P[R[O[\O
/\/\/_
AN O|C|O|\O
- -
A
ANAN s|i I\O
PIR|O|M|O ijlo|n[\O
: Jo|r| oo
memona --------

27/80

Array di stringhe (lettura) - 1 - ambiente di calcolo

esercizio funzione che

ricevendo un array di stringhe, char * v[N], (\(esatte)
legga N stringhe, ciascuna di al piu” 80 char, e le memorizzi'nell'array

/* la fase: ambiente di calcolo */

#i1nclude <stdio.h>
#include <stdlib.h>
#define N 6
#define LUNGMAX 80
B Gale) A
int main() {

char * arrStr[N];

T
N O
>

costruisciArrayStringhe (arrStr);

return O;
ks

/* 2a fase: PROTOTIPO (dichiarazione) (**) */é,.
void costruisciArrayStringhe (char * []D; '

.......... 28/80

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

Array di stringhe (lettura) - 2 - algoritmo per la funzione

continua funzione che legge un array di N stringhe, ciascuna di al piu” 80 char

/* 3a fase: definizione funzione */ "-gostruisciArrayStringhe(arrStr);
void costruisciArrayStringhe(©); LA 2
char buffer[LUNGMAX+1]; g - >
int i;

for (i=0; i<N; i++) {

arrStr

} /* fine for */

Algoritmo?
ad ogni iterazione sistemiamo una delle
stringhe in input
©

return;

}

,‘ . . ja— I . N . . 1 %0 00000
I'ecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe ‘ 29/80

Array di stringhe (lettura) - 2 -

continua funzione che legge un array di N stringhe, ciascuna di al piu” 80 char

/> 3a fase- definizione funzione */ "--.,.(.:.ostruisciArrayStringhe(arrStr);

void costruisciArrayStringhe(©); LA 2
char buffer[LUNGMAX+1]; ‘ - >
int i - buffer

for (i=0; i<N; i++) {
©

arrStr

} /* fine for */

si tratta di leggere una sequenza di stringhe date
in input (POCO, ORO, RESTO, Si , PRO, PROMOZion),
memorizzandole secondo 1"ordine di input In arrSTr:
1) iterare

1.1) leggere stringa in buffer

1.2) allocare memoria per arrStr[i]

1.3) copiare da buffer in arrStr[i] ...

return;

}

” . . ju— .. . ~ . . S %% ke’
I'ecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe ‘

Array di stringhe (lettura) - 2 -

continua funzione che legge un array di N stringhe, ciascuna di al piu” 80 char

/* 3a fase: definizione funzione */ ™ COS”UiSCiA”ayStringhe(arrStr):
voild costruisciArrayStringhe(char * v[N]); J oA 2
char buffer[LUNGMAX+1]; o - >
int 1;

for (i=0; i<N; i++) {

/* lettura di una stringa ... */ arrStr
printf('scrivi una str ...\n");
scanf("'%s', buffer);
/* ... e sua memorizzazione */
©
} /7* fine for */
return;
} “memorig..."

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe ~— feseees? 31/80

Array di stringhe (lettura) - 2 -

continua funzione che legge un array di N stringhe, ciascuna di al piu” 80 char

/* 3a fase: definizione funzione */ “-costruisciArrayStringhe(arrStr);
voild costruisciArrayStringhe(char * v[N]); } JC A 2
char buffer[LUNGMAX+1]; S - >
int 1;

for (i=0; iI<N; i++) {
/* lettura di una stringa ... */
printf(’'scrivi una str ...\n"");

scanf("'%s', buffer);

/* ... e sua memorizzazione */

vli] = malloc(strlen(buffer)+1); /> 1. s

arrStr

©

} /* fine for */

return;

} ; “memoria

,4 . . ja— I . y N . . S T % a0’
I'ecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe ‘ 32/80

Array di stringhe (lettura) - 2 -

continua funzione che legge un array di N stringhe, ciascuna di al piu” 80 char

/* 3a Ffase- definizione Ffunzione */"mcmsUMSdAnmﬁmﬂwme@nsux
voild costruisciArrayStringhe(char * v[N]); } JC A 2
char buffer[LUNGMAX+1]; S - >
int 1;

for (i=0; i<N; i++) {

/* lettura di una stringa ... */ arrStr
printf(’'scrivi una str ...\n"");
scanf("'%s', buffer);
/* ... e sua memorizzazione */ ..
v[i] = malloc(strlen(buffer)+1); 7* 1.2 */
it (v[1)]) g
strcpy(v[i], buffer); /* 1.3 % 7
else { 3

©
} /* fine for */

return;

} ; “memoria

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe ~— feseees? 33/80

Array di stringhe (lettura) - 2 -

continua funzione che legge un array di N stringhe, ciascuna di al piu” 80 char

/* 3a fTase: definizione funzione */ “-costruisciArrayStringhe(arrstr);

voild costruisciArrayStringhe(char * v[N]); } JC A 2
char buffer[LUNGMAX+1]; S - >
int 1;

for (i=0; i<N; i++) {

/* lettura di una stringa ... */ arrStr
printf(’'scrivi una str ...\n"");
scanf("'%s', buffer);
/* ... e sua memorizzazione */ ..
v[i] = malloc(strlen(buffer)+1); 7* 1.2 */
it (V[iD)
strcpy(v[i1], buffer); /* 1.3 */
else { 3
printf(*'eeekkk\n"");
break;
+

} /* fine for */

return;

} ; “memoria

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe ~ "teeeese® 34/80

Array di stringhe (lettura) - 3 - esecuzione simulata

continua funzione che legge un array di N stringhe, ciascuna di al piu” 80 char

/* 3a fase: definizione funzione */’“CmS”deA”aﬁﬂmeGQHSUx
voild costruisciArrayStringhe(char * v[N]); J oA 2
char buffer[LUNGMAX+1]; — >
int 1; 3

for (i=0; i<N; i++) {

/* lettura di una stringa ... */ arrStr
printf(’'scrivi una str ...\n"");
scanf("'%s', buffer);
/* ... e sua memorizzazione */ ..
v[1] = malloc(strlen(buffer)+1l); /> 1. 2wy "
it (vLil)
strcpy(v[i1], buffer); /* 1.3 */
else { 3
printf(*'eeekkk\n"");
break; =
} _ esecuzione simulata: riempire il disegno qui sopra,
} /* fine for */ mostrando come le stringhe lette in input (POCO,
ORO, RESTO, si, PRO, PROMOZion) vengono piazzate in
memria e puntate dagli elementi dell"array. Poi
return; confrontare con la slide successiva
} Poi vedi Approfondimenti 1OFid

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

Tecniche della Programmazione, lez. 16

Ricerca di una stringa in un "Array di stringhe"

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 36/80

Array di stringhe (ricerca) - 1/2 -

esercizio funzione "presenteln” che

ricevendo una stringa strCercata, un array di stringhe, char * v[N],
la dimensione di vdim
restituisca 1 se strCercata e in v, 0 altrimenti

iInt presenteln(
char *strCercata, char **v, Int dim) {

int trovata, 1;

|
1
1
1
|
1
1
1
|
1
1
1
|
1
1
1
|
1
1
- - - 1
/* alg. di ricerca iIn array, con var. flag */ !
1
1
|
1
1
1
|
1
1
1
|
1
1
1
|
1
1
1

o memaria__.

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 37/80

Array di stringhe (ricerca) - 1/2 -

esercizio funzione "presenteln” che

ricevendo una stringa strCercata, un array di stringhe, char * v[N],
la dimensione di vdim
restituisca 1 se strCercata e in v, 0 altrimenti

IL TIPO DI UN ARRAY DI STRINGHE
- unarraydicharecccovnne. char str[]
equiv. (dal punto di vista dei tipi) a char *str

- analogamente un array di stringhe di char e~
char *str[]

equiv. (dal punto di vistadei tipi) a char **str

iInt presenteln(
char *strCercata, char **v, Int dim) {

se tutto quel che serve e” passare il
parametro, va bene cosi”

int trovata, 1;

|
1
1
1
|
1
1
1
|
1
1
1
|
1
1
1
|
1
1
- - - 1
/* alg. di ricerca iIn array, con var. flag */ !
1
1
|
1
1
1
|
1
1
1
|
1
1
1
|
1
1
1

o memaria__.

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 38/80

Array di stringhe (ricerca) - 2.1 -

esercizio funzione che

ricevendo una stringa strCercata, un array di stringhe, char * v[N],
la dimensione di vdim
restituisca 1 se strCercata e in v, O altrimenti

/* algoritmo di ricerca i1In array, con var. flag */

int presenteln(

char *strCercata, char **v, Int dim) {
presenteln(str, arrStr, N);

int trovata, i; | |strCercata —ax—1(3 |

: >

completare (ci sono tre i v N i
osservazioni da fare) g .

- - 1 m 6 1

po1 continuare © : :

)))) i arrStr i

for (1=0; (i<dim); i1++) i A 17— |
iIT (strcmp(strCercata, v[i])==0) ! 1 — !
trovata=1; | — i
return; i \\\\\:* :
} . memaria__!

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 39/80

Array di stringhe (ricerca) - 2.2 -

esercizio funzione che

ricevendo una stringa strCercata, un array di stringhe, char * v[N],
la dimensione di vdim
restituisca 1 se strCercata e in v, O altrimenti

/* algoritmo di ricerca i1In array, con var. flag */

int presenteln(

char *strCercata, char **v, Int dim) {
presenteln(str, arrStr, N);

int trovata, i; ' [strcercata —xa— 3
: >

© : v N :

i dim 6 i

© I < :

- - - - ! arrotr I

for (1=0; (i<dim); 1++) : A . :
1T (strcmp(strCercata, v[i1])==0) ! s N !
trovata=1; | i |
}I:etUI’TI trovata; /* dobbiamo restituire 1 00 ... */ i \=> i
S memaria__.

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 40/80

Array di stringhe (ricerca) - 2.3 -

esercizio funzione che

ricevendo una stringa strCercata, un array di stringhe, char * v[N],
la dimensione di v dim
restituisca 1 se strCercatae’ in v, 0 altrimenti

/* algoritmo di ricerca i1In array, con var. flag */

Int presenteln(
char *strCercata, char **v, Int dim) {

iInt trovata, 1; presenteln(str, arrStr, N);

|
|
|
|
|
|
| |
| |
| |
| |
| |
| |
| strCercata AN 2o
trovata = O; ! O
/* INIZIALIZZAZIONE (trovata diventa 1 quando troviamo la stringa I > I
cercata; se non troviamo, rimane O (strCercata mai trovata) */ : \% 7\ ;
| |
© | dim [6 |
for (i=0; (i<dim); i++) I o :
- - ! arrotr I
iIT (strcmp(strCercata, v[i1])==0) ! R ////» !
trovata=1; ' = '
: +— :
: +— :
| _ |
| = |
return trovata; i s
| > |
¥ S memaria__.

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 41/80

Array di stringhe (ricerca) - 2.4 -

esercizio funzione che

ricevendo una stringa strCercata, un array di stringhe, char * v[N],
la dimensione di vdim
restituisca 1 se strCercata e in v, 0 altrimenti

/* algoritmo di ricerca i1In array, con var. flag */

int presenteln(

char *strCercata, char **v, Int dim) {
presenteln(str, arrStr, N);

1
1
1
:
1 1
1 1
1 1
1 1
1 1
1 1
1 ;U 1
int trovata=0, i; | |strCercata x| 5 |
| > !
| v |
/* 1<dim controlla che non abbiamo finito I"array; ma se ! !
trovata non € 0, inutile cercare ancora: gia trovatal! */ ! dim 6 i
for (i1=0; (i<dim && trovata==0); 1++) ! i
1T (strcmp(strCercata, v[i])==0) | a”ST/,,,» :
1 1
trovata=1; A S |
I +— :
: +— :
| _ |
1 = 1
return trovata; : T :
1 o 1
} 1 o 1
S memaria__,

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 42/80

Tecniche della Programmazione, lez. 16

Verso la struttura dati per la "collezione di stringhe"

Usiamo un sostegno con un certo numero di potenziali puntatori
a stringa, e poi usiamo l'array per aggiungere e togliere stringhe.

Ma l'array e usato parzialmente cioe” non e sempre pieno zeppo
di stringhe ...

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 43/80

Programma gestione stringhe - introduzione

gestione di un array di al piu™ N stringhe, ciascuna di al +
LUNGMAX caratteri (array usato parzialmente)

Funzionalita™ per la gestione di una COLLEZIONE di
stringhe:

- aggiunta di una stringa (se possibile)

\O

- stampa delle stringhe contenute

- ricerca di una stringa e rest. del suo indice (opp. -1)

\O

(funzione di servizio)

- sostituzione di una stringa con un'altra data

Annfg i \O

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

44/80

Programma gestione stringhe - introduzione

gestione di un array di al piu™ N stringhe, ciascuna di al +

LUNGMAX caratteri

Funzionalita™ per la gestione di una COLLEZIONE di
] _ _ ___ stringhe:
- aggiunta di una stringa (se possibile)
- stampa delle stringhe contenute

- ricerca di una stringa e rest. del suo indice (opp. -1)
(funzione di servizio)

- sostituzione di una stringa con un'altra data
Quanto sopra e parte della definizione di un tipo di dati che
possiamo chiamare « collezione di stringhe »

(in particolare quella sopra e” la raccolta delle FUNZIONALITA™).

E laSTRUTTURA DATI? E™ quella qui sopra a destra ...

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

(array usato parzialmente)

\O

\O

NN\N

I \O

45/80

Programma gestione stringhe - introduzione

gestione di un array di al piu™ N stringhe, ciascuna di al +

LUNGMAX caratteri

Funzionalita™ per la gestione di una COLLEZIONE di
] _ _ ~__stringhe:
- aggiunta di una stringa (se possibile)
- stampa delle stringhe contenute

- ricerca di una stringa e rest. del suo indice (opp. -1)
(funzione di servizio)

- sostituzione di una stringa con un'altra data

(array usato parzialmente)

\O

OO

O\O

NN\N

I \O

| scrivere le strutture dati necessarie per rappresentare nel programma una collezione di stringhe.

Serve un array, ok. Serve anche N, sicuro.

Bastano queste strutture per realizzare le funzionalita™ qui sopra?

Ad esempio, se dobbiamo stampare le stringhe della collezione, quante ne stampiamo? Dobbiamo scorrere |'array, ok.

Ma dove smettiamo di scorrere?

Ad altro esempio, per aggiungere una nuova stringa ... dove la aggiungiamo? Cioe’ a quale elemento dell'array la

asseghamo?

Nella struttura dati c'e’ un dato che permetta di aggiungere la nuova stringa al posto glusto? O fermarsi quando le

stringhe effettivamente presenti nella collezione sono state tutte stampate?
Anche quando sono 2, o 3, o 4, come in figura, ma non N?

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

46/80

Programma gestione stringhe - introduzione

gestione di un array di al piu™ N stringhe, ciascuna di al + LUNGMAX caratteri (array usato parzialmente

Struttura dati e Funzionalita™ per la gestione del TIPO

COLLEZIONE di stringhe

(come rappresentare questo oggetto in memoria?):
- N e una costante

- sostegno: lI'array e un array di N stringhe:
char *stringhe[N]

? Ma, se l"array e usato parzialmente,
dove fermare una scansione per stampa o
ricerca? Dove Inserire una nuova stringa?

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

\O

NN\N

I \O

e o e e o e e e o e mm e e e e e e = =

47/80

Programma gestione stringhe - introduzione

gestione di un array di al piu™ N stringhe, ciascuna di al + LUNGMAX caratteri (array usato parzialmente

Struttura dati e Funzionalita™ per la gestione del TIPO

COLLEZIONE di stringhe

(come rappresentare questo oggetto in memoria?):
- N e una costante

- sostegno: lI'array e un array di N stringhe:
char *stringhe[N]

? Ma, se l*"array e usato parzialmente,
dove fermare una scansione per stampa o
ricerca? Dove i1nserire una nuova stringa?

stringhe e quindi una variabile che va gestita usando
anche lI'informazione addizionale su
"quanti elementi/stringhe ci sono attualmente nell'array"

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

\O

NN\N S

I \O

e o e e o e e e o e mm e e e e e e = =

48/80

Programma gestione stringhe - introduzione

gestione di un array di al piu™ N stringhe, ciascuna di al + LUNGMAX caratteri (array usato parzialmente

Struttura dati e Funzionalita™ per la gestione del TIPO
COLLEZIONE di stringhe

(come rappresentare questo oggetto in memoria?):

- N e” una costante

\O

- sostegno: lI'array e un array di N stringhe:

char *stringhe[N]

OO

\O

stringhe e quindi una variabile che va gestita usando
anche I'informazione addizionale su

NN\N S

I \O

"quanti elementi/stringhe ci sono attualmente nell'array"

in sostanza una collezione di stringhe va rappresentata mediante

la collaborazione di due variabili: stringhe e

numeroStringhe

- unarray di stringhe, che faccia da sostegno per la
memorizzazione delle stringhe;

- unavariabile intera che dica in ogni momento quante
stringhe ci sono nell'array

collezione di stringhe = <array + numerostringhe>

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

49/80

Gestione di tabella (collezione) di stringhe - 1/8 -

#include ... SCHEMA DI PROGRAMMA
#define N ...
(dich.) ...
int main() {
scelta @ @ ——— - (per il menu™ ...)
stringhe, numeroStringhe, --———ccoeeee______ (per la collezione di stringhe)
bufferl, buffer2, ---— @ (buffer per leggere stringhe)
do {

/* ciclo di stampa menu , lettura scelta funzionalita da
eseguire, esecuzione della funzionalita prescelta */

. aggiungi(stringhe, bufferl, &numeroStringhe); (scelta==1)
. stampaTutto(stringhe, numeroStringhe); (scelta==3)

. sostituisci(stringhe, numeroStringhe, bufferl, buffer2);
(scelta==2)

} while (scelta!=0)

return O;

}

T'ecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 50/80

Gestione di tabella (collezione) di stringhe - 1/8 -

#include ... SCHEMA DI PROGRAMMA

#define N ...

... (dich.) ...

int main() {
scelta W (per il menu™ ...)
stringhe, numeroStringhe, --———-ccoee______ (per la collezione di stringhe)
bufferl, buffer2, ———————————————————————————————————— (buffer per leggere stringhe)

do {

/* ciclo di stampa menu , lettura scelta funzionalita da
eseguire, esecuzione della funzionalita prescelta */

aggiungi(stringhe, bufferl, &numeroStringhe); (scelta==1)

... StampaTutto(stringhe, numeroStringhe); (scelta==3)

... sostituisci(stringhe, numeroStringhe, bufferl, buffer2);
(scelta==2)

NB2 la struttura dati "tabella di stringhe™ e~
} while (scelta!:O) la coppia stringhe, r_1umeroStr|nghe- Infattl sono
quelle due componenti che permettono di
gestirla. E infatti sono quelle due componenti
return O; che dobbiamo passare alle funzioni interessate.

}

T'ecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 51/80

Programma gestione stringhe - 2/8 - main()

#i1nclude <stdio.h>

#include <stdlib.h> #define N ... #define LUNGMAX
. (dich.)
int main() { char *stringhe|[N], char bufferl[LUNGMAX+1],
buffer2] LUNGMAX+1];

Int numeroStringhe, scelta;
numeroStringhe = 0; /* 1nit struttura dati array stringhe */

do { stampaMenu(); /* una funzione che stampa 1l
menu® di scelte ... l=aggiungi
2=sostituisct ... */

scanf("'%d", &scelta); /* lettura scelta */

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 52/80

Programma gestione stringhe - 2/8 - main()

#i1nclude <stdio.h>

#include <stdlib.h> #define N ... #define LUNGMAX

(dich.)

int main() { char *stringhe[N], char bufferl[LUNGMAX+1],
buffer2] LUNGMAX+1];

Int numeroStringhe, scelta;
numeroStringhe = 0; /* 1nit struttura dati array stringhe */

do { stampaMenu(); /* l=aggiungi 2=sostitui... */
scanf("'%d", &scelta); /* lettura scelta */

switch(scelta) {

case 1: /* inserimento nuova stringa In stringhe oppure
messaggio di errore */

break;

case 2: /* lett. stringa da sost. e sostituta; chiamata sostituisci() */
break;

case 3: ...

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 53/80

BTW - SWITCH ...

switch(scelta) {
case 1:
codice da eseqguire nel caso 1In cuil scelta==1

break;

case VAL:
codice da eseguire nel caso 1In cuil scelta==VAL

break;

case ALTROVAL:
codice da eseguire nel caso 1In cul scelta==VALVAL

break;

default: printf("" scelta sbagliata \n\n"");
¥} /7* fine switch */

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 54/80

Programma gestione stringhe - 2/8 - main()

#i1nclude <stdio.h>

#include <stdlib.h> #define N ... #define LUNGMAX

(dich.)

int main() { char *stringhe[N], char bufferl[LUNGMAX+1],
buffer2] LUNGMAX+1];

Int numeroStringhe, scelta;
numeroStringhe = 0; /* 1nit struttura dati array stringhe */

do { stampaMenu(); /* l=aggiungi 2=sostitui... */
scanf("'%d", &scelta); /* lettura scelta */
switch(scelta) {
case 1: ... aggiungi(stringhe, bufferl, &numeroStringhe);
break;

case 0: printf("FINE PROGRAMMA\N"); break;
default: printf(" scelta sbagliata \n\n'");
} /* fine switch */
} while (sceltal!=0) NB stampaTutto riceve “la

return O; collezione”, sotto forma
} di una coppia di parametri

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 55/80

Programma gestione stringhe - 2/8 - main()

#i1nclude <stdio.h>

#include <stdlib.h> #define N ... #define LUNGMAX

(dich.)

int main() { char *stringhe[N], char bufferl[LUNGMAX+1],
buffer2] LUNGMAX+1];

Int numeroStringhe, scelta;
numeroStringhe = 0; /* 1nit struttura dati array stringhe */

do { stampaMenu(); /* l=aggiungi 2=sostitui... */
scanf("'%d", &scelta); /* lettura scelta */
switch(scelta) {
case 1: ... aggiungi(stringhe, bufferl, &numeroStringhe);
break;
case 2: ... sostituisci(stringhe, numeroStringhe, bufferl,
buffer?);
break;

case 0: printf("FINE PROGRAMMA\N"); break;
default: printf(" scelta sbagliata \n\n'");
} /* fine switch */
} while (sceltal!=0) NB stampaTutto riceve “la

return O; collezione”, sotto forma
} di una coppia di parametri

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 56/80

Programma gestione stringhe - 2/8 - main()

#i1nclude <stdio.h>

#include <stdlib.h> #define N ... #define LUNGMAX

(dich.)

int main() { char *stringhe[N], char bufferl[LUNGMAX+1],
buffer2] LUNGMAX+1];

Int numeroStringhe, scelta;
numeroStringhe = 0; /* 1nit struttura dati array stringhe */

do { stampaMenu(); /* l=aggiungi 2=sostitui... */
scanf("'%d", &scelta); /* lettura scelta */
switch(scelta) {
case 1: ... aggiungi(stringhe, bufferl, &numeroStringhe);
break;
case 2: ... sostituisci(stringhe, numeroStringhe, bufferl,
buffer?);
break;

case 3: stampaTutto(stringhe, numeroStringhe); break;
case O: printf(""FINE PROGRAMMAN\N™); break;
default: printf(" scelta sbagliata \n\n'");
} /7* fine switch */
} while (scelta!:O) NB stampaTutto riceve “la

return O; collezione”, sotto forma
} di una coppia di parametri

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 57/80

Programma gestione stringhe - 3/8 - main()

#include <stdio.h>

#define LUNGMAX

#include <stdlib_h> #define N ...
.- (dich.)
int main(Q) { char *stringhe[N], char bufferl[LUNGMAX+1], buffer2[LUNGMAX+1] ;

int numeroStringhe, scelta;

numeroStringhe = 0; /* init struttura dati array stringhe */

do { stampaMenu(); /* l=aggiungi 2=sostitui... */
scanf(""", &scelta); /* lettura scelta */

switch(scelta) {

case 1:
IT (humeroStringhe<N) {
printf("'quale stringa da aggiungere? '');

scanf("'%s", bufferl);
aggiungi(stringhe, bufferl, &numeroStringhe);

}

else printf('spazio insufficiente, tsk.\n\n");
break;

case 2:
printf("'stringa da sostituire: ");

scanf("'%s", bufferl);
printf('stringa con cuil sostituire: ");

scanf("'%s", buffer2);
sostituisci(stringhe, numeroStringhe, bufferl, buffer2);

break;

58/80

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

Programma gestione stringhe - 3/8 - main()

#include <stdio.h>

#define LUNGMAX

#include <stdlib_h> #define N ...
.- (dich.)
int main(Q) { char *stringhe[N], char bufferl[LUNGMAX+1], buffer2[LUNGMAX+1] ;

int numeroStringhe, scelta;

numeroStringhe = 0; /* init struttura dati array stringhe */

do { stampaMenu(); /* l=aggiungi 2=sostitui... */

scanf(""", &scelta); /* lettura scelta */
switch(scelta) { Controllo se c"é spazio per una
case 1: nuova stringa, nell’array sostegno

IT (humeroStringhe<N) {
printf("'quale stringa da aggiungere? '');
scanf("'%s", bufferl);
aggiungi(stringhe, bufferl, &numeroStringhe);

}

else printf('spazio insufficiente, tsk.\n\n");
break;

case 2:
printf("'stringa da sostituire: ");

scanf("'%s", bufferl);

printf('stringa con cuil sostituire: ");
scanf(s’, buffer2): NB aggiungi riceve “la
sostituisci(stringhe, numeroStringhe, bufferl, buffer2); gg}_ g)
break; collezione”, sotto forma di
una coppia di parametri

59/80

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

Programma gestione stringhe - 3/8 - main()

#include <stdio.h>

#define LUNGMAX

#include <stdlib_h> #define N ...
.- (dich.)
int main(Q) { char *stringhe[N], char bufferl[LUNGMAX+1], buffer2[LUNGMAX+1] ;

int numeroStringhe, scelta;

numeroStringhe = 0; /* init struttura dati array stringhe */

do { stampaMenu(); /* l=aggiungi 2=sostitui... */
scanf(""", &scelta); /* lettura scelta */

switch(scelta) {
case 1: ,
IT (humeroStringhe<N) { perche’? ©
printf(''quale stringa da aggiungere?
scanf("'%s", bufferl);
aggiungi(stringhe, bufferl

eroStringhe);
by

else printf('spazio insufficiente, tsk.\n\n");
break;

case 2:
printf("'stringa da sostituire: ");

scanf("'%s", bufferl);

printf('stringa con cuil sostituire: ");
scanf(s’, buffer2): NB aggiungi riceve “la
sostituisci(stringhe, numeroStringhe, bufferl, buffer2); gg}_ g)
break; collezione”, sotto forma di
una coppia di parametri

60/80

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

Programma gestione stringhe - 3/8 - main()

#include <stdio.h>

#define LUNGMAX

#include <stdlib_h> #define N ...
.- (dich.)
int main(Q) { char *stringhe[N], char bufferl[LUNGMAX+1], buffer2[LUNGMAX+1] ;

int numeroStringhe, scelta;
numeroStringhe = 0; /* init struttura dati array stringhe */

do { stampaMenu(); /* l=aggiungi 2=sostitui... */
scanf(""", &scelta); /* lettura scelta */

switch(scelta) {
case 1: perche' dovra® subire un effetto

1T (numeroStringhe<N) { collaterale, crescendo di 1 dopo |'aggiunta
printf(‘'quale stringa da di una nuova stringa alla collezione

scanf("'%s", bufferl);
aggiungi(stringhe, bufferl w- roStringhe);
¥
else printf('spazio insufficiente, tsk.\n\n");

break;

case 2:
printf("'stringa da sostituire: ");

scanf("'%s", bufferl);
printf('stringa con cuil sostituire: ");

NB aggiungi riceve “la collezione”,

scanf("'%s", buffer2); tto f di ia di i
sostituisci(stringhe, numeroStringhe, bufferl, buffer2); SOTTORTOfMA Gl tinascoppia aliparamesi
break; (stringhe e numeroStringhe)

61/80

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

Programma gestione stringhe - 4/8 - main()

#include <stdio.h>

#include <stdlib_h> #define N ... #define LUNGMAX
.- (dich.)
int main(Q) { char *stringhe[N], char bufferl[LUNGMAX+1], buffer2[LUNGMAX+1] ;

int numeroStringhe, scelta;

numeroStringhe = 0; /* init struttura dati array stringhe */

do { stampaMenu(); /* l=aggiungi 2=sostitui... */
scanf(""", &scelta); /* lettura scelta */

switch(scelta) {

case 1:

if (numeroStringhe<N) {
printf('quale stringa da aggiungere? '");
scanf("'%s", bufferl);
aggiungi(stringhe, bufferl, &numeroStringhe);

else printf(“spazio insufficiente, tsk.\n\n");
break;

case 2:

©

sostituisci(stringhe, numeroStringhe, bufferl, buffer2);
break;

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 62/80

Programma gestione stringhe - 4/8 - main()

#include <stdio.h>

#include <stdlib_h> #define N ... #define LUNGMAX
.- (dich.)
int main(Q) { char *stringhe[N], char bufferl[LUNGMAX+1], buffer2[LUNGMAX+1] ;

int numeroStringhe, scelta;

numeroStringhe = 0; /* init struttura dati array stringhe */

do { stampaMenu(); /* l=aggiungi 2=sostitui... */
scanf(""", &scelta); /* lettura scelta */

switch(scelta) {

case 1:

if (numeroStringhe<N) {
printf('quale stringa da aggiungere? '");
scanf("'%s", bufferl);
aggiungi(stringhe, bufferl, &numeroStringhe);

else printf(“spazio insufficiente, tsk.\n\n");
break;

case 2:
printf(’'stringa da sostituire: ");
scanf("'%s', bufferl);
printf(’'stringa con cul sostituilre: ');
scanf("'%s', buffer2);
sostituisci(stringhe, numeroStringhe, bufferl, buffer2);
break;

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 63/80

Programma gestione stringhe - 4/8 - main()

#include <stdio.h>

#include <stdlib_h> #define N ... #define LUNGMAX
.- (dich.)
int main(Q) { char *stringhe[N], char bufferl[LUNGMAX+1], buffer2[LUNGMAX+1] ;

int numeroStringhe, scelta;

numeroStringhe = 0; /* init struttura dati array stringhe */

do { stampaMenu(); /* l=aggiungi 2=sostitui... */
scanf(""", &scelta); /* lettura scelta */

switch(scelta) {

case 1:

if (numeroStringhe<N) {
printf('quale stringa da aggiungere? '");
scanf("'%s", bufferl);
aggiungi(stringhe, bufferl, &numeroStringhe);

NB sostituisci riceve “la collezione”,

else rintf("'spazio insufficiente, tsk.\n\n"); - - - -
P ("sp) sotto forma di una coppia di parametri

break;

case 2:
printf(’'stringa da sostituire: ");
scanf("'%s', bufferl);
printf(’'stringa con cul sostituilre: ');
scanf("'%s', buffer2);
sostituisci(stringhe, numeroStringhe, bufferl, buffer2);
break;

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 64/80

Programma gestione stringhe - 5/8 - stampaTutto()

case 3: stampaTutto(stringhe, numeroStringhe);

break;

void stampaTutto(char *v[], int quanteSono) {

| |stampaTutto(stringhe, numeroStringhe);

it i B T PAR|Z !

: >

for (i=0; i<quanteSono; i++) | quanteSono i
printfFC'%s\n", v[i]); | = !
return; /* o anche *(v+i) */ . |
> | i
i strinm !

:/\ ~ An|P|1O[C| O[O :

L A :

L= - O[R[ONO |

L[\}‘R E[S[T[oNd;

1 ? :

: ? :

i AN s | I\NO :

'numeroStringhe 4 :

: memoria

_________________________ d
Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 65/80

Programma gestione stringhe - 5/8 - stampaTutto()

case 3: stampaTutto(stringhe, numeroStringhe);
break;

void stampaTutto(char *v[], int quanteSono) {

_ _ | |stampaTutto(stringhe, numeroStringhe);
Int 1;

VI—= PAR|S
>
for (i=0; i<quanteSono; i++) quanteSono
printf(C%s\n", v[i]); 4
return; /* o anche *(v+i1) */

}

|
|
|
|
|
|
|
|
|
|
|
|
|
|
o
~ a che tipo €& equivalente char *v[] (solo dal punto di vista dei| St”ng))e—\T
tipi nei parametri) NV An|P|1O|C|ONO
: =
|
RV) - | B alla ...-esima di v L .- {OIR[ONO
- v[i] si puo scrivere anche come : i ‘\)R EISITIONO
vl?
- cosa e v, tra le scelte seguenti? |
_ _ o 1 ANN|g i I\O
"doppio puntatore”, "puntatore a puntatore™, indirizzo I
di un puntatore, indirizzo di una locazione che :
contiene un ind. :
'numeroStringhe 4
|
- cosa vuol dire "stampare v[i] con formato %s" : memoria

_________________________ d
Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 66/80

Programma gestione stringhe - 5/8 - stampaTutto()

case 3: stampaTutto(stringhe, numeroStringhe);

break;

void stampaTutto(char *v[], int quanteSono) {

| |stampaTutto(stringhe, numeroStringhe);

et VIR PAR|S
>
for (i=0; i<quanteSono; i++) quanteSono
printf(C%s\n", v[i]); 4
return; /* o anche *(v+i1) */

}

string)}e—\\ET
N an|P|O[C[O]\O

- char *v[] equivalente a char ** 7

- v[i] = puntatore alla i-esima stringa = *(v+i); = ../ OIR|ONO

- Vv e “doppio puntatore” M? ‘\)R EIS[TIONO
= "puntatore a puntatore" ?'
= indirizzo di un puntatore N AN
= iInd. dir una locazione che contiene un ind.

- stampare v[i] con formato %s vuol dire stampare la :

stringa v[i1], cioe la stringa puntata dal puntatore v[i] numeroStringhe 4

memoria

_________________________ d
Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 67/80

Programma gestione stringhe - 6/8 -

aggiungi()

void aggiungit (char **v, char *nuovaStringa,

si suppone fatto all"esterno, dalla funzione chiamante
(non & bello, ma ora ci stiamo concentrando su altro */

INt J = *pQuante; /* solo per comodita™ */

®

v[j] = malloc (strlen(nuovaStringa)+1l);

it (v
printf("errore in alloc. ...");
else {
strcpy(v][j], nuovaStringa);
*pQuante+=1;

}

return;

}

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

I HH#
rhufferl

int *pQuante) {

numeroStringhe

aggiungi(stringhe, bufferl,
&numeroStringhe);

1
|
|
| |
| |
1 |
| |
1 |
| |
| |
1 |
| |
1 |
| |
| |
! :
|
| V= PAR|E !
| > :
: pQuante # I
1 |
| |
H |
E nuovasStringa T :
|
| i [4 VAR |
: _ |
! strlnm :
|
: e I
A - Jo[rR[oNg] |
I e I
A b AR IE|S[T[ONO
| #N X annlsTi NO
. ?
1 |
| |
1 |
e e memoria
68/80

Programma gestione stringhe - 6/8 -

aggiungi()

void aggiungit (char **v, char *nuovaStringa,

si suppone fatto all"esterno, dalla funzione chiamante
(non e~ bello, ma ora ci stiamo concentrando su altro */

INt J = *pQuante; /* solo per comodita™ */

®

v[j] = malloc (strlen(nuovaStringa)+1l);

it (v
printf("errore in alloc. ...");
else {

strcpy(viil, nuovaStringa);(:)
*pQuante+=1;

}

return;

}

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

I HH#
rhufferl

int *pQuante) {

numeroStringhe

aggiungi(stringhe, bufferl,
&numeroStringhe);

1
|
|
| |
1 |
| |
| |
| |
| |
1 |
| |
1 |
| |
1 |
| |
! :
|
| VIA PAR|S
1 > :
: pQuante # |
1 |
| |
H |
E nuovasStringa T :
|
| i [4 VAR |
: _ |
! strlnm :
|
: e I
A - Jo[rR[oNg] |
I 1
A b AR IE|S[T[ONO
| ;‘7&/\ X annlsTi NO
I N
! Flo] c]o]\o !
| |
.~ memoria
69/80

Programma gestione stringhe - 6/8 -

aggiungi()

void aggiungit (char **v, char *nuovaStringa,

si suppone fatto all"esterno, dalla funzione chiamante
(non e~ bello, ma ora ci stiamo concentrando su altro */

INt J = *pQuante; /* solo per comodita™ */

v[j] = malloc (strlen(nuovaStringa)+1l);

it (v
printf("errore in alloc. ...");
else {
strcpy(v][j], nuovaStringa);
*pQuante+=1;

} @

return;

}

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

I HH#
rhufferl

int *pQuante) {

numeroStringhe

aggiungi(stringhe, bufferl,
&numeroStringhe);

V= PAR|S
>
pQuante #
nuovastringa o
j 4 VAR

e i

P

i I\O

Programma gestione stringhe - 6/8 -

aggiungi()

void aggiungit (char **v, char *nuovaStringa,

si suppone fatto all"esterno, dalla funzione chiamante
(non e~ bello, ma ora ci stiamo concentrando su altro */

INt J = *pQuante; /* solo per comodita™ */

v[j] = malloc (strlen(nuovaStringa)+1l);

it (v
printf("errore in alloc. ...");
else {
strcpy(v][j], nuovaStringa);
*pQuante+=1;

}

return;
} - la funzione ha aggiunto una stringa

In posizione numeroStringhe+l; quindi
subito prima del termine
dell"attivazione, numeroStringhe viene
incrementato di 1;

ALCUNE Verita

- I"espressione (!v[j]) e equiv. a

(v[i]==NULL)

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

| Hf
'bufferl

int *pQuante) {

numeroStringhe

aggiungi(stringhe, bufferl,
&numeroStringhe);

VIR PAR
pQuante #

nuovastringa o

j 4 VAR

vdad

e i

P

i I\O

Programma gestione stringhe - 7/8 - sostituisci()

voild sostituisci (char **v, 1Int quanteSono, i OO

char *daSost, char *conChi) {ibUfferl

/* cerchiamo I"indice della stringa da sostituire con
una funzione di servizio che restituisce I°indice
della stringa nell"array, oppure -1 (se non c"e)*/

Int Indice =
ricerca(v,quanteSono, daSost);

numeroStringhe 5

#.
buffer2 FIOICIO

sostituisci(stringhe,
numeroStringh, bufferl, buffer?2);

1T (indice==-1)

printf(’'non presente\n\n'); v N PAR
else { quanteSono 5
0
daSost HH 2
_ - _ conChi #. >
vlindice]=malloc(strlen(conChi)+1);
indice VAR

1T (Mv[indice])

printf(*'errore 1n alloc. ...");
else

strcpy(v[indice], conChi);

strinh
A ~~[P|O|C[ONO

} /7* fine primo 1f */
return;

1
¥ 'memoria prima della chiamata

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

Programma gestione stringhe - 7/8 - sostituisci()

voild sostituisci (char **v, 1Int quanteSono, i OO

char *daSost, char *conChi) {ibUfferl

/* cerchiamo I"indice della stringa da sostituire con
una funzione di servizio che restituisce I°indice
della stringa nell"array, oppure -1 (se non c"e)*/

Int Indice =
ricerca(v,quanteSono, daSost);(:)

numeroStringhe 5

#.
buffer2 FIOICIO

sostituisci(stringhe,
numeroStringh, bufferl, buffer?2);

1T (indice==-1)

printf(‘'non presente\n\n"); v A PAR
else { quanteSono 5
0
daSost H -
_ - _ conChi #. >
vlindice]=malloc(strlen(conChi)+1); (:)
indice 2 VAR
1T (Mv[indice]) 7,
printf(*'errore 1n alloc. ..."); snmgpe~\\7
else A 7R An[P]O[C|ONO

strepy(v[indice], conChi); (2)

} /7* fine primo 1f */
return;

1
¥ 'memoria prima della chiamata

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

Programma gestione stringhe - 7/8 - sostituisci()

voild sostituisci (char **v, 1Int quanteSono,

char *daSost, char *conChi) {

/* cerchiamo I"indice della stringa da sostituire con
una funzione di servizio che restituisce I°indice
della stringa nell"array, oppure -1 (se non c"e)*/

Int Indice =
ricerca(v,quanteSono, daSost);

HH#
bufferl RIE[S|T]ONO

numeroStringhe 5

#.
buffer2 FIOICIO

sostituisci(stringhe,

1T (indice==-1) numeroStringh, bufferl, buffer2);

printf('non presente\n\n"); v~ PAR
else { guanteSono 5
L0
]] e allocazione string_a sostituto */ conChi m g
vLindice]=malloc(strilen(conChi)+1);
indice 2 VAR

1T (Mv[indice])

printf(*'errore 1n alloc. ...");
else

strcpy(v[indice], conChi);

strinh
A an|P|O[C[O]\O

} /7* fine primo 1f */
return;

} !

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
— — - — I
free(v[lindice];| 7* deall. stringa da sost. | [dasost T
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

Programma gestione stringhe - 7/8 - sostituisci()

voild sostituisci (char **v, 1Int quanteSono,

= buffe#f RIE[S|TIONO
char *daSost, char *conChi) { o
/* cerchlam(_) I'mgllce dgl!a stringa gla §ost|tl.J!re_con numeroStringhe 5
una funzione di servizio che restituisce I°indice
della stringa nell"array, oppure -1 (se non c"e)*/ #
int Indice = buffero LELOICIO[L] Al R ENNO

ricerca(v,quanteSono, daSost);

sostituisci(stringhe

if (indice==-1)

numeroStringh, bufferl, buffer?2);

printf("'non presente\n\n'); v A PAR
else { guanteSono 5
g
e allocazione stringa sostituto */ conChi i S
vlindice]=malloc(strlen(conChi)+1); '
indice 2 VAR
iIf ('v[indice])
printf("'errore in alloc. ..."); SUmgh€‘\\T
else A 7R An[P]O[C|ONO

strcpy(vLindice], conChi);

} /7* fine primo 1f */

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
_ _ 1
free(v[indice]; /* deall. stringa da sost. | [dasost
:
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

- I I\O
return;
b memoria prima della chiamata _
Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 75/80

Programma gestione stringhe - 7/8 -

sostituisci()

voild sostituisci (char **v, 1Int quanteSono,

char *daSost, char *conChi) {

/* cerchiamo I"indice della stringa da sostituire con
una funzione di servizio che restituisce I°indice
della stringa nell"array, oppure -1 (se non c"e)*/

Int Indice =
ricerca(v,quanteSono, daSost);

iIf (indice==-1)
printf(’'non presente\n\n');
else {

free(v[indice]; 7/* deall. stringa da sost.
e allocazione stringa sostituto */

vlindice]=malloc(strlen(conChi)+1);

1T (Mv[indice])
printf('errore i1n alloc.

else

strcpy(v[indice], conChi);

=)

} /7* fine primo 1f */
return;

}

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

i

bufferl

numeroStringhe

#.
buffer2

O|C|O

\O

sostituisci(stringhe,
numeroStringh, bufferl, buffer?2);

! I
! I
1 1
! I
! I
! I
! I
! I
1 1
! I
! I
! I
! I
! I
! I
! I
! I
! I
! I
: v A PAR !
! I
1
' |guanteSono S i
. |dasost Ht 0 !
1 U 1
! |conChi #. > |
1
! I
i indice 2 VAR| |
! :
: I
| strinh :
N An[P[O|C|ONO|
7 i
' T 1 .7]JO[R|ONO !
:l ANA] !
. 2 |
T EE s
| ? :
! I
1

'memoria prima della chiamata

Programma gestione stringhe - 8/8 -

ricerca()

int ricerca (char **v, iInt quanteSono, char *strCercata) {

/* restituisce I*indice di strCercata in v, oppure -1 */
int 1 =0,

for (; 1I<quanteSono; i1++)

IT (stremp((v[i1], strCercata)==0)
return 1; /* stringa trovata: rest. I"indice */

return -1;

}

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

bufferl);
v N PAR !
guanteSono)
t L0
strCercata HH E
>
i VAR

o
memoriai

Programma gestione stringhe - 8/8 -

ricerca()

int ricerca (char **v, iInt quanteSono, char *strCercata) {

/* restituisce I*indice di strCercata in v, oppure -1 */
int 1 =0,

for (; 1I<quanteSono; i1++)

IT (stremp((v[i1], strCercata)==0)
return 1; /* stringa trovata: rest. I"indice */

return -1;

}

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

bufferl);
v N PAR !
guanteSono)
t L0
strCercata HH E
>
i VAR

o
memoriai

Programma gestione stringhe - 8/8 -

ricerca()

int ricerca (char **v, iInt quanteSono, char *strCercata) {

/* restituisce I*indice di strCercata in v, oppure -1 */
int 1 =0,

for (; 1I<quanteSono; i1++)

IT (stremp((v[i1], strCercata)==0)
return 1; /* stringa trovata: rest. I"indice */

return -1;

}

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

bufferl);
v N PAR !
guanteSono)
t L0
strCercata HH E
>
i VAR

o
memoriai

Programma gestione stringhe - 8/8 -

ricerca()

int ricerca (char **v, iInt quanteSono, char *strCercata) {

/* restituisce I*indice di strCercata in v, oppure -1 */
int 1 =0,

for (; 1I<quanteSono; i1++)
IT (stremp((v[i1], strCercata)==0)
return 1; /* stringa trovata: rest. I"indice */

/* se siamo usciti dal ciclo senza mai trovare la stringa}
- vuol dire che non I"abbiamo trovata ... Tk 1y P */!
S0 wiuek

return -1; |

}

esercizio: riflettere sul perche’, nella funzione sostituisci, per sostituire la stringa
v{indice] con quella conChi, dopo free(v[indice]), invece di fare
N

v[indice] =

abbiamo usato codice differente per creare una copia esatta di conChi e poi
assegnare a v[indice] tale nuova stringa

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

ricerca (stringhe, numeroStringh,

bufferl);
v N PAR !
guanteSono)
t L0
strCercata HH E
>
i VAR

o
memoriai

Tecniche della Programmazione, lez. 16

Approfondimenti

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 81/80

Array di stringhe (lettura) - 3 - esecuzione simulata

continua funzione che legge un array di N stringhe, ciascuna di al piu” 80 char

/* 3a fTase: definizione funzione */’“CmS”deA”aﬁﬂmeGQHSUx
voild costruisciArrayStringhe(char * v[N]); J oA 2
char buffer[LUNGMAX+1]; o - >
int 1;

for (i=0; i<N; i++) {

/* lettura di una stringa ... */ arrStr
printf(’'scrivi una str ...\n"");
scanf("'%s', buffer);
/* ... e sua memorizzazione */ ..
v[1] = malloc(strlen(buffer)+1l); /> 1. 2wy "
it (vLil) h
strcpy(v[i], buffer); /* 1.3 % 7
else { 3
printf(*'eeekkk\n"");
break; =
} _ esecuzione simulata: riempire il disegno qui sopra,
} /* fine for */ mostrando come le stringhe lette in input (POCO,
ORO, RESTO, si, PRO, PROMOZion) vengono piazzate in
memria e puntate dagli elementi dell"array. Poi
return; confrontare con la slide successiva
¥ memoria’~

82/80

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

Array di stringhe (lettura) - 3.2 -

continua funzione che legge un array di N stringhe, ciascuna di al piu” 80 char

/* 3a Ffase- definizione Ffunzione */"mcmsUMSdAnmﬁmﬂwme@nsux
voild costruisciArrayStringhe(char * v[N]); } JC A 2
char buffer[LUNGMAX+1]; S - >
lnt l - buffer

lplolclo ...[]
for (i=0} i<N; i++) {

i 1 0
/* lettura di una stringa ... */
printf(’'scrivi una str ...\n"");
scanf("'"%s'", buffer):

/* ... e sua memorizzazione */ ..
v[i] = malloc(strlen(buffer)+1); 7* 1.2 */
it (V[iD)
strcpy(v[i1], buffer); /* 1.3 */
else { 3
printf(*'eeekkk\n"");
break;

arrStr

+
} /* fine for */

return;

} ; “memoria

,4 . . ja— I . y N . . S T % a0’
I'ecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe ‘ 83/80

Array di stringhe (lettura) - 3.3 -

continua funzione che legge un array di N stringhe, ciascuna di al piu” 80 char

costruisciArrayStringhe(arrStr);

gy
N\

V_— W)
" ™
buffer
[plolclo ... |

i | 0O

/* 3a fase: definizione funzione */
voild costruisciArrayStringhe(char * v[N]);
char buffer[LUNGMAX+1];

int 1;

for (i=0; iI<N; i++) {

/* lettura di una stringa ... */
printf(’'scrivi una str ...\n"");
scanf("'%s', buffer);

/* ... e sua memorizzazione */ .
v[1] = malloc(strlen(buffer)+1); /k1.2*/'“3
it (v[iD S an[PlO|C|ONO
strcepy(v[i], buffer); /1.3 % 7
else { <
printf(*'eeekkk\n"");
break;

arrStr

NN

+
} /* fine for */

return;
+ “memoria

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

Array di stringhe (lettura) - 3.4 -

continua funzione che legge un array di N stringhe, ciascuna di al piu” 80 char

costruisciArrayStringhe(arrStr);

Py,
/\

v O
buffer

/* 3a fase: definizione funzione */
voild costruisciArrayStringhe(char * v[N]);
char buffer[LUNGMAX+1];

int 1;

[O|RIO[\O ... ||
i 1

for (i=0; i<N; |[i++) {

/* lettura di una stringa ... */
printf(’'scrivi una str ...\n"");
scanf("'"%s'", buffer):

/* ... e sua memorizzazione */ ..
v[1] = malloc(strlen(buffer)+1l); /> 1. 2*/'“3
it (v[iD S an[PlO|C|ONO
strcpy(v[i], buffer); /* 1.3 % 7
else { <
printf(*'eeekkk\n"");
break;

arrStr

NN

+
} /* fine for */

return;
+ “memoria

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

Array di stringhe (lettura) - 3.5 -

continua funzione che legge un array di N stringhe, ciascuna di al piu” 80 char

/* 3a fase: definizione funzione */ "-costruisciArrayStringhe(arrstr);

voild costruisciArrayStringhe(char * v[N]);
char buffer[LUNGMAX+1];

int 1;

for (i=0; iI<N; i++) {

/* lettura di una stringa ... */
printf(’'scrivi una str ...\n"");
scanf("'%s', buffer);

/* ... e sua memorizzazione */ .
v[i] = malloc(strlen(buffer)+1); s} 1.2 */
it (v

strcepy(v[i], buffer); /1.3 % 7
else { 3
printf(*'eeekkk\n"");
break;
+
} /* fine for */
return;
}

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

A
Vv N O
>
buffer
[O|R[O]\O...[]
i| 1
arrStr
NN\
An|P|O|C|O[\O
..l]O|R|O|\O
mgmona
........ 86/80

Array di stringhe (lettura) - 3.6 -

continua funzione che legge un array di N stringhe, ciascuna di al piu” 80 char
costruisciArrayStringhe(arrStr);

/* 3a fase: definizione funzione */
voild costruisciArrayStringhe(char * v[N]);
char buffer[LUNGMAX+1];

int I;
for (i=0; i<N; |[i++) {

/> lettura di una stringa ... */
printf(’'scrivi una str ...\n"");
scanf(''%s'", buffer);

/* ... e sua memorizzazione */

vli] = malloc(strien(buffer)+1l); /> 1. s

it (viD

else {
printf(*'eeekkk\n"");

break;

+
} /* fine for */

return;

}

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

strcpy(v[i], buffer); /*1"3*/.fj

0
Vv N O
>
buffer
[RIEJSIT ...[]
i| 2
arrStr
NN\
Aan|P|O|C|O\O
../ O| R|O\O
“memorig..."

Array di stringhe (lettura) - 3.7 -

continua funzione che legge un array di N stringhe, ciascuna di al piu” 80 char

/* 3a Fase: deFfinizione Ffunzione */ costruisciArrayStringhe(arrStr);

voild costruisciArrayStringhe(char * v[N]);
char buffer[LUNGMAX+1];

int 1;

for (i=0; iI<N; i++) {

/* lettura di una stringa ... */
printf(’'scrivi una str ...\n"");
scanf("'%s', buffer);

/* ... e sua memorizzazione */ .
v[i] = malloc(strlen(buffer)+1); s} 1.2 */
it (v

strcepy(v[i], buffer); /1.3 % 7
else { 3
printf(*'eeekkk\n"");
break;
+
} /* fine for */
return;
}

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

2y
O
>

NN\

1O

R

O

Array di stringhe (lettura) - 3.8 -

funzione che legge un array di N stringhe, ciascuna di al piu” 80 char

/> 3a fase: definizione funzione */

costruisciArrayStringhe(arrStr);
void costruisciArrayStringhe(char * v[N]){

- Y

- o
char buffer[LUNGMAX+1]; >
int 1;

for (i=0; iI<N; i++) {

/* lettura di una stringa ... */

printf(*'scrivi una str ...\n"");
scanf("'%s'", buffer);

/* ... e sua memorizzazione */
v[1] = malloc(strlen(buffer)+1);
it (v
strcpy(v[i1], buffer);
else {

printf(*'eeekkk\n"");
break;

..
o NNN
o -

Annls i INO

+
} /* fine for */

- abbiamo letto le stringhe da input e le abbiamo .LO[R[ONO
return
}. ? memorizzate, come stringhe esatte, nell*array =~ "
di stringhe (cioé di puntatori) arrStr | e . et
ghe (i) “memorig..-
I'ecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

Tecniche della Programmazione, lez. 16

Esercizi
- duplicazione con side effect sulla nuova stringa
- duplicazione con restituzione del grado di successo

- UN complicato esercizio con un array dinamico, da
realizzare seguendo passo passo lo sviluppo
proposto nelle slide.

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 90/80

Esercizio (duplica stringa)

programma che

da parte della funzione duplica()

#include <stdio.h>
#include <stdlib.h>

esegue una duplicazione di stringa mediante side effect

Questo e~ il prototipo della funzione duplica()

void duplica(char *, char **);

int main() { char *stringl, *string2;

/* stringl e una stringa effettiva; string2 e un
puntatore cui attacchiamo un duplicato della stringl */

dUpIica(Stringl, &Strfﬁazjj\%wmmpmmﬂmaﬂwMe

return O;

}

e” un “indirizzo di
locazione capace di
contenere un indirizzo”
(I’indirizzo di un
indirizzo ..)

void duplica(char * s1, char **pCopia) {
*pCopia = malloc(strlen(sl)+l);

1T (*pCopia)

strcpy(*pCopia, sl);
return;

}

Questo parametro formale ®

e~ capace di ricevere un
valore che e” indirizzo di
un indirizzo di carattere

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe
te) > S

stringl

NN P

O

C

Obiettivo: dopo la
chiamata

duplica(stringl, &string2)

string2 e” una stringa
identica a stringl.

N

string2

memoria _ _ .

91/80

Esercizio (duplica stringa)

programma che

da parte della funzione duplica()

#include <stdio.h>
#include <stdlib.h>

esegue una duplicazione di stringa mediante side effect

Questo e~ il prototipo della funzione duplica()

void duplica(char *, char **);

int main() { char *stringl, *string2;

/* stringl e una stringa effettiva; string2 e un
puntatore cui attacchiamo un duplicato della stringl */

dUpIica(Stringl, &Strfﬁazjj\%wmmpmmﬂmaﬂwMe

return O;

}

e” un “indirizzo di
locazione capace di
contenere un indirizzo”
(I’indirizzo di un
indirizzo ..)

void duplica(char * s1, char **pCopia) {
*pCopia = malloc(strlen(sl)+l);

1T (*pCopia)

strcpy(*pCopia, sl);
return;

}

Questo parametro formale ®

e~ capace di ricevere un
valore che e” indirizzo di
un indirizzo di carattere

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe
te) > S

stringl

NN P

O

C

Obiettivo: dopo la
chiamata

duplica(stringl, &string2)

string2 e” una stringa
identica a stringl.

1

:

1

‘|P|O]C|O\O !

:

1

N\ 1

1

string2 !
___________ memoria _ _ .

92/80

Esercizio (duplica stringa)

programma che esegue una duplicazione di stringa mediante side effect
da parte della funzione duplica()

#include <stdio.h>

#include <stdlib.h>
voild duplica(char *, char **);

int main() { char *stringl, *string2;

stringl__ aa
ANPIOJCIONO

/* stringl e una stringa effettiva; string2 e un

puntatore cui attacchiamo un duplicato della stringl */ duplica(string1, &string2);

"-duplica(stringl, &string2); slI—AR PAR|ZE i
>

return O; pCopia i
} Jp i i
void duplica(char * sl1, char **pCopia) { i i
*pCopia = malloc(strlen(sl)+1l); ! !
iT (*pCopia) : . :
strcpy(*pCopia, sl1); | string?2 i
return; ! memoria
} L o o o o o o o o o R |

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 93/80

Esercizio (duplica stringa)

programma che esegue una duplicazione di stringa mediante side effect

da parte della funzione duplica()

#include <stdio.h>
#include <stdlib.h>

void duplica(char *, char **);

stringl

int main() { char *stringl, *string2;

NN P

O|C

/* stringl e una stringa effettiva; string2 e un
puntatore cui attacchiamo un duplicato della stringl */

duplica(stringl, &string2);

"-duplica(stringl, &string2); slI—AR PAR g i
return 0; 5Copia i
} P §
void duplica(char * sl1, char **pCopia) { ! i
*pCopia = malloc(strlen(sl)+1); | i
1T (FpCopia) ! |
strcpy(*pCopia, sl); : —> N i
return; i string2 i
¥ i ___________ UEHDDIEl__j

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

94/80

Esercizio (duplica stringa)

programma che esegue una duplicazione di stringa mediante side effect
da parte della funzione duplica()

#include <stdio.h>

#include <stdlib.h>
voild duplica(char *, char **);

int main() { char *stringl, *string2;

stringl__ aa
ANPIOJCIONO

/* stringl e una stringa effettiva; string2 e un

puntatore cui attacchiamo un duplicato della stringl */ duplica(string1, &string2);

"-duplica(stringl, &string2); slI—AR PAR|ZE i
>

return O; pCopia i
} P A i
void duplica(char * s1, char **pCopia) { ! i
*pCopia = malloc(strlen(sl)+1); o i
ifT (*pCopia) i P]OJC]ONO :
strcpy(*pCopia, s1); — |
return; i string2 i
¥ b e e e o memoria __.

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 95/80

Esercizio (duplica stringa)

programma che esegue una duplicazione di stringa mediante side effect
da parte della funzione duplica()

stringl__ aa
ANPIOJCIONO

void duplica(char *, char **);

osservazione: Cosa c'e’ in *pCopia se 1'allocazione e’

andata male? duplica(stringl, &string?2);

Ora rispondi e poi fai una funzione che duplica come i sl—An PAR g i

sopra ma restituisce 1/0 per indicare il successo : >
dell’operazione. Poi prosegui © ' | pcopia i

! A :

void duplica(char * sl1, char **pCopia) { i |
*pCopia = malloc(strlen(sl)+1); | |
iIT (*pCopia) ! !
strepy(*pCopia, s1); i ; i
return; | string2 !
¥ e memoria __.

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 96/80

duplica2

funzione come duplica(), che restituisce 1 0 0 a seconda del successo dell'operazione
di duplicazione

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe
S) te)

duplica2

funzione come duplica(), che restituisce 1 0 0 a seconda del successo dell'operazione
di duplicazione

int duplica2(char * sl1, char **pCopia) {
*pCopia = malloc(strlen(sl)+l);
1T (*pCopia) {
strcpy(*pCopia, sl);

return 1; /* e andata bene */
} else
return O; /* e andata male */

98/80

Esercizio

programma che legge un intero n e poi legge n double;
memorizza i double in un array dinamico esatto,
calcola e stampa minimo, massimo e media dei double

1) Allocazione array dinamico, lettura e memorizzazione
dei numeri negli elementi *pd *(pd+n-1)

2) init minimo e massimo parziale, e somma

1 |
|
i n somma |
1 |

3) scansione a ritroso da “penultimo” a “primo” : auxd
elemento, usando l'algoritmo del massimo (minimo) . pd !

. |

parziale ! :
e accumulando i double (per poter calcolare la media) :pmin !
: :
|
. . . . | pmax !
4) e poi calcolo media e stampa di min, max e media i !
: :
| |
1 |
La scansione viene realizzata mediante un ; I
puntatore: auxd : :
|
: :
| |
1 |
i 1
e memaria_ _

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

99/80

Esercizio

programma che legge un intero n e n double;
li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

1) _Allocazione array dinamico, lettura e memorizzazione dei numeri in *pd *(pd+n-1)
(usiamo un puntatore auxd, per scandire gli elementi dell'array, dal primo all'ultimo)

2) init minimo e massimo parziale, e somma

3) scansione a ritroso da “penultimo” a “primo” n |6 somma
elemento, trovando max e min, e accumulando

)

4) e poi calcolo media

MA usiamo (per realizzare l'alg. di pmin
massimo/minimo parziale)

pmax

- indirizzo del max parz: pmax

- indirizzo del min parz: pmin

- scansione degli elementi con un puntatore: auxd

- se *auxd e” maggiore di *pmax, allora *auxd e"
un NUOVO Max parz: pmax = auxd

e o e e memaria___

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 100/8

Esercizio (o esempio?)

programma che legge un intero n e n double;
li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

1) Allocazione array dinamico, lettura e memorizzazione dei numeri in *pd *(pd+n-1)

(usiamo un puntatore auxd, per scandire gli elementi dell'array, dal primo all'ultimo)

2) init minimo e massimo parziale, e sommao

3) scansione a ritroso da “penultimo” a “primo”

elemento, trovando max e min, e accumulando auxd

4) e poi calcolo media

pmin

MA usiamo (per realizzare I'alg. di
massimo/minimo parziale) pmax

- indirizzo del max parz: pmax

- indirizzo del min parz: pmin

- scansione degli elementi con un puntatore: auxd

- se *auxd e~ maggiore di *pmax, allora *auxd e~ 45.88
un NnUovo Max parz: pmax = auxd

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

____________________ memaria___

101/8

Esercizio (o esempio?)

programma che legge un intero n e n double;
li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

1) Allocazione array dinamico, lettura e memorizzazione dei numeri in *pd *(pd+n-1)

(usiamo un puntatore auxd, per scandire gli elementi dell'array, dal primo all'ultimo)

2) init minimo e massimo parziale, e sommao

_ _ . L n |6 somma [45.88

3) scansione a ritroso da “penultimo” a “primo |
elemento, trovando max e min, e accumulando auxd I
pd \ :
|
4) e poi calcolo media _ :
_ _ _ pmin |, !
MA usiamo (per realizzare I'alg. di |
. . . . |
massimo/minimo parziale) pmax | !
|
- indirizzo del max parz: pmax !
|
- indirizzo del min parz: pmin :
|
- scansione degli elementi con un puntatore: auxd :
|
~ . . < 1
- se *auxd e~ maggiore di *pmax, allora *auxd e 45.88 i
- = . |
un nuovo max parz: pmax =auxd ~~ —— memaria__
Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

102/8

Esercizio

programma che legge un intero n e n double;
li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

1) Allocazione array dinamico, lettura e memorizzazione dei numeri in *pd *(pd+n-1)

(usiamo un puntatore auxd, per scandire gli elementi dell'array, dal primo all'ultimo)

2) init minimo e massimo parziale, e somma

|
|
: : . . rn |6 somma [45.88+
3) scansione a ritroso da “penultimo” a “primo” O : |
elemento, trovando max e min, e accumulando : auxd I
|
' pd \ :
| |
4) e poi calcolo media L :
: : : pmin| :
MA usiamo (per realizzare I'alg. di | 7/ !
massimo/minimo parziale) | pmax / / !
|
. - . | |
- indirizzo del max parz: pmax ! !
| |
- indirizzo del min parz: pmin ! :
| |
- scansione degli elementi con un puntatore: auxd : :
| |
~ . . < 1
- se *auxd e~ maggiore di *pmax, allora *auxd e i 45.88 i
- = . |
un NUOVO Mmax parz: pmax = auxd LN memaria__
Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

103/8

Esercizio

programma che legge un intero n e n double;
li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

1) Allocazione array dinamico, lettura e memorizzazione dei numeri in *pd *(pd+n-1)

2) init minimo e massimo parziale, e somma

3) scansione a ritroso da “penultimo” a “primo” O
elemento, trovando max e min, e accumulando

4) e poi calcolo media

pmin | ,

MA usiamo (per realizzare I'alg. di
massimo/minimo parziale) pmax /

- indirizzo del max parz: pmax

- indirizzo del min parz: pmin

- scansione degli elementi con un puntatore: auxd

- se *auxd e~ maggiore di *pmax, allora *auxd e~ 45.88
un NnUovo Max parz: pmax = auxd

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

____________________ memaria___

104/8

Esercizio

programma che legge un intero n e n double;
li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

1) Allocazione array dinamico, lettura e memorizzazione dei numeri in *pd *(pd+n-1)

2) init minimo e massimo parziale, e somma

3) scansione a ritroso da “penultimo” a “primo” O |
elemento, trovando max e min, e accumulando

4) e poi calcolo media

pmin | ,

MA usiamo (per realizzare I'alg. di
massimo/minimo parziale) pmaxj

- indirizzo del max parz: pmax

- indirizzo del min parz: pmin

- scansione degli elementi con un puntatore: auxd

- se *auxd e~ maggiore di *pmax, allora *auxd e~ 45.88
un NnUovo Max parz: pmax = auxd

____________________ memaria___

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 105/8
te) O

Esercizio

programma che legge un intero n e n double;
li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

1) Allocazione array dinamico, lettura e memorizzazione dei numeri in *pd *(pd+n-1)

2) init minimo e massimo parziale, e somma

3) scansione a ritroso da “penultimo” a “primo” O |
elemento, trovando max e min, e accumulando

4) e poi calcolo media

pmin | ,

MA usiamo (per realizzare I'alg. di
massimo/minimo parziale) pmaxj

- indirizzo del max parz: pmax

- indirizzo del min parz: pmin

- scansione degli elementi con un puntatore: auxd

- se *auxd e~ maggiore di *pmax, allora *auxd e~ 45.88
un NnUovo Max parz: pmax = auxd

____________________ memaria___

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 106/8
te) O

Esercizio

programma che legge un intero n e n double;
li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

Quando auxd == pd, siamo sul primo elemento e lo 2 dei numeri in *pd *(pd+n-1)
controlliamo;

quando auxd e~ andato un altro passo indietro, e
auxd < pd e quindi siamo fuori dell"array

e ci dobbiamo fermare. n 6 somma |45.88+...

Ora pmin e pmax effettivamente puntano all®elemento

minimo e massimo, rispettivamente, nell"array pci N\

4) e poi calcolo media O

MA usiamo (per realizzare I'alg. di
massimo/minimo parziale) pma %

pmin | ,

- indirizzo del max parz: pmax

- indirizzo del min parz: pmin

- scansione degli elementi con un puntatore: auxd

- se *auxd e~ maggiore di *pmax, allora *auxd e~ 45.88
un NnUovo Max parz: pmax = auxd

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

____________________ memaria___

107/8

esercizio su intero n e n double (coding 1/2)

programma che legge un intero n e n double;
li memorizza in un array dinamico esatto

calcola e stampa minimo, massimo e media dei double

#include <stdio.h> - -
’ert n;

#include <stdlib.h>
int main() i;///////////'double *pd, *pmax, *pmin, *auxd, somma, ;

v
o
=
=
Y

tis

il

scanf(... &n); n |6
pd = malloc(n*sizeof(double)); |
_) ' pd \
it (1pd) printf("" ... "); |
else { ' pmin
for (auxd=pd; auxd-pd < n; auxd++) i
scanf("%1f", auxd); ' pmax

Durante la prima scansione, per la lettura dei dati,

auxd inizialmente punta sull®inizio dell"array (auxd=pd)

poi auxd viene incrementato di uno ... cioe salta all“elemento successivo (audd-pd==1)
Andando avanti, auxd-pd == 2 (e viene letto il dato per i1l secondo elemento,
auxd-pd==3 ... terzo elemento

Alla fine auxd-pd==n e aud punta fuori dell"array (fine delle letture)

In questo momento auxd-pd==0 e la scand mette i1l dato letto da input nel primo elemento;

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

Ll
]

45.88 | Wereeet)

wl
LJ
.I

Y. .
menmaQria..

108/8

esercizio su intero n e n double (coding 1/2)

programma che legge un intero n e n double;

li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

#include <stdio.h> - -
’lnt n;

#include <stdlib.h>
int main() / double *pd, *pmax,

*pmin, *auxd, somma, ;

scanf(... &n);
pd = malloc(n*sizeof(double));

it (1pd) printf("" ... ");
else {
for (auxd=pd; auxd-pd < nj; auxd++)
scant("%If"", auxd);

esempio

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

I
I
n |6 somma !
I
auxd |
pd \ 2
o mn |
Ot
. o e |
e
pmin SR
: = : |
: FEC
pmax & £
Ry
i
& |
- I
:.' !
auxpd-pd == 3 -"_' :
P
.. !
auxpd-pd == 5 |45.88 j“'. H
.|
.. !
I

\ ¥
auxpd-pd == n | MNE0Qf1E."

109/8

esercizio su intero n e n double (coding 1/2)

programma che legge un intero n e n double;

li memorizza in un array dinamico esatto

calcola e stampa minimo, massimo e media dei double
#include <stdio.h>

#include <stdlib.h>
int main(Q) {

scanf(... &n);
pd = malloc(n*sizeof(double));

it (1pd) printf(" ... ");

else { pmin \

for (auxd=pd; auxd-pd < n; auxd++) ipmax

scant("%If"", auxd);

/* inizializzazione: pmax e pmin saranno
I puntatori al massimo e minimo;
tecnica del massimo parziale */

pmax = pmin = —-auxd;
somma = *auxd;

45.88

____________________ memaria___

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

110/8

esercizio su intero n e n double (coding 1/2)

programma che legge un intero n e n double;
li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

#include <stdio.h>
#include <stdlib.h>
int main(Q) {

scanf(... &n);

pd = malloc(n*sizeof(double));
it (1pd) printf("" ... ");
else {

for (auxd=pd; auxd-pd < n; auxd++)
scant("%If"", auxd);

/* inizializzazione: pmax € pmin saranno
I puntatori al massimo e minimo;
tecnica del massimo parziale */

pmax = pmin = —-auxd;
somma = *auxd;

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

n |6 somma i
auxd |

pd \ :
pmin \\\\N i
pmax i
45.88

auxd-pd=6 .
____________________ Mmemaria__

111/8

esercizio su intero n e n double (coding 1/2)

programma che legge un intero n e n double;
li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

#include <stdio.h>
#include <stdlib.h>
int main(Q) {

scanf(... &n);

pd = malloc(n*sizeof(double));
it (1pd) printf("" ... ");
else {

for (auxd=pd; auxd-pd < n; auxd++)
scant("%If"", auxd);

/* inizializzazione: pmax € pmin saranno
I puntatori al massimo e minimo;
tecnica del massimo parziale */

pmax = pmin = —-auxd;
somma = *auxd;

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

n |6 somma i
auxd |

pd \ :
pmin \\\\N i
pmax i
45.88

auxd-pd=6 .
____________________ Mmemaria__

112/8

esercizio su intero n e n double (coding 1/2)

programma che legge un intero n e n double;
li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

#include <stdio.h>
#include <stdlib.h>
int main(Q) {

scanf(... &n);

pd = malloc(n*sizeof(double));
it (1pd) printf("" ... ");
else {

for (auxd=pd; auxd-pd < n; auxd++)
scant("%If", auxd);

/* inizializzazione: pmax € pmin saranno
I puntatori al massimo e minimo;
tecnica del massimo parziale */

pmax = pmin = —-auxd;
somma = *auxd;

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

n 6 somma |45.88+...
auxd

pd \ :

pmax *

Y 9

45.88

auxd-pd=6 !

____________________ memaria___

113/8

esercizio su intero n e n double (coding 2/2)

--- pmax=pmin=-auxd; [TTTTITmTmmmmsmmmsmsmmmmeemmmee- !

|
somma = *auxd; i n |[6 somma [45.88
for (auxd--; auxd >= pd; auxd--) { | '
: * * ! auxd
1T (pmax < *auxd) ' nd N ,
pmax=auxd; : :
| |
1 . 1
- - rpmin 4 I
it (*pmin > *auxd) :p/xjj’ :
pmin=auxd; rpmiax | |
;! A '
Sy et :
somma += *auxd; Loy s |
} / /: :"/ // !
A / A I
Iy s / e :
= I [i l // /“/ ‘./7 |
media = somma/n; w7 75 4588 |
printf(..., *pmax, *pmin, media§i\:\‘t?‘i7” //" ’ :
LM e— - L~ |
return O; NRGAEILEEEEED FRRREEEE fenonia. -
} o

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 114/8

esercizio su intero n e n double (coding 2/2)

--- pmax=pmin=-auxd; [TTTTITmTmmmmsmmmsmsmmmmeemmmee- !

|
somma = *auxd; i n |6 somma |45.88

for (auxd--; auxd >= pd; auxd--) { | '

- * * ! auxd
1T (pmax < *auxd) ' pd N ,
pmax=auxd; : :
| |
| . |
_ . rpmin. g !
it (pmin > *auxd) :p/x;j/ :
- . S |
pmin=auxd; ' pmax|’ i
R ’/’/// / 1
oy / / !
somma += *auxd; / ;/@/ T |

. - I

| /' 'R 7 1
}- ¥ espressione double ; : ;ﬂ [/ A |
‘/////// (divisione tra un : ! / I // /;‘/ i I
- _ - double e un intero] / l K / o ‘327 I
media = somma/n; “ - -7 |45.88 !
|
|
1

- = = : U AN L -
rintfG. .., *pmax, *pmin, med|a>a LT T :
D iﬁS\\\\\ P P oLl Lo memaria__

return O; - Gt -
}_ undefined ... nella pagina prima; . o
Deve esprimere la media, cioe™ un valore double | 7

auxd viene i1nizialmente retrocesso all"inizio della componente n-esima (indice
n-1); poi, mentre si mantiene >=pd si decrementa per toccare tutte le altre
componenti dell"array, in ordine inverso (indice n-2, n-3, ... 0).

Per ogni componente toccata (indicata) da auxd, si attua la tecnica di
mantenimento del massimo (e minimo) parziale (*auxd e 1l contenuto della
locazione puntata da auxd), e la si somma nell“accumulatore (somma=somma+ *auxd)

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 115/8

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Slide Number 115

