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Tecniche della Programmazione, lez.16
Uso dell'allocazione dinamica; gestione di stringhe; 
gestione di una struttura dati per una collezione di 
stringhe
- allocazione dinamica di (tante) stringhe ("esatte") in un programma

- array di stringhe ("esatte"): operazioni di "aggiunta" e "ricerca"

- programma di gestione stringhe

- struttura dati piu` complessa per una collezione di stringhe

- funzionalita` classiche
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Prima un esercizio:

possiamo fare un duplicato, str2, di una stringa str

- allocando un array di caratteri della dimensione "esatta" 
necessaria per str

- copiando nel nuovo array quello originale

Una stringa "esatta e` una stringa dimensionata esattamente per 
contenere i suoi caratteri significativi, senza locazioni sprecate

Tecniche della Programmazione, lez. 16
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duplicazione (esatta) di una stringa
esercizio funzione che 
ricevendo una stringa s restituisca una copia (esatta) di s

memoria

P O C O \0

str
^^

stringa2

#include <stdio.h>
#include <stdlib.h>
... (dich.) ...
int main() {
char str[9],    *stringa2;

.../* “POCO” in stringa2 */

stringa2 = duplicato(str);
...
return 0;
}

prima
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duplicazione (esatta) di una stringa
esercizio funzione che 
ricevendo una stringa s restituisca una copia (esatta) di s

memoria

P O C O \0

str
^^

stringa2

P O C O \0$$

#include <stdio.h>
#include <stdlib.h>
... (dich.) ...
int main() {
char str[9],    *stringa2;

.../* “POCO” in stringa2 */

stringa2 = duplicato(str);
...
return 0;
}

$$

dopo
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duplicazione (esatta) di una stringa
esercizio funzione che 
ricevendo una stringa s restituisca una copia (esatta) di s

Alg
0) la funzione riceve la stringa da duplicare e 

restituisce l'indirizzo della stringa
duplicato
nuovaStringa var. locale
char * duplicato (char *s) {}

1) malloc per nuovaStringa, esattamente
di strlen(s)+1

2) strcpy di s in nuovaStringa
3) return nuovaStringa memoria

stringa2=duplicato(str);

P O C O \0

str
^^

stringa2

#include <stdio.h>
#include <stdlib.h>
... (dich.) ...
int main() {
char str[9],    *stringa2;

.../* “POCO” in stringa2 */

stringa2 = duplicato(str);
...
return 0;
}
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duplicazione (esatta) di una stringa
esercizio funzione che 
ricevendo una stringa s restituisca una copia (esatta) di s

memoria

stringa2=duplicato(str);

P O C O \0

str
^^

stringa2

#include <stdio.h>
#include <stdlib.h>
... (dich.) ...
int main() {
char str[9],    *stringa2;

.../* “POCO” in stringa2 */

stringa2 = duplicato(str);
...
return 0;
}

^^s

R
D

A

newString

PAR

VAR

...
char * duplicato (char *s) {

char * newString;



return newString; 
}
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duplicazione (esatta) di una stringa
esercizio funzione che 
ricevendo una stringa s restituisca una copia (esatta) di s

memoria

stringa2=duplicato(str);

P O C O \0

str
^^

stringa2

$$

#include <stdio.h>
#include <stdlib.h>
... (dich.) ...
int main() {
char str[9],    *stringa2;

.../* “POCO” in stringa2 */

stringa2 = duplicato(str);
...
return 0;
}

^^s

R
D

A

newString

PAR

VAR

...$$
char * duplicato (char *s) {

char * newString;

newString=malloc(strlen(s) + 1);

if(newString)
strcpy(newString, s);

return newString; 
}
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duplicazione (esatta) di una stringa
esercizio funzione che 
ricevendo una stringa s restituisca una copia (esatta) di s

memoria

stringa2=duplicato(str);

P O C O \0

str
^^

stringa2

#include <stdio.h>
#include <stdlib.h>
... (dich.) ...
int main() {
char str[9],    *stringa2;

.../* “POCO” in stringa2 */

stringa2 = duplicato(str);
...
return 0;
}

^^s

R
D

A

newString

PAR

VAR

...$$
char * duplicato (char *s) {

char * newString;

newString=malloc(strlen(s) + 1);

if(newString)
strcpy(newString, s);

return newString; 
}

P O C O \0$$
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duplicazione (esatta) di una stringa
esercizio funzione che 
ricevendo una stringa s restituisca una copia (esatta) di s

char * duplicato (char *s) {
char * newString;

newString=malloc(strlen(s) + 1);
if(newString)

strcpy(newString, s);

return newString; 
}

memoria

stringa2=duplicato(str);

P O C O \0

str
^^

stringa2

P O C O \0$$

#include <stdio.h>
#include <stdlib.h>
... (dich.) ...
int main() {
char str[9],    *stringa2;

.../* “POCO” in stringa2 */

stringa2 = duplicato(str);
...
return 0;
}

^^s

R
D

A

newString

PAR

VAR

...

…scompare

…rimane

$$

$$
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duplicazione (esatta) di una stringa
esercizio funzione che 
ricevendo una stringa s restituisca una copia (esatta) di s

char * duplicato (char *s) {
char * newString;

newString=malloc(strlen(s) + 1);
if(newString)
strcpy(newString, s);

return newString; 
}

memoria

stringa2=duplicato(str);

P O C O \0

str
^^

stringa2

P O C O \0$$

#include <stdio.h>
#include <stdlib.h>
... (dich.) ...
int main() {
char str[9],    *stringa2;

.../* “POCO” in stringa2 */

stringa2 = duplicato(str);
...
return 0;
}

^^s

R
D

A

newString

PAR

VAR

...

…scompare

…rimane

$$

$$

Vedi Esercizi
per altri due modi di realizzare la 
duplicazione esatta di una stringa.
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Gestione di molte stringhe, usando le stringhe "esatte"

quando allochiamo stringhe della dimensione esattamente
necessaria ... invece di allocare array abbondanti

Tecniche della Programmazione, lez. 16
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Allocazione Dinamica: Stringhe Esatte
GESTIONE DI MOLTE STRINGHE alfanumeriche, dimensionate "esattamente" per i caratteri
che contengono; 
le stringhe possono essere di lunghezza diversa, ma non oltre una lunghezza massima nota

CIASCUNA STRINGA e`
memorizzata in un suo 
array di char ...

... di dimensione 
fissata a priori

... dimensionato ESATTAMENTE
per la lunghezza effettiva 
della stringa

SPRECO

RISPARMIO
SCHEMA DI REALIZZAZIONE
- viene definito un "sostegno" di memoria, composto da tante stringhe, 

come puntatori a memoria che verra` allocata esattamente;
esempio char * str, *str2, *str3, *str4;  /* per 4 stringhe */

- per ogni stringa da memorizzare, prima la si legge usando buffer e poi
si alloca e assegna una stringa esatta che duplichi buffer. 
E poi si usa buffer per un altro input.

- viene definita una "stringa buffer" abbastanza grande per contenere
qualunque stringa da gestire; char buffer[LUNGMAX+1]
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Allocazione Dinamica: Stringhe Esatte
Problema gestione di MOLTE STRINGHE ...

SCHEMA DI REALIZZAZIONE

...
0 50

buffer

1

str

memoria

#include <stdio.h>
#define LUNGMAX 50 /* stringhe mai piu` lunghe di 50 */

...
char buffer[LUNGMAX+1], *str, *str2 ...

...
1

str2
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Allocazione Dinamica: Stringhe Esatte
Problema gestione di MOLTE STRINGHE ...

SCHEMA DI REALIZZAZIONE

P O C O \0 ...
0 50

buffer

1

str

memoria

#include <stdio.h>
#define LUNGMAX 50 /* stringhe mai piu` lunghe di 50 */

...
char buffer[LUNGMAX+1], *str, *str2 ...

...
1

2 scanf(...%s...", buffer);

str2
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Allocazione Dinamica: Stringhe Esatte
Problema gestione di MOLTE STRINGHE ...

SCHEMA DI REALIZZAZIONE

P O C O \0 ...
0 50

buffer

1

str

memoria

#include <stdio.h>
#define LUNGMAX 50 /* stringhe mai piu` lunghe di 50 */

...
char buffer[LUNGMAX+1], *str, *str2 ...

...
1

2 scanf(...%s...", buffer);

3 str=malloc(strlen(buffer)+1);
strlen(buffer): 4

3

str2
^ ^
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Allocazione Dinamica: Stringhe Esatte
Problema gestione di MOLTE STRINGHE ...

SCHEMA DI REALIZZAZIONE

P O C O \0 ...
0 50

buffer

1

str

memoria

P O C O \0

#include <stdio.h>
#define LUNGMAX 50 /* stringhe mai piu` lunghe di 50 */

...
char buffer[LUNGMAX+1], *str, *str2 ...

...
1

4
if (str) 

strcpy(str, buffer);
else ... /* messaggio di errore*/

...

2 scanf(...%s...", buffer);

3 str=malloc(strlen(buffer)+1);
strlen(buffer): 4

3

str2
^ ^ 4



17/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Allocazione Dinamica: Stringhe Esatte
Problema gestione di MOLTE STRINGHE ...

SCHEMA DI REALIZZAZIONE

#include <stdio.h>
#define LUNGMAX 50 /* stringhe mai piu` lunghe di 50 */

...
char buffer[LUNGMAX+1], *str, *str2 ...

...
1

4
if (str) 

strcpy(str, buffer);
else ... /* messaggio di errore*/

...

2 scanf(...%s...", buffer);

3 str=malloc(strlen(buffer)+1);

5 scanf(...%s...", buffer);
N e a O \0Cr

5
...

0 50

buffer

1

^
str

memoria (2a fase)

str2

P O C O \0
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Allocazione Dinamica: Stringhe Esatte
Problema gestione di MOLTE STRINGHE ...

SCHEMA DI REALIZZAZIONE

#include <stdio.h>
#define LUNGMAX 50 /* stringhe mai piu` lunghe di 50 */

...
char buffer[LUNGMAX+1], *str, *str2 ...

...
1

4
if (str) 

strcpy(str, buffer);
else ... /* messaggio di errore*/

...

2 scanf(...%s...", buffer);

3 str=malloc(strlen(buffer)+1);

5 scanf(...%s...", buffer);
N e a O \0Cr

5
...

0 50

buffer

1

^
str

memoria (2a fase)

str2

P O C O \0

6 str2=malloc(strlen(buffer)+1);

6
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Allocazione Dinamica: Stringhe Esatte
Problema gestione di MOLTE STRINGHE ...

SCHEMA DI REALIZZAZIONE

#include <stdio.h>
#define LUNGMAX 50 /* stringhe mai piu` lunghe di 50 */

...
char buffer[LUNGMAX+1], *str, *str2 ...

...
1

4
if (str) 

strcpy(str, buffer);
else ... /* messaggio di errore*/

...

2 scanf(...%s...", buffer);

3 str=malloc(strlen(buffer)+1);

5 scanf(...%s...", buffer);
N e a O \0Cr

5
...

0 50

buffer

1

^
str

memoria (2a fase)

str2

P O C O \0

7
if (str2) 

strcpy(str2, buffer);
else ... N e a O \0Cr7

6 str2=malloc(strlen(buffer)+1);

6
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Possiamo fare meglio: invece di tane variabili staccate, 
usiamo un "Array di stringhe"

Tecniche della Programmazione, lez. 16
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Gestione di tante stringhe: Array di stringhe
Array di stringhe array di puntatori;  
char * arrStr[6]; ogni elemento punta ad una stringa

(una stringa e` un blocco/array di caratteri) 

memoria

^
arrStr

arrStr[5] = malloc(10); /* allocazione della 
memoria esattamente

necessaria per una delle 
stringhe (9 char + il '\0') */

if (arrStr[5] == NULL) 
printf("ERRORE IN ALLOCAZIONE MEMORIA\n");

else /* la memoria disponibile viene 
riempita esattamente  */

strcpy(arrStr[5], "PROMOZion");

A

B
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Gestione di tante stringhe: Array di stringhe
Array di stringhe array di puntatori;  
char * arrStr[6]; ogni elemento punta ad una stringa

(una stringa e` un blocco/array di caratteri) 

memoria

^
arrStr

arrStr[5] = malloc(10); /* allocazione della 
memoria esattamente

necessaria per una delle 
stringhe (9 char + il '\0') */

if (arrStr[5] == NULL) 
printf("ERRORE IN ALLOCAZIONE MEMORIA\n");

else /* la memoria disponibile viene 
riempita esattamente  */

strcpy(arrStr[5], "PROMOZion"); ..

..

A

A

B
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Gestione di tante stringhe: Array di stringhe
Array di stringhe array di puntatori;  
char * arrStr[6]; ogni elemento punta ad una stringa

(una stringa e` un blocco/array di caratteri) 

memoria

^
arrStr

arrStr[5] = malloc(10); /* allocazione della 
memoria esattamente

necessaria per una delle 
stringhe (9 char + il '\0') */

if (arrStr[5] == NULL) 
printf("ERRORE IN ALLOCAZIONE MEMORIA\n");

else /* la memoria disponibile viene 
riempita esattamente  */

strcpy(arrStr[5], "PROMOZion"); ..

..

A

i o nZR O M OP \0

B

A

B
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Gestione di tante stringhe: Array di stringhe
Array di stringhe array di puntatori;  
char * arrStr[6]; ogni elemento punta ad una stringa

(una stringa e` un blocco/array di caratteri) 

memoria

^
arrStr

^^^

s i \0^^^

arrStr[5] = malloc(10); /* allocazione della 
memoria esattamente

necessaria per una delle 
stringhe (9 char + il '\0') */

if (arrStr[5] == NULL) 
printf("ERRORE IN ALLOCAZIONE MEMORIA\n");

else /* la memoria disponibile viene 
riempita esattamente  */

strcpy(arrStr[5], "PROMOZion"); ..

..

A

i o nZR O M OP \0

B

A

B

analogamente si puo` fare per 
arrStr[2], arrStr[4], arrStr[1] 
...
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Gestione di tante stringhe: Array di stringhe
Array di stringhe array di puntatori;  
char * arrStr[6]; ogni elemento punta ad una stringa

(una stringa e` un blocco/array di caratteri) 

memoria

^
arrStr

^^

P O C O \0^^

^^^

s i \0^^^

arrStr[5] = malloc(10); /* allocazione della 
memoria esattamente

necessaria per una delle 
stringhe (9 char + il '\0') */

if (arrStr[5] == NULL) 
printf("ERRORE IN ALLOCAZIONE MEMORIA\n");

else /* la memoria disponibile viene 
riempita esattamente  */

strcpy(arrStr[5], "PROMOZion"); ..

..

A

i o nZR O M OP \0

B

A

B

arrStr[0]
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Gestione di tante stringhe: Array di stringhe
Array di stringhe array di puntatori;  
char * arrStr[6]; ogni elemento punta ad una stringa

(una stringa e` un blocco/array di caratteri) 

memoria

^
arrStr

....

O \0RO....

^^

P O C O \0^^

^^^

s i \0^^^

arrStr[5] = malloc(10); /* allocazione della 
memoria esattamente

necessaria per una delle 
stringhe (9 char + il '\0') */

if (arrStr[5] == NULL) 
printf("ERRORE IN ALLOCAZIONE MEMORIA\n");

else /* la memoria disponibile viene 
riempita esattamente  */

strcpy(arrStr[5], "PROMOZion"); ..

..

A

i o nZR O M OP \0

B

A

B

arrStr[1]
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Gestione di tante stringhe: Array di stringhe
Array di stringhe array di puntatori;  
char * arrStr[6]; ogni elemento punta ad una stringa

(una stringa e` un blocco/array di caratteri) 

memoria

^
arrStr

...

E S T O \0R...

....

O \0RO....

.

R O \0P.^^

P O C O \0^^

^^^

s i \0^^^

arrStr[5] = malloc(10); /* allocazione della 
memoria esattamente

necessaria per una delle 
stringhe (9 char + il '\0') */

if (arrStr[5] == NULL) 
printf("ERRORE IN ALLOCAZIONE MEMORIA\n");

else /* la memoria disponibile viene 
riempita esattamente  */

strcpy(arrStr[5], "PROMOZion"); ..

..

A

i o nZR O M OP \0

B

A

B

NB - arrStr[6] non è una locazione dell'array

- qualunque arrStr[i](i=0...5) è un puntatore;

- quando arrStr[5] punta ad un blocco di (9+1) caratteri, 
arrStr[5] è l'indirizzo iniziale di un array di 10 char: 
passando questo indirizzo a strcpy, si puo` copiare nell'array 
puntato una stringa di al massimo 9 caratteri (+ un carattere 
di fine stringa, '\0');

- in particolare, abbiamo dimensionato l'array puntato da 
arrStr[5] esattamente per contenere 9 caratteri significativi!



28/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Array di stringhe (lettura) – 1 – ambiente di calcolo
esercizio funzione che

ricevendo un array di stringhe, char * v[N], (esatte)
legga N stringhe, ciascuna di al piu` 80 char, e le memorizzi nell'array

/* 1a fase: ambiente di calcolo */

/* 2a fase: PROTOTIPO (dichiarazione) (**) */
void costruisciArrayStringhe (char * []);

memoria

^v

R
D

A

costruisciArrayStringhe(arrStr);

^
arrStr

/* 1a fase: ambiente di calcolo */
#include <stdio.h>
#include <stdlib.h>
#define N 6
#define LUNGMAX 80
... (**) ...
int main() {
char * arrStr[N];

...
costruisciArrayStringhe (arrStr);
...
return 0;
}



29/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Array di stringhe (lettura) – 2 – algoritmo per la funzione
continua funzione che legge un array di N stringhe, ciascuna di al piu` 80 char

/* 3a fase: definizione funzione */
void costruisciArrayStringhe(   );
char buffer[LUNGMAX+1];
int i;

for (i=0; i<N; i++) {

} /* fine for */   

return;
}

memoria

costruisciArrayStringhe(arrStr);

^
arrStr

^v

R
D

A

buffer

i
...

Algoritmo?
ad ogni iterazione sistemiamo una delle

stringhe in input 

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Array di stringhe (lettura) – 2 –
continua funzione che legge un array di N stringhe, ciascuna di al piu` 80 char

/* 3a fase: definizione funzione */
void costruisciArrayStringhe(   );
char buffer[LUNGMAX+1];
int i;

for (i=0; i<N; i++) {



} /* fine for */   

return;
} memoria

costruisciArrayStringhe(arrStr);

^
arrStr

si tratta di leggere una sequenza di stringhe date 
in input (POCO, ORO, RESTO, Si`, PRO, PROMOZion),  
memorizzandole secondo l'ordine di input in arrSTr:
1) iterare

1.1) leggere stringa in buffer
1.2) allocare memoria per arrStr[i]
1.3) copiare da buffer in arrStr[i] ...

^v

R
D

A

buffer

i
...
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Array di stringhe (lettura) – 2 –
continua funzione che legge un array di N stringhe, ciascuna di al piu` 80 char

/* 3a fase: definizione funzione */
void costruisciArrayStringhe(char * v[N]);
char buffer[LUNGMAX+1];
int i;

for (i=0; i<N; i++) {
/* lettura di una stringa ... */

printf("scrivi una str ...\n");
scanf("%s", buffer);

/* ... e sua memorizzazione */



} /* fine for */   

return;
} memoria

^v

R
D

A

costruisciArrayStringhe(arrStr);

^
arrStr

buffer

i
...
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Array di stringhe (lettura) – 2 –
continua funzione che legge un array di N stringhe, ciascuna di al piu` 80 char

/* 3a fase: definizione funzione */
void costruisciArrayStringhe(char * v[N]);
char buffer[LUNGMAX+1];
int i;

for (i=0; i<N; i++) {
/* lettura di una stringa ... */

printf("scrivi una str ...\n");
scanf("%s", buffer);

/* ... e sua memorizzazione */

v[i] = malloc(strlen(buffer)+1); /* 1.2 */



} /* fine for */   

return;
} memoria

^v

R
D

A

costruisciArrayStringhe(arrStr);

^
arrStr

buffer

i
...
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Array di stringhe (lettura) – 2 –
continua funzione che legge un array di N stringhe, ciascuna di al piu` 80 char

/* 3a fase: definizione funzione */
void costruisciArrayStringhe(char * v[N]);
char buffer[LUNGMAX+1];
int i;

for (i=0; i<N; i++) {
/* lettura di una stringa ... */

printf("scrivi una str ...\n");
scanf("%s", buffer);

/* ... e sua memorizzazione */

v[i] = malloc(strlen(buffer)+1); /* 1.2 */
if (v[i])

strcpy(v[i], buffer); /* 1.3 */

else {



} /* fine for */   

return;
} memoria

^v

R
D

A

costruisciArrayStringhe(arrStr);

^
arrStr

buffer

i
...
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Array di stringhe (lettura) – 2 –
continua funzione che legge un array di N stringhe, ciascuna di al piu` 80 char

/* 3a fase: definizione funzione */
void costruisciArrayStringhe(char * v[N]);
char buffer[LUNGMAX+1];
int i;

for (i=0; i<N; i++) {
/* lettura di una stringa ... */

printf("scrivi una str ...\n");
scanf("%s", buffer);

/* ... e sua memorizzazione */

v[i] = malloc(strlen(buffer)+1); /* 1.2 */
if (v[i])

strcpy(v[i], buffer); /* 1.3 */

else {
printf("eeekkk\n");
break;

}
} /* fine for */   

return;
} memoria

^v

R
D

A

costruisciArrayStringhe(arrStr);

^
arrStr

buffer

i
...
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Array di stringhe (lettura) – 3 – esecuzione simulata
continua funzione che legge un array di N stringhe, ciascuna di al piu` 80 char

/* 3a fase: definizione funzione */
void costruisciArrayStringhe(char * v[N]);
char buffer[LUNGMAX+1];
int i;

for (i=0; i<N; i++) {
/* lettura di una stringa ... */

printf("scrivi una str ...\n");
scanf("%s", buffer);

/* ... e sua memorizzazione */

v[i] = malloc(strlen(buffer)+1); /* 1.2 */
if (v[i])

strcpy(v[i], buffer); /* 1.3 */

else {
printf("eeekkk\n");
break;

}
} /* fine for */   

return;
} memoria

^v

R
D

A

costruisciArrayStringhe(arrStr);

^
arrStr

buffer

i
...



esecuzione simulata: riempire il disegno qui sopra, 
mostrando come le stringhe lette in input (POCO, 
ORO, RESTO, si, PRO, PROMOZion) vengono piazzate in 
memria e puntate dagli elementi dell'array. Poi 
confrontare con la slide successiva

Poi vedi Approfondimenti
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Ricerca di una stringa in un "Array di stringhe"

Tecniche della Programmazione, lez. 16
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Array di stringhe (ricerca) – 1/2 –
esercizio funzione "presenteIn" che
ricevendo una stringa strCercata, un array di stringhe, char * v[N], 

la dimensione di v dim
restituisca 1 se strCercata e` in v, 0 altrimenti

/* alg. di ricerca in array, con var. flag */
int presenteIn( 

char *strCercata, char **v, int dim) {

int trovata, i;
...

memoria
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Array di stringhe (ricerca) – 1/2 –
esercizio funzione "presenteIn" che
ricevendo una stringa strCercata, un array di stringhe, char * v[N], 

la dimensione di v dim
restituisca 1 se strCercata e` in v, 0 altrimenti

/* alg. di ricerca in array, con var. flag */
int presenteIn( 

char *strCercata, char **v, int dim) {

int trovata, i;
...

memoria

IL TIPO DI UN ARRAY DI STRINGHE
- un array di char e` …………………….. char str[]
equiv. (dal punto di vista dei tipi) a ……. char *str
- analogamente un array di stringhe di char e` 

char *str[]

equiv. (dal punto di vista dei tipi) a ……..char **str

se tutto quel che serve e` passare il 
parametro, va bene cosi`
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Array di stringhe (ricerca) – 2.1 –
esercizio funzione che
ricevendo una stringa strCercata, un array di stringhe, char * v[N], 

la dimensione di v dim
restituisca 1 se strCercata e` in v, 0 altrimenti

/* algoritmo di ricerca in array, con var. flag */

int presenteIn( 
char *strCercata, char **v, int dim) {

int trovata, i;

trovata = 0; /* init flag (risultato che verra`
restituito se trovata non viene mai
modificata (strCercata mai trovata) */

for (i=0; (i<dim);  i++)  
if (strcmp(strCercata, v[i])==0)

trovata=1;

return; 
} memoria

^^strCercata

R
D

A

presenteIn(str, arrStr, N);

^
arrStr

P O C O \0

str

^v

6dim

^^

completare (ci sono tre
osservazioni da fare)
poi continuare 
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Array di stringhe (ricerca) – 2.2 –
esercizio funzione che
ricevendo una stringa strCercata, un array di stringhe, char * v[N], 

la dimensione di v dim
restituisca 1 se strCercata e` in v, 0 altrimenti

/* algoritmo di ricerca in array, con var. flag */

int presenteIn( 
char *strCercata, char **v, int dim) {

int trovata, i;




for (i=0; (i<dim);  i++)  

if (strcmp(strCercata, v[i])==0)
trovata=1;

return; 
} memoria

^^strCercata

R
D

A

presenteIn(str, arrStr, N);

^
arrStr

P O C O \0

str

^v

6dim

^^

for (i=0; (i<dim);  i++) 

return trovata; 
/* dobbiamo restituire 1 o 0 ... */
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Array di stringhe (ricerca) – 2.3 –
esercizio funzione che
ricevendo una stringa strCercata, un array di stringhe, char * v[N], 

la dimensione di v dim
restituisca 1 se strCercata e` in v, 0 altrimenti

/* algoritmo di ricerca in array, con var. flag */

int presenteIn( 
char *strCercata, char **v, int dim) {

int trovata, i;

trovata = 0;
/* INIZIALIZZAZIONE (trovata diventa 1 quando troviamo la stringa 
cercata; se non troviamo, rimane 0  (strCercata mai trovata) */


for (i=0; (i<dim);  i++)  

if (strcmp(strCercata, v[i])==0)
trovata=1;

return trovata;
} memoria

^^strCercata

R
D

A

presenteIn(str, arrStr, N);

^
arrStr

P O C O \0

str

^v

6dim

^^
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Array di stringhe (ricerca) – 2.4 –
esercizio funzione che
ricevendo una stringa strCercata, un array di stringhe, char * v[N], 

la dimensione di v dim
restituisca 1 se strCercata e` in v, 0 altrimenti

/* algoritmo di ricerca in array, con var. flag */

int presenteIn( 
char *strCercata, char **v, int dim) {

int trovata=0, i;

/* i<dim controlla che non abbiamo finito l'array; ma se
trovata non è 0, inutile cercare ancora: già trovata! */ 

for (i=0; (i<dim && trovata==0);  i++)  
if (strcmp(strCercata, v[i])==0)

trovata=1;

}
memoria

^^strCercata

R
D

A

presenteIn(str, arrStr, N);

^
arrStr

P O C O \0

str

^v

6dim

^^

return trovata; 
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Verso la struttura dati per la "collezione di stringhe"

Usiamo un sostegno con un certo numero di potenziali puntatori
a stringa, e poi usiamo l'array per aggiungere e togliere stringhe.

Ma l'array e` usato parzialmente cioe` non e` sempre pieno zeppo
di stringhe ...

Tecniche della Programmazione, lez. 16
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Programma gestione stringhe - introduzione
gestione di un array di al piu` N stringhe, ciascuna di al + 
LUNGMAX caratteri (array usato parzialmente)

Funzionalita` per la gestione di una COLLEZIONE di 
stringhe:

^
stringhe

?
?

^^^

s i \0^^^

^^ P O C O \0^^

...
E S T O \0R...

....
O \0RO....

- aggiunta di una stringa (se possibile)

- stampa delle stringhe contenute

- ricerca di una stringa  e rest. del suo indice (opp. -1) 
(funzione di servizio) 

- sostituzione di una stringa  con un'altra data
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Programma gestione stringhe - introduzione
gestione di un array di al piu` N stringhe, ciascuna di al + 
LUNGMAX caratteri (array usato parzialmente)

Funzionalita` per la gestione di una COLLEZIONE di 
stringhe:

^
stringhe

?
?

^^^

s i \0^^^

^^ P O C O \0^^

...
E S T O \0R...

....
O \0RO....

- aggiunta di una stringa (se possibile)

- stampa delle stringhe contenute

- ricerca di una stringa  e rest. del suo indice (opp. -1) 
(funzione di servizio) 

- sostituzione di una stringa  con un'altra data

Quanto sopra e` parte della definizione di un tipo di dati che
possiamo chiamare « collezione di stringhe » 

(in particolare quella sopra e` la raccolta delle FUNZIONALITA`). 

E la STRUTTURA DATI? E` quella qui sopra a destra ...
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Programma gestione stringhe - introduzione
gestione di un array di al piu` N stringhe, ciascuna di al + 
LUNGMAX caratteri (array usato parzialmente)

Funzionalita` per la gestione di una COLLEZIONE di 
stringhe:

^
stringhe

?
?

^^^

s i \0^^^

^^ P O C O \0^^

...
E S T O \0R...

....
O \0RO....

- aggiunta di una stringa (se possibile)

- stampa delle stringhe contenute

- ricerca di una stringa  e rest. del suo indice (opp. -1) 
(funzione di servizio) 

- sostituzione di una stringa  con un'altra data

Quanto sopra e` parte della definizione di un tipo di dati che
possiamo chiamare « collezione di stringhe » 

(in particolare quella sopra e` la raccolta delle FUNZIONALITA`). 

E la STRUTTURA DATI? E` quella qui sopra a destra ...

scrivere le strutture dati necessarie per rappresentare nel programma una collezione di stringhe.
Serve un array, ok. Serve anche N, sicuro.

Bastano queste strutture per realizzare le funzionalita` qui sopra?

Ad esempio, se dobbiamo stampare le stringhe della collezione, quante ne stampiamo? Dobbiamo scorrere l'array, ok. 
Ma dove smettiamo di scorrere?

Ad altro esempio, per aggiungere una nuova stringa ... dove la aggiungiamo? Cioe` a quale elemento dell'array la 
assegnamo?

Nella struttura dati c'e` un dato che permetta di aggiungere la nuova stringa al posto glusto? O fermarsi quando le 
stringhe effettivamente presenti nella collezione sono state tutte stampate? 
Anche quando sono 2, o 3, o 4, come in figura, ma non N?
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Programma gestione stringhe - introduzione
gestione di un array di al piu` N stringhe, ciascuna di al + LUNGMAX caratteri (array usato parzialmente

Struttura dati e Funzionalita` per la gestione del TIPO        
COLLEZIONE di stringhe

^
stringhe

?
?

^^^

s i \0^^^

^^ P O C O \0^^

...
E S T O \0R...

....
O \0RO....

(come rappresentare questo oggetto in memoria?):
- N e` una costante
- sostegno: l'array e` un array di N stringhe:  

char *stringhe[N]

? Ma, se l'array e` usato parzialmente, 
dove fermare una scansione per stampa o 
ricerca? Dove inserire una nuova stringa?
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Programma gestione stringhe - introduzione
gestione di un array di al piu` N stringhe, ciascuna di al + LUNGMAX caratteri (array usato parzialmente

Struttura dati e Funzionalita` per la gestione del TIPO        
COLLEZIONE di stringhe

^
stringhe

?
?

^^^

s i \0^^^

^^ P O C O \0^^

...
E S T O \0R...

....
O \0RO....

(come rappresentare questo oggetto in memoria?):
- N e` una costante
- sostegno: l'array e` un array di N stringhe:  

char *stringhe[N]

numeroStringhe 4

? Ma, se l'array e` usato parzialmente, 
dove fermare una scansione per stampa o 
ricerca? Dove inserire una nuova stringa?

stringhe e` quindi una variabile che va gestita usando
anche l'informazione addizionale su 
"quanti elementi/stringhe ci sono attualmente nell'array"
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Programma gestione stringhe - introduzione
gestione di un array di al piu` N stringhe, ciascuna di al + LUNGMAX caratteri (array usato parzialmente

Struttura dati e Funzionalita` per la gestione del TIPO        
COLLEZIONE di stringhe

^
stringhe

?
?

^^^

s i \0^^^

^^ P O C O \0^^

...
E S T O \0R...

....
O \0RO....

(come rappresentare questo oggetto in memoria?):
- N e` una costante
- sostegno: l'array e` un array di N stringhe:  

char *stringhe[N]

numeroStringhe 4

stringhe e` quindi una variabile che va gestita usando
anche l'informazione addizionale su 
"quanti elementi/stringhe ci sono attualmente nell'array"

collezione di stringhe = <array + numerostringhe>

in sostanza una collezione di stringhe va rappresentata mediante
la collaborazione di due variabili: stringhe e 
numeroStringhe
- un array di stringhe, che faccia da sostegno per la 

memorizzazione delle stringhe;
- una variabile intera che dica in ogni momento quante

stringhe ci sono nell'array
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Gestione di tabella (collezione) di stringhe - 1/8 -
#include ...
#define N ...
... (dich.) ...
int main() {
scelta ----------------------------------------------------------(per il menu` ...)

stringhe, numeroStringhe, ------------------------(per la collezione di stringhe)
buffer1, buffer2, ------------------------------------(buffer per leggere stringhe)

do {
/* ciclo di stampa menu`, lettura scelta funzionalita` da 
eseguire, esecuzione della funzionalita` prescelta */

... aggiungi(stringhe, buffer1, &numeroStringhe);  (scelta==1)

... stampaTutto(stringhe, numeroStringhe); (scelta==3)

... sostituisci(stringhe, numeroStringhe, buffer1, buffer2);
(scelta==2)

...

} while (scelta!=0)

return 0;
}

SCHEMA DI PROGRAMMA
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Gestione di tabella (collezione) di stringhe - 1/8 -
#include ...
#define N ...
... (dich.) ...
int main() {
scelta ----------------------------------------------------------(per il menu` ...)

stringhe, numeroStringhe, ------------------------(per la collezione di stringhe)
buffer1, buffer2, ------------------------------------(buffer per leggere stringhe)

do {
/* ciclo di stampa menu`, lettura scelta funzionalita` da 
eseguire, esecuzione della funzionalita` prescelta */

... aggiungi(stringhe, buffer1, &numeroStringhe);  (scelta==1)

... stampaTutto(stringhe, numeroStringhe); (scelta==3)

... sostituisci(stringhe, numeroStringhe, buffer1, buffer2);
(scelta==2)

...

} while (scelta!=0)

return 0;
}

SCHEMA DI PROGRAMMA
NB la coppia <stringhe, numeroStringhe> rappresenta 
la collezione di stringhe; collezione che a sua 
volta e` proprieta` della funzione main() ...

NB2 la struttura dati "tabella di stringhe" e`
la coppia stringhe, numeroStringhe. Infatti sono 
quelle due componenti che permettono di 
gestirla. E infatti sono quelle due componenti 
che dobbiamo passare alle funzioni interessate.
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Programma gestione stringhe - 2/8 -
#include <stdio.h>
#include <stdlib.h> #define N ... #define LUNGMAX 
... (dich.) 

int main() { char *stringhe[N],    char buffer1[LUNGMAX+1], 
buffer2[LUNGMAX+1];

int numeroStringhe, scelta;
numeroStringhe = 0; /* init struttura dati array stringhe */

do {  stampaMenu(); /* una funzione che stampa il 
menu' di scelte ... 1=aggiungi 
2=sostituisci ... */

scanf("%d", &scelta); /* lettura scelta */ 

main()
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Programma gestione stringhe - 2/8 -
#include <stdio.h>
#include <stdlib.h> #define N ... #define LUNGMAX 
... (dich.) 

int main() { char *stringhe[N],    char buffer1[LUNGMAX+1], 
buffer2[LUNGMAX+1];

int numeroStringhe, scelta;
numeroStringhe = 0; /* init struttura dati array stringhe */

do {  stampaMenu(); /* 1=aggiungi 2=sostitui... */
scanf("%d", &scelta); /* lettura scelta */ 

switch(scelta) {
case 1: /* inserimento nuova stringa in stringhe oppure 

messaggio di errore */
break;

case 2: /* lett. stringa da sost. e sostituta; chiamata sostituisci() */

break;

case 3: ...

main()
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BTW  - SWITCH ...
#include <stdio.h>
#include <stdlib.h> #define N ... #define LUNGMAX 
... (dich.) 

int main() { char *stringhe[N],    char buffer1[LUNGMAX+1], 
buffer2[LUNGMAX+1];

int numeroStringhe, scelta;
numeroStringhe = 0; /* init struttura dati array stringhe */ 

do {  stampaMenu(); /* 1=aggiungi 2=sostitui... */
scanf("%d", &scelta); /* lettura scelta */    

switch(scelta) {
case 1: /* inserimento nuova stringa in stringhe oppure 

messaggio di errore */
break;

case 2:  /* lett. stringa da sost. e sostituta; chiamata sostituisci() */
break;

case 3:  stampaTutto(stringhe, numeroStringhe); break;

switch(scelta) {
case 1:

codice da eseguire nel caso in cui scelta==1
break;

...
case VAL:

codice da eseguire nel caso in cui scelta==VAL
break;

...
case ALTROVAL:

codice da eseguire nel caso in cui scelta==VALVAL
break;

default: printf(" scelta sbagliata \n\n");
} /* fine switch */
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Programma gestione stringhe - 2/8 -
#include <stdio.h>
#include <stdlib.h> #define N ... #define LUNGMAX 
... (dich.) 

int main() { char *stringhe[N],    char buffer1[LUNGMAX+1], 
buffer2[LUNGMAX+1];

int numeroStringhe, scelta;
numeroStringhe = 0; /* init struttura dati array stringhe */

do {  stampaMenu(); /* 1=aggiungi 2=sostitui... */
scanf("%d", &scelta); /* lettura scelta */ 

switch(scelta) {
case 1: ... aggiungi(stringhe, buffer1, &numeroStringhe);
break;

case 0: printf("FINE PROGRAMMA\n"); break;
default: printf(" scelta sbagliata \n\n");

} /* fine switch */
} while (scelta!=0)
return 0;
}

main()

NB stampaTutto riceve “la 
collezione”, sotto forma 
di una coppia di parametri
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Programma gestione stringhe - 2/8 -
#include <stdio.h>
#include <stdlib.h> #define N ... #define LUNGMAX 
... (dich.) 

int main() { char *stringhe[N],    char buffer1[LUNGMAX+1], 
buffer2[LUNGMAX+1];

int numeroStringhe, scelta;
numeroStringhe = 0; /* init struttura dati array stringhe */

do {  stampaMenu(); /* 1=aggiungi 2=sostitui... */
scanf("%d", &scelta); /* lettura scelta */ 

switch(scelta) {
case 1: ... aggiungi(stringhe, buffer1, &numeroStringhe);
break;

case 2: ... sostituisci(stringhe, numeroStringhe, buffer1, 
buffer2);

break;

case 0: printf("FINE PROGRAMMA\n"); break;
default: printf(" scelta sbagliata \n\n");

} /* fine switch */
} while (scelta!=0)
return 0;
}

main()

NB stampaTutto riceve “la 
collezione”, sotto forma 
di una coppia di parametri
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Programma gestione stringhe - 2/8 -
#include <stdio.h>
#include <stdlib.h> #define N ... #define LUNGMAX 
... (dich.) 

int main() { char *stringhe[N],    char buffer1[LUNGMAX+1], 
buffer2[LUNGMAX+1];

int numeroStringhe, scelta;
numeroStringhe = 0; /* init struttura dati array stringhe */

do {  stampaMenu(); /* 1=aggiungi 2=sostitui... */
scanf("%d", &scelta); /* lettura scelta */ 

switch(scelta) {
case 1: ... aggiungi(stringhe, buffer1, &numeroStringhe);
break;

case 2: ... sostituisci(stringhe, numeroStringhe, buffer1, 
buffer2);

break;
case 3: stampaTutto(stringhe, numeroStringhe); break;
case 0: printf("FINE PROGRAMMA\n"); break;
default: printf(" scelta sbagliata \n\n");

} /* fine switch */
} while (scelta!=0)
return 0;
}

main()

NB stampaTutto riceve “la 
collezione”, sotto forma 
di una coppia di parametri
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Programma gestione stringhe - 3/8 -
#include <stdio.h>
#include <stdlib.h> #define N ... #define LUNGMAX 
... (dich.) 
int main() { char *stringhe[N],    char buffer1[LUNGMAX+1], buffer2[LUNGMAX+1];

int numeroStringhe, scelta;

numeroStringhe = 0; /* init struttura dati array stringhe */

do {  stampaMenu(); /* 1=aggiungi 2=sostitui... */
scanf("", &scelta); /* lettura scelta */ 

switch(scelta) {
case 1: 
if (numeroStringhe<N) {
printf("quale stringa da aggiungere? ");
scanf("%s", buffer1);
aggiungi(stringhe, buffer1, &numeroStringhe);

} 
else  printf("spazio insufficiente, tsk.\n\n");
break;

case 2: 
printf("stringa da sostituire: ");

scanf("%s", buffer1);
printf("stringa con cui sostituire: ");

scanf("%s", buffer2);
sostituisci(stringhe, numeroStringhe, buffer1, buffer2);
break;

main()
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Programma gestione stringhe - 3/8 -
#include <stdio.h>
#include <stdlib.h> #define N ... #define LUNGMAX 
... (dich.) 
int main() { char *stringhe[N],    char buffer1[LUNGMAX+1], buffer2[LUNGMAX+1];

int numeroStringhe, scelta;

numeroStringhe = 0; /* init struttura dati array stringhe */

do {  stampaMenu(); /* 1=aggiungi 2=sostitui... */
scanf("", &scelta); /* lettura scelta */ 

switch(scelta) {
case 1: 
if (numeroStringhe<N) {
printf("quale stringa da aggiungere? ");
scanf("%s", buffer1);
aggiungi(stringhe, buffer1, &numeroStringhe);

} 
else  printf("spazio insufficiente, tsk.\n\n");
break;

case 2: 
printf("stringa da sostituire: ");

scanf("%s", buffer1);
printf("stringa con cui sostituire: ");

scanf("%s", buffer2);
sostituisci(stringhe, numeroStringhe, buffer1, buffer2);
break;

main()

Controllo se c'è spazio per una 
nuova stringa, nell’array sostegno

NB aggiungi riceve “la 
collezione”, sotto forma di 
una coppia di parametri
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Programma gestione stringhe - 3/8 -
#include <stdio.h>
#include <stdlib.h> #define N ... #define LUNGMAX 
... (dich.) 
int main() { char *stringhe[N],    char buffer1[LUNGMAX+1], buffer2[LUNGMAX+1];

int numeroStringhe, scelta;

numeroStringhe = 0; /* init struttura dati array stringhe */

do {  stampaMenu(); /* 1=aggiungi 2=sostitui... */
scanf("", &scelta); /* lettura scelta */ 

switch(scelta) {
case 1: 
if (numeroStringhe<N) {
printf("quale stringa da aggiungere? ");
scanf("%s", buffer1);
aggiungi(stringhe, buffer1, &numeroStringhe);

} 
else  printf("spazio insufficiente, tsk.\n\n");
break;

case 2: 
printf("stringa da sostituire: ");

scanf("%s", buffer1);
printf("stringa con cui sostituire: ");

scanf("%s", buffer2);
sostituisci(stringhe, numeroStringhe, buffer1, buffer2);
break;

main()

NB aggiungi riceve “la 
collezione”, sotto forma di 
una coppia di parametri

perche'?  
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Programma gestione stringhe - 3/8 -
#include <stdio.h>
#include <stdlib.h> #define N ... #define LUNGMAX 
... (dich.) 
int main() { char *stringhe[N],    char buffer1[LUNGMAX+1], buffer2[LUNGMAX+1];

int numeroStringhe, scelta;

numeroStringhe = 0; /* init struttura dati array stringhe */

do {  stampaMenu(); /* 1=aggiungi 2=sostitui... */
scanf("", &scelta); /* lettura scelta */ 

switch(scelta) {
case 1: 
if (numeroStringhe<N) {
printf("quale stringa da aggiungere? ");
scanf("%s", buffer1);
aggiungi(stringhe, buffer1, &numeroStringhe);

} 
else  printf("spazio insufficiente, tsk.\n\n");
break;

case 2: 
printf("stringa da sostituire: ");

scanf("%s", buffer1);
printf("stringa con cui sostituire: ");

scanf("%s", buffer2);
sostituisci(stringhe, numeroStringhe, buffer1, buffer2);
break;

main()

NB aggiungi riceve “la collezione”, 
sotto forma di una coppia di parametri 
(stringhe e numeroStringhe)

perche' dovra` subire un effetto 
collaterale, crescendo di 1 dopo l'aggiunta 

di una nuova stringa alla collezione
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Programma gestione stringhe - 4/8 -
#include <stdio.h>
#include <stdlib.h> #define N ... #define LUNGMAX 
... (dich.) 
int main() { char *stringhe[N],    char buffer1[LUNGMAX+1], buffer2[LUNGMAX+1];

int numeroStringhe, scelta;

numeroStringhe = 0; /* init struttura dati array stringhe */

do {  stampaMenu(); /* 1=aggiungi 2=sostitui... */
scanf("", &scelta); /* lettura scelta */ 

switch(scelta) {
case 1: 

if (numeroStringhe<N) {
printf("quale stringa da aggiungere? ");

scanf("%s", buffer1);
aggiungi(stringhe, buffer1, &numeroStringhe);

} 
else  printf("spazio insufficiente, tsk.\n\n");
break;

case 2: 



sostituisci(stringhe, numeroStringhe, buffer1, buffer2);
break;

...

main()
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Programma gestione stringhe - 4/8 -
#include <stdio.h>
#include <stdlib.h> #define N ... #define LUNGMAX 
... (dich.) 
int main() { char *stringhe[N],    char buffer1[LUNGMAX+1], buffer2[LUNGMAX+1];

int numeroStringhe, scelta;

numeroStringhe = 0; /* init struttura dati array stringhe */

do {  stampaMenu(); /* 1=aggiungi 2=sostitui... */
scanf("", &scelta); /* lettura scelta */ 

switch(scelta) {
case 1: 

if (numeroStringhe<N) {
printf("quale stringa da aggiungere? ");

scanf("%s", buffer1);
aggiungi(stringhe, buffer1, &numeroStringhe);

} 
else  printf("spazio insufficiente, tsk.\n\n");
break;

case 2: 
printf("stringa da sostituire: ");
scanf("%s", buffer1);
printf("stringa con cui sostituire: ");
scanf("%s", buffer2);
sostituisci(stringhe, numeroStringhe, buffer1, buffer2);
break;

...

main()
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Programma gestione stringhe - 4/8 -
#include <stdio.h>
#include <stdlib.h> #define N ... #define LUNGMAX 
... (dich.) 
int main() { char *stringhe[N],    char buffer1[LUNGMAX+1], buffer2[LUNGMAX+1];

int numeroStringhe, scelta;

numeroStringhe = 0; /* init struttura dati array stringhe */

do {  stampaMenu(); /* 1=aggiungi 2=sostitui... */
scanf("", &scelta); /* lettura scelta */ 

switch(scelta) {
case 1: 

if (numeroStringhe<N) {
printf("quale stringa da aggiungere? ");

scanf("%s", buffer1);
aggiungi(stringhe, buffer1, &numeroStringhe);

} 
else  printf("spazio insufficiente, tsk.\n\n");
break;

case 2: 
printf("stringa da sostituire: ");
scanf("%s", buffer1);
printf("stringa con cui sostituire: ");
scanf("%s", buffer2);
sostituisci(stringhe, numeroStringhe, buffer1, buffer2);
break;

...

main()

NB sostituisci riceve “la collezione”, 
sotto forma di una coppia di parametri
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Programma gestione stringhe - 5/8 -

void stampaTutto(char *v[], int quanteSono) {
int i;

for (i=0; i<quanteSono; i++)
printf("%s\n", v[i]);

return;                 /* o anche *(v+i) */
}

^
stringhe

?
?

^^^

s i \0^^^

^^ P O C O \0^^

...
E S T O \0R...

....
O \0RO....

numeroStringhe 4

memoria

^v

R
D

A

stampaTutto(stringhe, numeroStringhe);

4
quanteSono

PAR

stampaTutto()
...

case 3: stampaTutto(stringhe, numeroStringhe);

break; ...
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Programma gestione stringhe - 5/8 -

void stampaTutto(char *v[], int quanteSono) {
int i;

for (i=0; i<quanteSono; i++)
printf("%s\n", v[i]);

return;                 /* o anche *(v+i) */
}

^
stringhe

?
?

^^^

s i \0^^^

^^ P O C O \0^^

...
E S T O \0R...

....
O \0RO....

numeroStringhe 4

memoria

^v

R
D

A

stampaTutto(stringhe, numeroStringhe);

4
quanteSono

PAR

- a che tipo è equivalente char *v[] (solo dal punto di vista dei 
tipi nei parametri)

- v[i] è il ........... alla ...-esima  ........ di v

- v[i] si può scrivere anche come .......

- cosa è v, tra le scelte seguenti?

"doppio puntatore”, "puntatore a puntatore", indirizzo 
di un puntatore, indirizzo di una locazione che 
contiene un ind.

- cosa vuol dire "stampare v[i] con formato %s" 

stampaTutto()
...

case 3: stampaTutto(stringhe, numeroStringhe);

break; ...


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Programma gestione stringhe - 5/8 -

void stampaTutto(char *v[], int quanteSono) {
int i;

for (i=0; i<quanteSono; i++)
printf("%s\n", v[i]);

return;                 /* o anche *(v+i) */
}

^
stringhe

?
?

^^^

s i \0^^^

^^ P O C O \0^^

...
E S T O \0R...

....
O \0RO....

numeroStringhe 4

memoria

^v

R
D

A

stampaTutto(stringhe, numeroStringhe);

4
quanteSono

PAR

- char *v[] equivalente a char **

- v[i] = puntatore alla i-esima stringa = *(v+i);

- v è "doppio puntatore”

= "puntatore a puntatore" 

= indirizzo di un puntatore 

= ind. di una locazione che contiene un ind.

- stampare v[i] con formato %s vuol dire stampare la 
stringa v[i], cioè la stringa puntata dal puntatore v[i]

stampaTutto()
...

case 3: stampaTutto(stringhe, numeroStringhe);

break; ...
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Programma gestione stringhe - 6/8 -
void aggiungi ( char **v, char *nuovaStringa, int *pQuante) {
/* il controllo sulla disponibilita` di spazio nell'array
si suppone fatto all'esterno, dalla funzione chiamante
(non è bello, ma ora ci stiamo concentrando su altro */

int j = *pQuante; /* solo per comodita` */

v[j] = malloc (strlen(nuovaStringa)+1);

if (!v[j]) 
printf("errore in alloc. ...");

else {
strcpy(v[j], nuovaStringa);
*pQuante+=1;

}
return;
} ^

stringhe

?
?

^^^
s i \0^^^

^^ P O C O \0^^

...
E S T O \0R...

....
O \0RO....

numeroStringhe 4

memoria

^v

R
D

A

aggiungi(stringhe, buffer1, 
&numeroStringhe);

#pQuante

PAR

#

nuovaStringa

buffer1## F O C O \0

VARj

X

X

aggiungi()

#^

##
4
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Programma gestione stringhe - 6/8 -
void aggiungi ( char **v, char *nuovaStringa, int *pQuante) {
/* il controllo sulla disponibilita` di spazio nell'array
si suppone fatto all'esterno, dalla funzione chiamante
(non e` bello, ma ora ci stiamo concentrando su altro */

int j = *pQuante; /* solo per comodita` */

v[j] = malloc (strlen(nuovaStringa)+1);

if (!v[j]) 
printf("errore in alloc. ...");

else {
strcpy(v[j], nuovaStringa);
*pQuante+=1;

}
return;
} ^

stringhe

?
?

^^^
s i \0^^^

^^ P O C O \0^^

...
E S T O \0R...

....
O \0RO....

numeroStringhe 4

memoria

^v

R
D

A

aggiungi(stringhe, buffer1, 
&numeroStringhe);

#pQuante

PAR

#

nuovaStringa

buffer1## F O C O \0

VARj

X

X

aggiungi()

#^

##
4

F O C O \0

Y

Y
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Programma gestione stringhe - 6/8 -
void aggiungi ( char **v, char *nuovaStringa, int *pQuante) {
/* il controllo sulla disponibilita` di spazio nell'array
si suppone fatto all'esterno, dalla funzione chiamante
(non e` bello, ma ora ci stiamo concentrando su altro */

int j = *pQuante; /* solo per comodita` */

v[j] = malloc (strlen(nuovaStringa)+1);

if (!v[j]) 
printf("errore in alloc. ...");

else {
strcpy(v[j], nuovaStringa);
*pQuante+=1;

}
return;
} ^

stringhe

?
?

^^^
s i \0^^^

^^ P O C O \0^^

...
E S T O \0R...

....
O \0RO....

numeroStringhe 4

memoria

^v

R
D

A

aggiungi(stringhe, buffer1, 
&numeroStringhe);

#pQuante

PAR

#

nuovaStringa

buffer1## F O C O \0

VARj

Z

aggiungi()

#^

##
4

5

F O C O \0

Z
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Programma gestione stringhe - 6/8 -
void aggiungi ( char **v, char *nuovaStringa, int *pQuante) {
/* il controllo sulla disponibilita` di spazio nell'array
si suppone fatto all'esterno, dalla funzione chiamante
(non e` bello, ma ora ci stiamo concentrando su altro */

int j = *pQuante; /* solo per comodita` */

v[j] = malloc (strlen(nuovaStringa)+1);

if (!v[j]) 
printf("errore in alloc. ...");

else {
strcpy(v[j], nuovaStringa);
*pQuante+=1;

}
return;
} ^

stringhe

?
?

^^^
s i \0^^^

^^ P O C O \0^^

...
E S T O \0R...

....
O \0RO....

numeroStringhe 4

memoria

^v

R
D

A

aggiungi(stringhe, buffer1, 
&numeroStringhe);

#pQuante

PAR

ALCUNE Verità

- la funzione ha aggiunto una stringa 
in posizione numeroStringhe+1; quindi 
subito prima del termine 
dell'attivazione, numeroStringhe viene 
incrementato di 1;

- l'espressione (!v[j]) è equiv. a 
(v[j]==NULL)

#

nuovaStringa

buffer1## F O C O \0

VARj

aggiungi()

#^

##
4

5

F O C O \0
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Programma gestione stringhe - 7/8 -
void sostituisci (char **v, int quanteSono, 

char *daSost, char *conChi) {
/* cerchiamo l'indice della stringa da sostituire con 

una funzione di servizio che restituisce l'indice 
della stringa nell'array, oppure -1 (se non c'e`)*/
int indice = 

ricerca(v,quanteSono, daSost);

if (indice==-1)
printf("non presente\n\n");

else {

v[indice]=malloc(strlen(conChi)+1);

if (!v[indice]) 
printf("errore in alloc. ...");

else 
strcpy(v[indice], conChi);

} /* fine primo if */
return;
}

^
stringhe

#^
?

^^^
s i \0^^^

^^ P O C O \0^^

...
E S T O \0R...

....
O \0RO....

numeroStringhe 5

memoria prima della chiamata

^v

R
D

A

sostituisci(stringhe, 
numeroStringh, buffer1, buffer2);

5quanteSono

PAR

#

##daSost

buffer1## R E S T O

VARindice

buffer2
#.

F O C O \0L A R E

#.conChi

\0

sostituisci()
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Programma gestione stringhe - 7/8 -
void sostituisci (char **v, int quanteSono, 

char *daSost, char *conChi) {
/* cerchiamo l'indice della stringa da sostituire con 

una funzione di servizio che restituisce l'indice 
della stringa nell'array, oppure -1 (se non c'e`)*/
int indice = 

ricerca(v,quanteSono, daSost);

if (indice==-1)
printf("non presente\n\n");

else {

v[indice]=malloc(strlen(conChi)+1);

if (!v[indice]) 
printf("errore in alloc. ...");

else 
strcpy(v[indice], conChi);

} /* fine primo if */
return;
}

^
stringhe

#^
?

^^^
s i \0^^^

^^ P O C O \0^^

...
E S T O \0R...

....
O \0RO....

numeroStringhe 5

memoria prima della chiamata

^v

R
D

A

sostituisci(stringhe, 
numeroStringh, buffer1, buffer2);

5quanteSono

PAR

#

##daSost

buffer1## R E S T O

VAR2indice

buffer2
#.

F O C O \0L A R E

#.conChi

\0

sostituisci()

Z

Z

?

?
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Programma gestione stringhe - 7/8 -
void sostituisci (char **v, int quanteSono, 

char *daSost, char *conChi) {
/* cerchiamo l'indice della stringa da sostituire con 

una funzione di servizio che restituisce l'indice 
della stringa nell'array, oppure -1 (se non c'e`)*/
int indice = 

ricerca(v,quanteSono, daSost);

if (indice==-1)
printf("non presente\n\n");

else {
free(v[indice]; /* deall. stringa da sost. 

e allocazione stringa sostituto */
v[indice]=malloc(strlen(conChi)+1);

if (!v[indice]) 
printf("errore in alloc. ...");

else 
strcpy(v[indice], conChi);

} /* fine primo if */
return;
}

^
stringhe

#^
?

^^^
s i \0^^^

^^ P O C O \0^^

...
E S T O \0R...

....
O \0RO....

numeroStringhe 5

memoria prima della chiamata

^v

R
D

A

sostituisci(stringhe, 
numeroStringh, buffer1, buffer2);

5quanteSono

PAR

#

##daSost

buffer1## R E S T O

VAR2indice

buffer2
#.

F O C O \0L A R E

#.conChi

\0

sostituisci()
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Programma gestione stringhe - 7/8 -
void sostituisci (char **v, int quanteSono, 

char *daSost, char *conChi) {
/* cerchiamo l'indice della stringa da sostituire con 

una funzione di servizio che restituisce l'indice 
della stringa nell'array, oppure -1 (se non c'e`)*/
int indice = 

ricerca(v,quanteSono, daSost);

if (indice==-1)
printf("non presente\n\n");

else {
free(v[indice]; /* deall. stringa da sost. 

e allocazione stringa sostituto */
v[indice]=malloc(strlen(conChi)+1);

if (!v[indice]) 
printf("errore in alloc. ...");

else 
strcpy(v[indice], conChi);

} /* fine primo if */
return;
}

^
stringhe

#^
?

^^^
s i \0^^^

^^ P O C O \0^^

...

....
O \0RO....

numeroStringhe 5

memoria prima della chiamata

^v

R
D

A

sostituisci(stringhe, 
numeroStringh, buffer1, buffer2);

5quanteSono

PAR

#

##daSost

buffer1## R E S T O

VAR2indice

buffer2
#.

F O C O \0L A R E

#.conChi

\0

sostituisci()
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Programma gestione stringhe - 7/8 -
void sostituisci (char **v, int quanteSono, 

char *daSost, char *conChi) {
/* cerchiamo l'indice della stringa da sostituire con 

una funzione di servizio che restituisce l'indice 
della stringa nell'array, oppure -1 (se non c'e`)*/
int indice = 

ricerca(v,quanteSono, daSost);

if (indice==-1)
printf("non presente\n\n");

else {
free(v[indice]; /* deall. stringa da sost. 

e allocazione stringa sostituto */
v[indice]=malloc(strlen(conChi)+1);

if (!v[indice]) 
printf("errore in alloc. ...");

else 
strcpy(v[indice], conChi);

} /* fine primo if */
return;
}

^
stringhe

#^
?

^^^
s i \0^^^

^^ P O C O \0^^

...

....
O \0RO....

numeroStringhe 5

memoria prima della chiamata

^v

R
D

A

sostituisci(stringhe, 
numeroStringh, buffer1, buffer2);

5quanteSono

PAR

#

##daSost

buffer1## R E S T O

VAR2indice

buffer2
#.

F O C O \0L A R E

#.conChi

\0

sostituisci()

O C … …F...
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Programma gestione stringhe - 8/8 -
int ricerca (char **v, int quanteSono, char *strCercata) {
/* restituisce l'indice di strCercata in v, oppure  -1 */
int i = 0, 

for ( ; i<quanteSono; i++)
if (strcmp((v[i], strCercata)==0)
return i; /* stringa trovata: rest. l'indice */

return -1;
}

^
stringhe

^.
?

^^^
s i \0^^^

^^ P O C O \0^^
....

O \0RO....

numeroStringhe 5

memoria

^v

R
D

A

ricerca (stringhe, numeroStringh,   
buffer1);

5quanteSono

PAR

#

##strCercata

buffer1## R E S T O

VARi

\0

ricerca()

...
E S T O \0R...
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Programma gestione stringhe - 8/8 -
int ricerca (char **v, int quanteSono, char *strCercata) {
/* restituisce l'indice di strCercata in v, oppure  -1 */
int i = 0, 

for ( ; i<quanteSono; i++)
if (strcmp((v[i], strCercata)==0)
return i; /* stringa trovata: rest. l'indice */

return -1;
}

^
stringhe

^.
?

^^^
s i \0^^^

^^ P O C O \0^^
....

O \0RO....

numeroStringhe 5

memoria

^v

R
D

A

ricerca (stringhe, numeroStringh,   
buffer1);

5quanteSono

PAR

#

##strCercata

buffer1## R E S T O

VAR0i

\0

ricerca()

...
E S T O \0R...
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Programma gestione stringhe - 8/8 -
int ricerca (char **v, int quanteSono, char *strCercata) {
/* restituisce l'indice di strCercata in v, oppure  -1 */
int i = 0, 

for ( ; i<quanteSono; i++)
if (strcmp((v[i], strCercata)==0)
return i; /* stringa trovata: rest. l'indice */

return -1;
}

^
stringhe

^.
?

^^^
s i \0^^^

^^ P O C O \0^^
....

O \0RO....

numeroStringhe 5

memoria

^v

R
D

A

ricerca (stringhe, numeroStringh,   
buffer1);

5quanteSono

PAR

#

##strCercata

buffer1## R E S T O

VAR0i

\0

ricerca()

2

...
E S T O \0R...



80/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Programma gestione stringhe - 8/8 -
int ricerca (char **v, int quanteSono, char *strCercata) {
/* restituisce l'indice di strCercata in v, oppure  -1 */
int i = 0, 

for ( ; i<quanteSono; i++)
if (strcmp((v[i], strCercata)==0)
return i; /* stringa trovata: rest. l'indice */

/* se siamo usciti dal ciclo senza mai trovare la stringa,
... vuol dire che non l'abbiamo trovata ... */
return -1;
}

^
stringhe

^.
?

^^^
s i \0^^^

^^ P O C O \0^^
....

O \0RO....

numeroStringhe 5

memoria

^v

R
D

A

ricerca (stringhe, numeroStringh,   
buffer1);

5quanteSono

PAR

#

##strCercata

buffer1## R E S T O

VAR0i

\0

ricerca()

esercizio: riflettere sul perche', nella funzione sostituisci, per sostituire la stringa
v{indice] con quella conChi, dopo free(v[indice]), invece di fare

v[indice] = conChi

abbiamo usato codice differente per creare una copia esatta di conChi e poi
assegnare a v[indice] tale nuova stringa

2

...
E S T O \0R...
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Approfondimenti

Tecniche della Programmazione, lez. 16
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Array di stringhe (lettura) – 3 – esecuzione simulata
continua funzione che legge un array di N stringhe, ciascuna di al piu` 80 char

/* 3a fase: definizione funzione */
void costruisciArrayStringhe(char * v[N]);
char buffer[LUNGMAX+1];
int i;

for (i=0; i<N; i++) {
/* lettura di una stringa ... */

printf("scrivi una str ...\n");
scanf("%s", buffer);

/* ... e sua memorizzazione */

v[i] = malloc(strlen(buffer)+1); /* 1.2 */
if (v[i])

strcpy(v[i], buffer); /* 1.3 */

else {
printf("eeekkk\n");
break;

}
} /* fine for */   

return;
} memoria

^v

R
D

A

costruisciArrayStringhe(arrStr);

^
arrStr

buffer

i
...



esecuzione simulata: riempire il disegno qui sopra, 
mostrando come le stringhe lette in input (POCO, 
ORO, RESTO, si, PRO, PROMOZion) vengono piazzate in 
memria e puntate dagli elementi dell'array. Poi 
confrontare con la slide successiva
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Array di stringhe (lettura) – 3.2 –
continua funzione che legge un array di N stringhe, ciascuna di al piu` 80 char

/* 3a fase: definizione funzione */
void costruisciArrayStringhe(char * v[N]);
char buffer[LUNGMAX+1];
int i;

for (i=0; i<N; i++) {
/* lettura di una stringa ... */

printf("scrivi una str ...\n");
scanf("%s", buffer);

/* ... e sua memorizzazione */

v[i] = malloc(strlen(buffer)+1); /* 1.2 */
if (v[i])

strcpy(v[i], buffer); /* 1.3 */

else {
printf("eeekkk\n");
break;

}
} /* fine for */   

return;
} memoria

^v

R
D

A

costruisciArrayStringhe(arrStr);

^
arrStr

p
buffer

0i
o c o ...
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Array di stringhe (lettura) – 3.3 –
continua funzione che legge un array di N stringhe, ciascuna di al piu` 80 char

/* 3a fase: definizione funzione */
void costruisciArrayStringhe(char * v[N]);
char buffer[LUNGMAX+1];
int i;

for (i=0; i<N; i++) {
/* lettura di una stringa ... */

printf("scrivi una str ...\n");
scanf("%s", buffer);

/* ... e sua memorizzazione */

v[i] = malloc(strlen(buffer)+1); /* 1.2 */
if (v[i])

strcpy(v[i], buffer); /* 1.3 */

else {
printf("eeekkk\n");
break;

}
} /* fine for */   

return;
} memoria

^v

R
D

A

costruisciArrayStringhe(arrStr);

^
arrStr

p
buffer

0i
o c o ...

^^

P O C O \0^^
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Array di stringhe (lettura) – 3.4 –
continua funzione che legge un array di N stringhe, ciascuna di al piu` 80 char

/* 3a fase: definizione funzione */
void costruisciArrayStringhe(char * v[N]);
char buffer[LUNGMAX+1];
int i;

for (i=0; i<N; i++) {
/* lettura di una stringa ... */

printf("scrivi una str ...\n");
scanf("%s", buffer);

/* ... e sua memorizzazione */

v[i] = malloc(strlen(buffer)+1); /* 1.2 */
if (v[i])

strcpy(v[i], buffer); /* 1.3 */

else {
printf("eeekkk\n");
break;

}
} /* fine for */   

return;
} memoria

^v

R
D

A

costruisciArrayStringhe(arrStr);

^
arrStr

O
buffer

1i
R O \0 ...

^^

P O C O \0^^
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Array di stringhe (lettura) – 3.5 –
continua funzione che legge un array di N stringhe, ciascuna di al piu` 80 char

/* 3a fase: definizione funzione */
void costruisciArrayStringhe(char * v[N]);
char buffer[LUNGMAX+1];
int i;

for (i=0; i<N; i++) {
/* lettura di una stringa ... */

printf("scrivi una str ...\n");
scanf("%s", buffer);

/* ... e sua memorizzazione */

v[i] = malloc(strlen(buffer)+1); /* 1.2 */
if (v[i])

strcpy(v[i], buffer); /* 1.3 */

else {
printf("eeekkk\n");
break;

}
} /* fine for */   

return;
} memoria

costruisciArrayStringhe(arrStr);

^
arrStr
^^

P O C O \0^^

....

O \0RO....

^v

R
D

A

O
buffer

1i
R O \0 ...
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Array di stringhe (lettura) – 3.6 –
continua funzione che legge un array di N stringhe, ciascuna di al piu` 80 char

/* 3a fase: definizione funzione */
void costruisciArrayStringhe(char * v[N]);
char buffer[LUNGMAX+1];
int i;

for (i=0; i<N; i++) {
/* lettura di una stringa ... */

printf("scrivi una str ...\n");
scanf("%s", buffer);

/* ... e sua memorizzazione */

v[i] = malloc(strlen(buffer)+1); /* 1.2 */
if (v[i])

strcpy(v[i], buffer); /* 1.3 */

else {
printf("eeekkk\n");
break;

}
} /* fine for */   

return;
} memoria

costruisciArrayStringhe(arrStr);

^
arrStr

^v

R
D

A

R
buffer

2i
E S T ...

^^

P O C O \0^^

....

O \0RO....
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Array di stringhe (lettura) – 3.7 –
continua funzione che legge un array di N stringhe, ciascuna di al piu` 80 char

/* 3a fase: definizione funzione */
void costruisciArrayStringhe(char * v[N]);
char buffer[LUNGMAX+1];
int i;

for (i=0; i<N; i++) {
/* lettura di una stringa ... */

printf("scrivi una str ...\n");
scanf("%s", buffer);

/* ... e sua memorizzazione */

v[i] = malloc(strlen(buffer)+1); /* 1.2 */
if (v[i])

strcpy(v[i], buffer); /* 1.3 */

else {
printf("eeekkk\n");
break;

}
} /* fine for */   

return;
} memoria

costruisciArrayStringhe(arrStr);

^
arrStr

^^

P O C O \0^^

....

O \0RO....

...

E S T O \0R...

^v

R
D

A

R
buffer

2i
E S T ...
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Array di stringhe (lettura) – 3.8 –
funzione che legge un array di N stringhe, ciascuna di al piu` 80 char

/* 3a fase: definizione funzione */
void costruisciArrayStringhe(char * v[N]){
char buffer[LUNGMAX+1];
int i;

for (i=0; i<N; i++) {
/* lettura di una stringa ... */

printf("scrivi una str ...\n");
scanf("%s", buffer);

/* ... e sua memorizzazione */

v[i] = malloc(strlen(buffer)+1);
if (v[i])

strcpy(v[i], buffer);
else {

printf("eeekkk\n");
break;

}
} /* fine for */   

return;
} memoria

^v

R
D

A

costruisciArrayStringhe(arrStr);

^
arrStr

...

E S T O \0R...

....

O \0RO....

.

R O \0P.

..

.. i o nZR O M OP \0

^^

P O C O \0^^

^^^

s i \0^^^

abbiamo letto le stringhe da input e le abbiamo 
memorizzate, come stringhe esatte, nell'array 
di stringhe (cioè di puntatori) arrStr
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Esercizi

- duplicazione con side effect sulla nuova stringa

- duplicazione con restituzione del grado di successo

- UN complicato esercizio con un array dinamico, da 
realizzare seguendo passo passo lo sviluppo
proposto nelle slide.

Tecniche della Programmazione, lez. 16
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Esercizio (duplica stringa)
programma che esegue una duplicazione di stringa mediante side effect 

da parte della funzione duplica()
#include <stdio.h>
#include <stdlib.h>

int main() { char *string1, *string2;
... 

/* string1 e` una stringa effettiva; string2 e` un 
puntatore cui attacchiamo un duplicato della string1 */
...

duplica(string1, &string2);
...
return 0;
}

memoria

P O C O \0

string1
^^

string2

void duplica(char * s1, char **pCopia) {
*pCopia = malloc(strlen(s1)+1);

return;
}

void duplica(char *, char **);

^

Questo parametro attuale 
e` un “indirizzo di 
locazione capace di 
contenere un indirizzo” 
(l’indirizzo di un 
indirizzo …)

Questo parametro formale 
e` capace di ricevere un 
valore che e` indirizzo di 
un indirizzo di carattere

^^

if (*pCopia)

strcpy(*pCopia, s1);

Questo e` il prototipo della funzione duplica()

Obiettivo: dopo la 
chiamata 

duplica(string1, &string2)

string2 e` una stringa
identica a string1.
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Esercizio (duplica stringa)
programma che esegue una duplicazione di stringa mediante side effect 

da parte della funzione duplica()
#include <stdio.h>
#include <stdlib.h>

int main() { char *string1, *string2;
... 

/* string1 e` una stringa effettiva; string2 e` un 
puntatore cui attacchiamo un duplicato della string1 */
...

duplica(string1, &string2);
...
return 0;
}

memoria

P O C O \0

string1
^^

string2

void duplica(char * s1, char **pCopia) {
*pCopia = malloc(strlen(s1)+1);

return;
}

void duplica(char *, char **);

^

...

Questo parametro attuale 
e` un “indirizzo di 
locazione capace di 
contenere un indirizzo” 
(l’indirizzo di un 
indirizzo …)

Questo parametro formale 
e` capace di ricevere un 
valore che e` indirizzo di 
un indirizzo di carattere

^^

P O C O \0...

if (*pCopia)

strcpy(*pCopia, s1);

Questo e` il prototipo della funzione duplica()

Obiettivo: dopo la 
chiamata 

duplica(string1, &string2)

string2 e` una stringa
identica a string1.
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Esercizio (duplica stringa)
programma che esegue una duplicazione di stringa mediante side effect 

da parte della funzione duplica()
#include <stdio.h>
#include <stdlib.h>

int main() { char *string1, *string2;
... 

/* string1 e` una stringa effettiva; string2 e` un 
puntatore cui attacchiamo un duplicato della string1 */
...

duplica(string1, &string2);
...
return 0;
}

memoria

P O C O \0

string1
^^

string2

^^s1

R
D

A

duplica(string1, &string2);

^
pCopia

PAR

void duplica(char * s1, char **pCopia) {
*pCopia = malloc(strlen(s1)+1);

return;
}

void duplica(char *, char **);

^

^^

if (*pCopia)

strcpy(*pCopia, s1);
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Esercizio (duplica stringa)
programma che esegue una duplicazione di stringa mediante side effect 

da parte della funzione duplica()
#include <stdio.h>
#include <stdlib.h>

int main() { char *string1, *string2;
... 

/* string1 e` una stringa effettiva; string2 e` un 
puntatore cui attacchiamo un duplicato della string1 */
...

duplica(string1, &string2);
...
return 0;
}

memoria

P O C O \0

string1
^^

string2

^^s1

R
D

A

duplica(string1, &string2);

^
pCopia

PAR

void duplica(char * s1, char **pCopia) {
*pCopia = malloc(strlen(s1)+1);

return;
}

void duplica(char *, char **);

^

...

^^

if (*pCopia)

strcpy(*pCopia, s1);
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Esercizio (duplica stringa)
programma che esegue una duplicazione di stringa mediante side effect 

da parte della funzione duplica()
#include <stdio.h>
#include <stdlib.h>

int main() { char *string1, *string2;
... 

/* string1 e` una stringa effettiva; string2 e` un 
puntatore cui attacchiamo un duplicato della string1 */
...

duplica(string1, &string2);
...
return 0;
}

memoria

P O C O \0

string1
^^

string2

^^s1

R
D

A

duplica(string1, &string2);

^
pCopia

PAR

void duplica(char * s1, char **pCopia) {
*pCopia = malloc(strlen(s1)+1);

return;
}

void duplica(char *, char **);

^

...

^^

P O C O \0...
if (*pCopia)

strcpy(*pCopia, s1);
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Esercizio (duplica stringa)
programma che esegue una duplicazione di stringa mediante side effect 

da parte della funzione duplica()

memoria

P O C O \0

string1
^^

string2

^^s1

R
D

A

duplica(string1, &string2);

^
pCopia

PAR

void duplica(char * s1, char **pCopia) {
*pCopia = malloc(strlen(s1)+1);

return;
}

void duplica(char *, char **);

^

^^

if (*pCopia)

strcpy(*pCopia, s1);

osservazione: Cosa c'e` in *pCopia se l'allocazione e` 
andata male?
Ora rispondi e poi fai una funzione che duplica come 
sopra ma restituisce 1/0 per indicare il successo
dell’operazione. Poi prosegui 
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duplica2
funzione come duplica(), che restituisce 1 o 0 a seconda del successo dell'operazione 
di duplicazione
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duplica2
funzione come duplica(), che restituisce 1 o 0 a seconda del successo dell'operazione 
di duplicazione

int duplica2(char * s1, char **pCopia) {
*pCopia = malloc(strlen(s1)+1);
if (*pCopia) {
strcpy(*pCopia, s1);
return 1;   /* e` andata bene */

} else 
return 0; /* e` andata male */

}
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Esercizio
programma che legge un intero n e poi legge n double;

memorizza i double in un array dinamico esatto,
calcola e stampa minimo, massimo e media dei double

memoria

n somma

auxd

pmin

pmax

pd

1) Allocazione array dinamico, lettura e   memorizzazione 
dei numeri negli elementi  *pd ……….   *(pd+n-1)

2) init minimo e massimo parziale, e somma

3) scansione a ritroso da “penultimo” a “primo” 
elemento, usando l'algoritmo del massimo (minimo) 
parziale
e accumulando i double (per poter calcolare la media)

4) e poi calcolo media e stampa di min, max e media

La scansione viene realizzata mediante un  
puntatore: auxd
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Esercizio
programma che legge un intero n e n double;

li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

memoria

n somma

auxd

pmin

pmax

pd

6

39.12

12.11
81.12

11.12
121.12

45.88

?

1) Allocazione array dinamico, lettura e memorizzazione

2) init minimo e massimo parziale, e somma

3) scansione a ritroso da “penultimo” a “primo” 
elemento, trovando max e min, e accumulando

4) e poi calcolo media
MA usiamo (per realizzare l'alg. di  

massimo/minimo parziale)
- indirizzo del max parz: pmax
- indirizzo del min parz: pmin
- scansione degli elementi con un puntatore: auxd

- se *auxd e` maggiore di *pmax, allora *auxd e`
un nuovo max parz: pmax = auxd

dei numeri in *pd ………. *(pd+n-1)
(usiamo un puntatore auxd, per scandire gli elementi dell'array, dal primo all'ultimo)
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Esercizio (o esempio?)
programma che legge un intero n e n double;

li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

memoria

n 6 somma

auxd

pmin

pmax

45.88

pd

39.12

12.11
81.12

11.12
121.12

1) Allocazione array dinamico, lettura e memorizzazione

2) init minimo e massimo parziale, e somma

3) scansione a ritroso da “penultimo” a “primo” 
elemento, trovando max e min, e accumulando

4) e poi calcolo media
MA usiamo (per realizzare l'alg. di  

massimo/minimo parziale)
- indirizzo del max parz: pmax
- indirizzo del min parz: pmin
- scansione degli elementi con un puntatore: auxd

- se *auxd e` maggiore di *pmax, allora *auxd e`
un nuovo max parz: pmax = auxd

dei numeri in *pd ………. *(pd+n-1)
(usiamo un puntatore auxd, per scandire gli elementi dell'array, dal primo all'ultimo)
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Esercizio (o esempio?)
programma che legge un intero n e n double;

li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

memoria

n 6 somma

auxd

pmin

pmax

45.88

pd

45.88

39.12

12.11
81.12

11.12
121.12

1) Allocazione array dinamico, lettura e memorizzazione

2) init minimo e massimo parziale, e somma

3) scansione a ritroso da “penultimo” a “primo” 
elemento, trovando max e min, e accumulando

4) e poi calcolo media
MA usiamo (per realizzare l'alg. di  

massimo/minimo parziale)
- indirizzo del max parz: pmax
- indirizzo del min parz: pmin
- scansione degli elementi con un puntatore: auxd

- se *auxd e` maggiore di *pmax, allora *auxd e`
un nuovo max parz: pmax = auxd

dei numeri in *pd ………. *(pd+n-1)
(usiamo un puntatore auxd, per scandire gli elementi dell'array, dal primo all'ultimo)
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1) Allocazione array dinamico, lettura e memorizzazione

2) init minimo e massimo parziale, e somma

3) scansione a ritroso da “penultimo” a “primo” 
elemento, trovando max e min, e accumulando

4) e poi calcolo media
MA usiamo (per realizzare l'alg. di  

massimo/minimo parziale)
- indirizzo del max parz: pmax
- indirizzo del min parz: pmin
- scansione degli elementi con un puntatore: auxd

- se *auxd e` maggiore di *pmax, allora *auxd e`
un nuovo max parz: pmax = auxd

Esercizio
programma che legge un intero n e n double;

li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

memoria

n 6 somma

auxd

pmin

pmax

45.88

pd

45.88+…

39.12

12.11
81.12

11.12
121.12

(usiamo un puntatore auxd, per scandire gli elementi dell'array, dal primo all'ultimo)
dei numeri in *pd ………. *(pd+n-1)
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Esercizio
programma che legge un intero n e n double;

li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

memoria

n 6 somma

auxd

pmin

pmax

45.88

pd

45.88+…

39.12

12.11
81.12

11.12
121.12

1) Allocazione array dinamico, lettura e memorizzazione

2) init minimo e massimo parziale, e somma

3) scansione a ritroso da “penultimo” a “primo” 
elemento, trovando max e min, e accumulando

4) e poi calcolo media
MA usiamo (per realizzare l'alg. di  

massimo/minimo parziale)
- indirizzo del max parz: pmax
- indirizzo del min parz: pmin
- scansione degli elementi con un puntatore: auxd

- se *auxd e` maggiore di *pmax, allora *auxd e`
un nuovo max parz: pmax = auxd

dei numeri in *pd ………. *(pd+n-1)
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Esercizio
programma che legge un intero n e n double;

li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

memoria

n 6 somma

auxd

pmin

pmax

45.88

pd

45.88+…

39.12

12.11
81.12

11.12
121.12

1) Allocazione array dinamico, lettura e memorizzazione

2) init minimo e massimo parziale, e somma

3) scansione a ritroso da “penultimo” a “primo” 
elemento, trovando max e min, e accumulando

4) e poi calcolo media
MA usiamo (per realizzare l'alg. di  

massimo/minimo parziale)
- indirizzo del max parz: pmax
- indirizzo del min parz: pmin
- scansione degli elementi con un puntatore: auxd

- se *auxd e` maggiore di *pmax, allora *auxd e`
un nuovo max parz: pmax = auxd

dei numeri in *pd ………. *(pd+n-1)
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Esercizio
programma che legge un intero n e n double;

li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

memoria

n 6 somma

auxd

pmin

pmax

45.88

pd

45.88+…

39.12

12.11
81.12

11.12
121.12

1) Allocazione array dinamico, lettura e memorizzazione

2) init minimo e massimo parziale, e somma

3) scansione a ritroso da “penultimo” a “primo” 
elemento, trovando max e min, e accumulando

4) e poi calcolo media
MA usiamo (per realizzare l'alg. di  

massimo/minimo parziale)
- indirizzo del max parz: pmax
- indirizzo del min parz: pmin
- scansione degli elementi con un puntatore: auxd

- se *auxd e` maggiore di *pmax, allora *auxd e`
un nuovo max parz: pmax = auxd

dei numeri in *pd ………. *(pd+n-1)
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Esercizio
programma che legge un intero n e n double;

li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

memoria

n 6 somma

auxd

pmin

pmax

45.88

pd

45.88+…

39.12

12.11
81.12

11.12
121.12

1) Allocazione array dinamico, lettura e memorizzazione

2) init minimo e massimo parziale, e somma

3) scansione a ritroso da “penultimo” a “primo” 
elemento, trovando max e min, e accumulando

4) e poi calcolo media
MA usiamo (per realizzare l'alg. di  

massimo/minimo parziale)
- indirizzo del max parz: pmax
- indirizzo del min parz: pmin
- scansione degli elementi con un puntatore: auxd

- se *auxd e` maggiore di *pmax, allora *auxd e`
un nuovo max parz: pmax = auxd

dei numeri in *pd ………. *(pd+n-1)Quando auxd == pd, siamo sul primo elemento e lo 
controlliamo;

quando auxd e` andato un altro passo indietro, e`   
auxd < pd e quindi siamo fuori dell'array
e ci dobbiamo fermare. 

Ora pmin e pmax effettivamente puntano all'elemento
minimo e massimo, rispettivamente, nell'array
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programma che legge un intero n e n double;
li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

#include <stdio.h>
#include <stdlib.h>
int main() {
...

scanf( ... &n);
pd = malloc(n*sizeof(double));

if (!pd) printf(" ... ");
else {
for (auxd=pd; auxd-pd < n; auxd++)
scanf("%lf", auxd);

...

int n;

double *pd, *pmax, *pmin, *auxd, somma,   ; 

memoria

n 6 somma

auxd

pmin

pmax

45.88

pd

39.12

12.11
81.12

11.12
121.12

esercizio su intero n e n double (coding 1/2)

Durante la prima scansione, per la lettura dei dati, 

auxd inizialmente punta sull'inizio dell'array (auxd=pd)

In questo momento auxd-pd==0 e la scand mette il dato letto da input nel primo elemento; 
poi auxd viene incrementato di uno ... cioe` salta all'elemento successivo (audd-pd==1)

Andando avanti, auxd-pd == 2 (e viene letto il dato per il secondo elemento, 

auxd-pd==3 ... terzo elemento

...

Alla fine auxd-pd==n e aud punta fuori dell'array (fine delle letture)
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programma che legge un intero n e n double;
li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

#include <stdio.h>
#include <stdlib.h>
int main() {
...

scanf( ... &n);
pd = malloc(n*sizeof(double));

if (!pd) printf(" ... ");
else {
for (auxd=pd; auxd-pd < n; auxd++)
scanf("%lf", auxd);

...

int n;

double *pd, *pmax, *pmin, *auxd, somma,   ; 

memoria

n 6 somma

auxd

pmin

pmax

45.88

pd

39.12

12.11
81.12

11.12
121.12

esercizio su intero n e n double (coding 1/2)

esempio auxpd-pd == 3

auxpd-pd == 5

auxpd-pd == n
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programma che legge un intero n e n double;
li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

#include <stdio.h>
#include <stdlib.h>
int main() {
...

scanf( ... &n);
pd = malloc(n*sizeof(double));

if (!pd) printf(" ... ");
else {
for (auxd=pd; auxd-pd < n; auxd++)
scanf("%lf", auxd);

/* inizializzazione: pmax e pmin saranno 
i puntatori al massimo e minimo; 
tecnica del massimo parziale */

pmax = pmin = --auxd;
somma = *auxd;
... memoria

n 6 somma

auxd

pmin

pmax

45.88

pd

39.12

12.11
81.12

11.12
121.12

esercizio su intero n e n double (coding 1/2)
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programma che legge un intero n e n double;
li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

#include <stdio.h>
#include <stdlib.h>
int main() {
...

scanf( ... &n);
pd = malloc(n*sizeof(double));

if (!pd) printf(" ... ");
else {
for (auxd=pd; auxd-pd < n; auxd++)
scanf("%lf", auxd);

/* inizializzazione: pmax e pmin saranno 
i puntatori al massimo e minimo; 
tecnica del massimo parziale */

pmax = pmin = --auxd;
somma = *auxd;
... memoria

n 6 somma

auxd

pmin

pmax

45.88

pd

X

auxd-pd=6 X

39.12

12.11
81.12

11.12
121.12

esercizio su intero n e n double (coding 1/2)
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programma che legge un intero n e n double;
li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

#include <stdio.h>
#include <stdlib.h>
int main() {
...

scanf( ... &n);
pd = malloc(n*sizeof(double));

if (!pd) printf(" ... ");
else {
for (auxd=pd; auxd-pd < n; auxd++)
scanf("%lf", auxd);

/* inizializzazione: pmax e pmin saranno 
i puntatori al massimo e minimo; 
tecnica del massimo parziale */

pmax = pmin = --auxd;
somma = *auxd;
... memoria

n 6 somma

auxd

pmin

pmax

45.88

pd

X

auxd-pd=6 X
Y

39.12

12.11
81.12

11.12
121.12

esercizio su intero n e n double (coding 1/2)
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programma che legge un intero n e n double;
li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

#include <stdio.h>
#include <stdlib.h>
int main() {
...

scanf( ... &n);
pd = malloc(n*sizeof(double));

if (!pd) printf(" ... ");
else {
for (auxd=pd; auxd-pd < n; auxd++)
scanf("%lf", auxd);

/* inizializzazione: pmax e pmin saranno 
i puntatori al massimo e minimo; 
tecnica del massimo parziale */

pmax = pmin = --auxd;
somma = *auxd;
... memoria

n 6 somma

auxd

pmin

pmax

45.88

pd

X

auxd-pd=6 X
Y

45.88+...

Y
Y

39.12

12.11
81.12

11.12
121.12

esercizio su intero n e n double (coding 1/2)
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... pmax = pmin = --auxd;
somma = *auxd;
for (auxd--; auxd >= pd; auxd--) {
if (*pmax < *auxd) 
pmax=auxd;

if (*pmin > *auxd) 
pmin=auxd;

somma += *auxd;
}

media = somma/n;
printf( ..., *pmax, *pmin, media);

return 0;
}

memoria

n 6 somma

auxd

pmin

pmax

45.88

pd

45.8845.88

39.12

12.11
81.12

11.12
121.12

esercizio su intero n e n double (coding 2/2)



115/8
0

Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

... pmax = pmin = --auxd;
somma = *auxd;
for (auxd--; auxd >= pd; auxd--) {
if (*pmax < *auxd) 
pmax=auxd;

if (*pmin > *auxd) 
pmin=auxd;

somma += *auxd;
}

media = somma/n;
printf( ..., *pmax, *pmin, media);

return 0;
}

memoria

n 6 somma

auxd

pmin

pmax

45.88

pd

auxd viene inizialmente retrocesso all'inizio della componente n-esima (indice 
n-1); poi, mentre si mantiene >=pd si decrementa per toccare tutte le altre 
componenti dell'array, in ordine inverso (indice n-2, n-3, ... 0). 

Per ogni componente toccata (indicata) da auxd, si attua la tecnica di 
mantenimento del massimo (e minimo) parziale (*auxd e` il contenuto della 
locazione puntata da auxd), e la si somma nell'accumulatore (somma=somma+ *auxd)

45.88

espressione double 
(divisione tra un 
double e un intero

undefined ... nella pagina prima;

Deve esprimere la media, cioe` un valore double

45.88

39.12

12.11
81.12

11.12
121.12

esercizio su intero n e n double (coding 2/2)
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