
1/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Tecniche della Programmazione, lez.16
Uso dell'allocazione dinamica; gestione di stringhe;
gestione di una struttura dati per una collezione di
stringhe
- allocazione dinamica di (tante) stringhe ("esatte") in un programma

- array di stringhe ("esatte"): operazioni di "aggiunta" e "ricerca"

- programma di gestione stringhe

- struttura dati piu` complessa per una collezione di stringhe

- funzionalita` classiche

2/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Prima un esercizio:

possiamo fare un duplicato, str2, di una stringa str

- allocando un array di caratteri della dimensione "esatta"
necessaria per str

- copiando nel nuovo array quello originale

Una stringa "esatta e` una stringa dimensionata esattamente per
contenere i suoi caratteri significativi, senza locazioni sprecate

Tecniche della Programmazione, lez. 16

3/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

duplicazione (esatta) di una stringa
esercizio funzione che
ricevendo una stringa s restituisca una copia (esatta) di s

memoria

P O C O \0

str
^^

stringa2

#include <stdio.h>
#include <stdlib.h>
... (dich.) ...
int main() {
char str[9], *stringa2;

.../* “POCO” in stringa2 */

stringa2 = duplicato(str);
...
return 0;
}

prima

4/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

duplicazione (esatta) di una stringa
esercizio funzione che
ricevendo una stringa s restituisca una copia (esatta) di s

memoria

P O C O \0

str
^^

stringa2

P O C O \0$$

#include <stdio.h>
#include <stdlib.h>
... (dich.) ...
int main() {
char str[9], *stringa2;

.../* “POCO” in stringa2 */

stringa2 = duplicato(str);
...
return 0;
}

$$

dopo

5/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

duplicazione (esatta) di una stringa
esercizio funzione che
ricevendo una stringa s restituisca una copia (esatta) di s

Alg
0) la funzione riceve la stringa da duplicare e

restituisce l'indirizzo della stringa
duplicato
nuovaStringa var. locale
char * duplicato (char *s) {}

1) malloc per nuovaStringa, esattamente
di strlen(s)+1

2) strcpy di s in nuovaStringa
3) return nuovaStringa memoria

stringa2=duplicato(str);

P O C O \0

str
^^

stringa2

#include <stdio.h>
#include <stdlib.h>
... (dich.) ...
int main() {
char str[9], *stringa2;

.../* “POCO” in stringa2 */

stringa2 = duplicato(str);
...
return 0;
}

6/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

duplicazione (esatta) di una stringa
esercizio funzione che
ricevendo una stringa s restituisca una copia (esatta) di s

memoria

stringa2=duplicato(str);

P O C O \0

str
^^

stringa2

#include <stdio.h>
#include <stdlib.h>
... (dich.) ...
int main() {
char str[9], *stringa2;

.../* “POCO” in stringa2 */

stringa2 = duplicato(str);
...
return 0;
}

^^s

R
D

A

newString

PAR

VAR

...
char * duplicato (char *s) {

char * newString;



return newString;
}

7/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

duplicazione (esatta) di una stringa
esercizio funzione che
ricevendo una stringa s restituisca una copia (esatta) di s

memoria

stringa2=duplicato(str);

P O C O \0

str
^^

stringa2

$$

#include <stdio.h>
#include <stdlib.h>
... (dich.) ...
int main() {
char str[9], *stringa2;

.../* “POCO” in stringa2 */

stringa2 = duplicato(str);
...
return 0;
}

^^s

R
D

A

newString

PAR

VAR

...$$
char * duplicato (char *s) {

char * newString;

newString=malloc(strlen(s) + 1);

if(newString)
strcpy(newString, s);

return newString;
}

8/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

duplicazione (esatta) di una stringa
esercizio funzione che
ricevendo una stringa s restituisca una copia (esatta) di s

memoria

stringa2=duplicato(str);

P O C O \0

str
^^

stringa2

#include <stdio.h>
#include <stdlib.h>
... (dich.) ...
int main() {
char str[9], *stringa2;

.../* “POCO” in stringa2 */

stringa2 = duplicato(str);
...
return 0;
}

^^s

R
D

A

newString

PAR

VAR

...$$
char * duplicato (char *s) {

char * newString;

newString=malloc(strlen(s) + 1);

if(newString)
strcpy(newString, s);

return newString;
}

P O C O \0$$

9/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

duplicazione (esatta) di una stringa
esercizio funzione che
ricevendo una stringa s restituisca una copia (esatta) di s

char * duplicato (char *s) {
char * newString;

newString=malloc(strlen(s) + 1);
if(newString)

strcpy(newString, s);

return newString;
}

memoria

stringa2=duplicato(str);

P O C O \0

str
^^

stringa2

P O C O \0$$

#include <stdio.h>
#include <stdlib.h>
... (dich.) ...
int main() {
char str[9], *stringa2;

.../* “POCO” in stringa2 */

stringa2 = duplicato(str);
...
return 0;
}

^^s

R
D

A

newString

PAR

VAR

...

…scompare

…rimane

$$

$$

10/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

duplicazione (esatta) di una stringa
esercizio funzione che
ricevendo una stringa s restituisca una copia (esatta) di s

char * duplicato (char *s) {
char * newString;

newString=malloc(strlen(s) + 1);
if(newString)
strcpy(newString, s);

return newString;
}

memoria

stringa2=duplicato(str);

P O C O \0

str
^^

stringa2

P O C O \0$$

#include <stdio.h>
#include <stdlib.h>
... (dich.) ...
int main() {
char str[9], *stringa2;

.../* “POCO” in stringa2 */

stringa2 = duplicato(str);
...
return 0;
}

^^s

R
D

A

newString

PAR

VAR

...

…scompare

…rimane

$$

$$

Vedi Esercizi
per altri due modi di realizzare la
duplicazione esatta di una stringa.

11/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Gestione di molte stringhe, usando le stringhe "esatte"

quando allochiamo stringhe della dimensione esattamente
necessaria ... invece di allocare array abbondanti

Tecniche della Programmazione, lez. 16

12/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Allocazione Dinamica: Stringhe Esatte
GESTIONE DI MOLTE STRINGHE alfanumeriche, dimensionate "esattamente" per i caratteri
che contengono;
le stringhe possono essere di lunghezza diversa, ma non oltre una lunghezza massima nota

CIASCUNA STRINGA e`
memorizzata in un suo
array di char ...

... di dimensione
fissata a priori

... dimensionato ESATTAMENTE
per la lunghezza effettiva
della stringa

SPRECO

RISPARMIO
SCHEMA DI REALIZZAZIONE
- viene definito un "sostegno" di memoria, composto da tante stringhe,

come puntatori a memoria che verra` allocata esattamente;
esempio char * str, *str2, *str3, *str4; /* per 4 stringhe */

- per ogni stringa da memorizzare, prima la si legge usando buffer e poi
si alloca e assegna una stringa esatta che duplichi buffer.
E poi si usa buffer per un altro input.

- viene definita una "stringa buffer" abbastanza grande per contenere
qualunque stringa da gestire; char buffer[LUNGMAX+1]

13/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Allocazione Dinamica: Stringhe Esatte
Problema gestione di MOLTE STRINGHE ...

SCHEMA DI REALIZZAZIONE

...
0 50

buffer

1

str

memoria

#include <stdio.h>
#define LUNGMAX 50 /* stringhe mai piu` lunghe di 50 */

...
char buffer[LUNGMAX+1], *str, *str2 ...

...
1

str2

14/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Allocazione Dinamica: Stringhe Esatte
Problema gestione di MOLTE STRINGHE ...

SCHEMA DI REALIZZAZIONE

P O C O \0 ...
0 50

buffer

1

str

memoria

#include <stdio.h>
#define LUNGMAX 50 /* stringhe mai piu` lunghe di 50 */

...
char buffer[LUNGMAX+1], *str, *str2 ...

...
1

2 scanf(...%s...", buffer);

str2

15/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Allocazione Dinamica: Stringhe Esatte
Problema gestione di MOLTE STRINGHE ...

SCHEMA DI REALIZZAZIONE

P O C O \0 ...
0 50

buffer

1

str

memoria

#include <stdio.h>
#define LUNGMAX 50 /* stringhe mai piu` lunghe di 50 */

...
char buffer[LUNGMAX+1], *str, *str2 ...

...
1

2 scanf(...%s...", buffer);

3 str=malloc(strlen(buffer)+1);
strlen(buffer): 4

3

str2
^ ^

16/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Allocazione Dinamica: Stringhe Esatte
Problema gestione di MOLTE STRINGHE ...

SCHEMA DI REALIZZAZIONE

P O C O \0 ...
0 50

buffer

1

str

memoria

P O C O \0

#include <stdio.h>
#define LUNGMAX 50 /* stringhe mai piu` lunghe di 50 */

...
char buffer[LUNGMAX+1], *str, *str2 ...

...
1

4
if (str)

strcpy(str, buffer);
else ... /* messaggio di errore*/

...

2 scanf(...%s...", buffer);

3 str=malloc(strlen(buffer)+1);
strlen(buffer): 4

3

str2
^ ^ 4

17/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Allocazione Dinamica: Stringhe Esatte
Problema gestione di MOLTE STRINGHE ...

SCHEMA DI REALIZZAZIONE

#include <stdio.h>
#define LUNGMAX 50 /* stringhe mai piu` lunghe di 50 */

...
char buffer[LUNGMAX+1], *str, *str2 ...

...
1

4
if (str)

strcpy(str, buffer);
else ... /* messaggio di errore*/

...

2 scanf(...%s...", buffer);

3 str=malloc(strlen(buffer)+1);

5 scanf(...%s...", buffer);
N e a O \0Cr

5
...

0 50

buffer

1

^
str

memoria (2a fase)

str2

P O C O \0

18/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Allocazione Dinamica: Stringhe Esatte
Problema gestione di MOLTE STRINGHE ...

SCHEMA DI REALIZZAZIONE

#include <stdio.h>
#define LUNGMAX 50 /* stringhe mai piu` lunghe di 50 */

...
char buffer[LUNGMAX+1], *str, *str2 ...

...
1

4
if (str)

strcpy(str, buffer);
else ... /* messaggio di errore*/

...

2 scanf(...%s...", buffer);

3 str=malloc(strlen(buffer)+1);

5 scanf(...%s...", buffer);
N e a O \0Cr

5
...

0 50

buffer

1

^
str

memoria (2a fase)

str2

P O C O \0

6 str2=malloc(strlen(buffer)+1);

6

19/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Allocazione Dinamica: Stringhe Esatte
Problema gestione di MOLTE STRINGHE ...

SCHEMA DI REALIZZAZIONE

#include <stdio.h>
#define LUNGMAX 50 /* stringhe mai piu` lunghe di 50 */

...
char buffer[LUNGMAX+1], *str, *str2 ...

...
1

4
if (str)

strcpy(str, buffer);
else ... /* messaggio di errore*/

...

2 scanf(...%s...", buffer);

3 str=malloc(strlen(buffer)+1);

5 scanf(...%s...", buffer);
N e a O \0Cr

5
...

0 50

buffer

1

^
str

memoria (2a fase)

str2

P O C O \0

7
if (str2)

strcpy(str2, buffer);
else ... N e a O \0Cr7

6 str2=malloc(strlen(buffer)+1);

6

20/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Possiamo fare meglio: invece di tane variabili staccate,
usiamo un "Array di stringhe"

Tecniche della Programmazione, lez. 16

21/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Gestione di tante stringhe: Array di stringhe
Array di stringhe array di puntatori;
char * arrStr[6]; ogni elemento punta ad una stringa

(una stringa e` un blocco/array di caratteri)

memoria

^
arrStr

arrStr[5] = malloc(10); /* allocazione della
memoria esattamente

necessaria per una delle
stringhe (9 char + il '\0') */

if (arrStr[5] == NULL)
printf("ERRORE IN ALLOCAZIONE MEMORIA\n");

else /* la memoria disponibile viene
riempita esattamente */

strcpy(arrStr[5], "PROMOZion");

A

B

22/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Gestione di tante stringhe: Array di stringhe
Array di stringhe array di puntatori;
char * arrStr[6]; ogni elemento punta ad una stringa

(una stringa e` un blocco/array di caratteri)

memoria

^
arrStr

arrStr[5] = malloc(10); /* allocazione della
memoria esattamente

necessaria per una delle
stringhe (9 char + il '\0') */

if (arrStr[5] == NULL)
printf("ERRORE IN ALLOCAZIONE MEMORIA\n");

else /* la memoria disponibile viene
riempita esattamente */

strcpy(arrStr[5], "PROMOZion"); ..

..

A

A

B

23/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Gestione di tante stringhe: Array di stringhe
Array di stringhe array di puntatori;
char * arrStr[6]; ogni elemento punta ad una stringa

(una stringa e` un blocco/array di caratteri)

memoria

^
arrStr

arrStr[5] = malloc(10); /* allocazione della
memoria esattamente

necessaria per una delle
stringhe (9 char + il '\0') */

if (arrStr[5] == NULL)
printf("ERRORE IN ALLOCAZIONE MEMORIA\n");

else /* la memoria disponibile viene
riempita esattamente */

strcpy(arrStr[5], "PROMOZion"); ..

..

A

i o nZR O M OP \0

B

A

B

24/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Gestione di tante stringhe: Array di stringhe
Array di stringhe array di puntatori;
char * arrStr[6]; ogni elemento punta ad una stringa

(una stringa e` un blocco/array di caratteri)

memoria

^
arrStr

^^^

s i \0^^^

arrStr[5] = malloc(10); /* allocazione della
memoria esattamente

necessaria per una delle
stringhe (9 char + il '\0') */

if (arrStr[5] == NULL)
printf("ERRORE IN ALLOCAZIONE MEMORIA\n");

else /* la memoria disponibile viene
riempita esattamente */

strcpy(arrStr[5], "PROMOZion"); ..

..

A

i o nZR O M OP \0

B

A

B

analogamente si puo` fare per
arrStr[2], arrStr[4], arrStr[1]
...

25/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Gestione di tante stringhe: Array di stringhe
Array di stringhe array di puntatori;
char * arrStr[6]; ogni elemento punta ad una stringa

(una stringa e` un blocco/array di caratteri)

memoria

^
arrStr

^^

P O C O \0^^

^^^

s i \0^^^

arrStr[5] = malloc(10); /* allocazione della
memoria esattamente

necessaria per una delle
stringhe (9 char + il '\0') */

if (arrStr[5] == NULL)
printf("ERRORE IN ALLOCAZIONE MEMORIA\n");

else /* la memoria disponibile viene
riempita esattamente */

strcpy(arrStr[5], "PROMOZion"); ..

..

A

i o nZR O M OP \0

B

A

B

arrStr[0]

26/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Gestione di tante stringhe: Array di stringhe
Array di stringhe array di puntatori;
char * arrStr[6]; ogni elemento punta ad una stringa

(una stringa e` un blocco/array di caratteri)

memoria

^
arrStr

....

O \0RO....

^^

P O C O \0^^

^^^

s i \0^^^

arrStr[5] = malloc(10); /* allocazione della
memoria esattamente

necessaria per una delle
stringhe (9 char + il '\0') */

if (arrStr[5] == NULL)
printf("ERRORE IN ALLOCAZIONE MEMORIA\n");

else /* la memoria disponibile viene
riempita esattamente */

strcpy(arrStr[5], "PROMOZion"); ..

..

A

i o nZR O M OP \0

B

A

B

arrStr[1]

27/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Gestione di tante stringhe: Array di stringhe
Array di stringhe array di puntatori;
char * arrStr[6]; ogni elemento punta ad una stringa

(una stringa e` un blocco/array di caratteri)

memoria

^
arrStr

...

E S T O \0R...

....

O \0RO....

.

R O \0P.^^

P O C O \0^^

^^^

s i \0^^^

arrStr[5] = malloc(10); /* allocazione della
memoria esattamente

necessaria per una delle
stringhe (9 char + il '\0') */

if (arrStr[5] == NULL)
printf("ERRORE IN ALLOCAZIONE MEMORIA\n");

else /* la memoria disponibile viene
riempita esattamente */

strcpy(arrStr[5], "PROMOZion"); ..

..

A

i o nZR O M OP \0

B

A

B

NB - arrStr[6] non è una locazione dell'array

- qualunque arrStr[i](i=0...5) è un puntatore;

- quando arrStr[5] punta ad un blocco di (9+1) caratteri,
arrStr[5] è l'indirizzo iniziale di un array di 10 char:
passando questo indirizzo a strcpy, si puo` copiare nell'array
puntato una stringa di al massimo 9 caratteri (+ un carattere
di fine stringa, '\0');

- in particolare, abbiamo dimensionato l'array puntato da
arrStr[5] esattamente per contenere 9 caratteri significativi!

28/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Array di stringhe (lettura) – 1 – ambiente di calcolo
esercizio funzione che

ricevendo un array di stringhe, char * v[N], (esatte)
legga N stringhe, ciascuna di al piu` 80 char, e le memorizzi nell'array

/* 1a fase: ambiente di calcolo */

/* 2a fase: PROTOTIPO (dichiarazione) (**) */
void costruisciArrayStringhe (char * []);

memoria

^v

R
D

A

costruisciArrayStringhe(arrStr);

^
arrStr

/* 1a fase: ambiente di calcolo */
#include <stdio.h>
#include <stdlib.h>
#define N 6
#define LUNGMAX 80
... (**) ...
int main() {
char * arrStr[N];

...
costruisciArrayStringhe (arrStr);
...
return 0;
}

29/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Array di stringhe (lettura) – 2 – algoritmo per la funzione
continua funzione che legge un array di N stringhe, ciascuna di al piu` 80 char

/* 3a fase: definizione funzione */
void costruisciArrayStringhe();
char buffer[LUNGMAX+1];
int i;

for (i=0; i<N; i++) {

} /* fine for */

return;
}

memoria

costruisciArrayStringhe(arrStr);

^
arrStr

^v

R
D

A

buffer

i
...

Algoritmo?
ad ogni iterazione sistemiamo una delle

stringhe in input


30/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Array di stringhe (lettura) – 2 –
continua funzione che legge un array di N stringhe, ciascuna di al piu` 80 char

/* 3a fase: definizione funzione */
void costruisciArrayStringhe();
char buffer[LUNGMAX+1];
int i;

for (i=0; i<N; i++) {



} /* fine for */

return;
} memoria

costruisciArrayStringhe(arrStr);

^
arrStr

si tratta di leggere una sequenza di stringhe date
in input (POCO, ORO, RESTO, Si`, PRO, PROMOZion),
memorizzandole secondo l'ordine di input in arrSTr:
1) iterare

1.1) leggere stringa in buffer
1.2) allocare memoria per arrStr[i]
1.3) copiare da buffer in arrStr[i] ...

^v

R
D

A

buffer

i
...

31/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Array di stringhe (lettura) – 2 –
continua funzione che legge un array di N stringhe, ciascuna di al piu` 80 char

/* 3a fase: definizione funzione */
void costruisciArrayStringhe(char * v[N]);
char buffer[LUNGMAX+1];
int i;

for (i=0; i<N; i++) {
/* lettura di una stringa ... */

printf("scrivi una str ...\n");
scanf("%s", buffer);

/* ... e sua memorizzazione */



} /* fine for */

return;
} memoria

^v

R
D

A

costruisciArrayStringhe(arrStr);

^
arrStr

buffer

i
...

32/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Array di stringhe (lettura) – 2 –
continua funzione che legge un array di N stringhe, ciascuna di al piu` 80 char

/* 3a fase: definizione funzione */
void costruisciArrayStringhe(char * v[N]);
char buffer[LUNGMAX+1];
int i;

for (i=0; i<N; i++) {
/* lettura di una stringa ... */

printf("scrivi una str ...\n");
scanf("%s", buffer);

/* ... e sua memorizzazione */

v[i] = malloc(strlen(buffer)+1); /* 1.2 */



} /* fine for */

return;
} memoria

^v

R
D

A

costruisciArrayStringhe(arrStr);

^
arrStr

buffer

i
...

33/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Array di stringhe (lettura) – 2 –
continua funzione che legge un array di N stringhe, ciascuna di al piu` 80 char

/* 3a fase: definizione funzione */
void costruisciArrayStringhe(char * v[N]);
char buffer[LUNGMAX+1];
int i;

for (i=0; i<N; i++) {
/* lettura di una stringa ... */

printf("scrivi una str ...\n");
scanf("%s", buffer);

/* ... e sua memorizzazione */

v[i] = malloc(strlen(buffer)+1); /* 1.2 */
if (v[i])

strcpy(v[i], buffer); /* 1.3 */

else {



} /* fine for */

return;
} memoria

^v

R
D

A

costruisciArrayStringhe(arrStr);

^
arrStr

buffer

i
...

34/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Array di stringhe (lettura) – 2 –
continua funzione che legge un array di N stringhe, ciascuna di al piu` 80 char

/* 3a fase: definizione funzione */
void costruisciArrayStringhe(char * v[N]);
char buffer[LUNGMAX+1];
int i;

for (i=0; i<N; i++) {
/* lettura di una stringa ... */

printf("scrivi una str ...\n");
scanf("%s", buffer);

/* ... e sua memorizzazione */

v[i] = malloc(strlen(buffer)+1); /* 1.2 */
if (v[i])

strcpy(v[i], buffer); /* 1.3 */

else {
printf("eeekkk\n");
break;

}
} /* fine for */

return;
} memoria

^v

R
D

A

costruisciArrayStringhe(arrStr);

^
arrStr

buffer

i
...

35/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Array di stringhe (lettura) – 3 – esecuzione simulata
continua funzione che legge un array di N stringhe, ciascuna di al piu` 80 char

/* 3a fase: definizione funzione */
void costruisciArrayStringhe(char * v[N]);
char buffer[LUNGMAX+1];
int i;

for (i=0; i<N; i++) {
/* lettura di una stringa ... */

printf("scrivi una str ...\n");
scanf("%s", buffer);

/* ... e sua memorizzazione */

v[i] = malloc(strlen(buffer)+1); /* 1.2 */
if (v[i])

strcpy(v[i], buffer); /* 1.3 */

else {
printf("eeekkk\n");
break;

}
} /* fine for */

return;
} memoria

^v

R
D

A

costruisciArrayStringhe(arrStr);

^
arrStr

buffer

i
...



esecuzione simulata: riempire il disegno qui sopra,
mostrando come le stringhe lette in input (POCO,
ORO, RESTO, si, PRO, PROMOZion) vengono piazzate in
memria e puntate dagli elementi dell'array. Poi
confrontare con la slide successiva

Poi vedi Approfondimenti

36/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Ricerca di una stringa in un "Array di stringhe"

Tecniche della Programmazione, lez. 16

37/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Array di stringhe (ricerca) – 1/2 –
esercizio funzione "presenteIn" che
ricevendo una stringa strCercata, un array di stringhe, char * v[N],

la dimensione di v dim
restituisca 1 se strCercata e` in v, 0 altrimenti

/* alg. di ricerca in array, con var. flag */
int presenteIn(

char *strCercata, char **v, int dim) {

int trovata, i;
...

memoria

38/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Array di stringhe (ricerca) – 1/2 –
esercizio funzione "presenteIn" che
ricevendo una stringa strCercata, un array di stringhe, char * v[N],

la dimensione di v dim
restituisca 1 se strCercata e` in v, 0 altrimenti

/* alg. di ricerca in array, con var. flag */
int presenteIn(

char *strCercata, char **v, int dim) {

int trovata, i;
...

memoria

IL TIPO DI UN ARRAY DI STRINGHE
- un array di char e` …………………….. char str[]
equiv. (dal punto di vista dei tipi) a ……. char *str
- analogamente un array di stringhe di char e`

char *str[]

equiv. (dal punto di vista dei tipi) a ……..char **str

se tutto quel che serve e` passare il
parametro, va bene cosi`

39/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Array di stringhe (ricerca) – 2.1 –
esercizio funzione che
ricevendo una stringa strCercata, un array di stringhe, char * v[N],

la dimensione di v dim
restituisca 1 se strCercata e` in v, 0 altrimenti

/* algoritmo di ricerca in array, con var. flag */

int presenteIn(
char *strCercata, char **v, int dim) {

int trovata, i;

trovata = 0; /* init flag (risultato che verra`
restituito se trovata non viene mai
modificata (strCercata mai trovata) */

for (i=0; (i<dim); i++)
if (strcmp(strCercata, v[i])==0)

trovata=1;

return;
} memoria

^^strCercata

R
D

A

presenteIn(str, arrStr, N);

^
arrStr

P O C O \0

str

^v

6dim

^^

completare (ci sono tre
osservazioni da fare)
poi continuare 

40/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Array di stringhe (ricerca) – 2.2 –
esercizio funzione che
ricevendo una stringa strCercata, un array di stringhe, char * v[N],

la dimensione di v dim
restituisca 1 se strCercata e` in v, 0 altrimenti

/* algoritmo di ricerca in array, con var. flag */

int presenteIn(
char *strCercata, char **v, int dim) {

int trovata, i;




for (i=0; (i<dim); i++)

if (strcmp(strCercata, v[i])==0)
trovata=1;

return;
} memoria

^^strCercata

R
D

A

presenteIn(str, arrStr, N);

^
arrStr

P O C O \0

str

^v

6dim

^^

for (i=0; (i<dim); i++)

return trovata;
/* dobbiamo restituire 1 o 0 ... */

41/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Array di stringhe (ricerca) – 2.3 –
esercizio funzione che
ricevendo una stringa strCercata, un array di stringhe, char * v[N],

la dimensione di v dim
restituisca 1 se strCercata e` in v, 0 altrimenti

/* algoritmo di ricerca in array, con var. flag */

int presenteIn(
char *strCercata, char **v, int dim) {

int trovata, i;

trovata = 0;
/* INIZIALIZZAZIONE (trovata diventa 1 quando troviamo la stringa
cercata; se non troviamo, rimane 0 (strCercata mai trovata) */


for (i=0; (i<dim); i++)

if (strcmp(strCercata, v[i])==0)
trovata=1;

return trovata;
} memoria

^^strCercata

R
D

A

presenteIn(str, arrStr, N);

^
arrStr

P O C O \0

str

^v

6dim

^^

42/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Array di stringhe (ricerca) – 2.4 –
esercizio funzione che
ricevendo una stringa strCercata, un array di stringhe, char * v[N],

la dimensione di v dim
restituisca 1 se strCercata e` in v, 0 altrimenti

/* algoritmo di ricerca in array, con var. flag */

int presenteIn(
char *strCercata, char **v, int dim) {

int trovata=0, i;

/* i<dim controlla che non abbiamo finito l'array; ma se
trovata non è 0, inutile cercare ancora: già trovata! */

for (i=0; (i<dim && trovata==0); i++)
if (strcmp(strCercata, v[i])==0)

trovata=1;

}
memoria

^^strCercata

R
D

A

presenteIn(str, arrStr, N);

^
arrStr

P O C O \0

str

^v

6dim

^^

return trovata;

43/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Verso la struttura dati per la "collezione di stringhe"

Usiamo un sostegno con un certo numero di potenziali puntatori
a stringa, e poi usiamo l'array per aggiungere e togliere stringhe.

Ma l'array e` usato parzialmente cioe` non e` sempre pieno zeppo
di stringhe ...

Tecniche della Programmazione, lez. 16

44/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Programma gestione stringhe - introduzione
gestione di un array di al piu` N stringhe, ciascuna di al +
LUNGMAX caratteri (array usato parzialmente)

Funzionalita` per la gestione di una COLLEZIONE di
stringhe:

^
stringhe

?
?

^^^

s i \0^^^

^^ P O C O \0^^

...
E S T O \0R...

....
O \0RO....

- aggiunta di una stringa (se possibile)

- stampa delle stringhe contenute

- ricerca di una stringa e rest. del suo indice (opp. -1)
(funzione di servizio)

- sostituzione di una stringa con un'altra data

45/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Programma gestione stringhe - introduzione
gestione di un array di al piu` N stringhe, ciascuna di al +
LUNGMAX caratteri (array usato parzialmente)

Funzionalita` per la gestione di una COLLEZIONE di
stringhe:

^
stringhe

?
?

^^^

s i \0^^^

^^ P O C O \0^^

...
E S T O \0R...

....
O \0RO....

- aggiunta di una stringa (se possibile)

- stampa delle stringhe contenute

- ricerca di una stringa e rest. del suo indice (opp. -1)
(funzione di servizio)

- sostituzione di una stringa con un'altra data

Quanto sopra e` parte della definizione di un tipo di dati che
possiamo chiamare « collezione di stringhe »

(in particolare quella sopra e` la raccolta delle FUNZIONALITA`).

E la STRUTTURA DATI? E` quella qui sopra a destra ...

46/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Programma gestione stringhe - introduzione
gestione di un array di al piu` N stringhe, ciascuna di al +
LUNGMAX caratteri (array usato parzialmente)

Funzionalita` per la gestione di una COLLEZIONE di
stringhe:

^
stringhe

?
?

^^^

s i \0^^^

^^ P O C O \0^^

...
E S T O \0R...

....
O \0RO....

- aggiunta di una stringa (se possibile)

- stampa delle stringhe contenute

- ricerca di una stringa e rest. del suo indice (opp. -1)
(funzione di servizio)

- sostituzione di una stringa con un'altra data

Quanto sopra e` parte della definizione di un tipo di dati che
possiamo chiamare « collezione di stringhe »

(in particolare quella sopra e` la raccolta delle FUNZIONALITA`).

E la STRUTTURA DATI? E` quella qui sopra a destra ...

scrivere le strutture dati necessarie per rappresentare nel programma una collezione di stringhe.
Serve un array, ok. Serve anche N, sicuro.

Bastano queste strutture per realizzare le funzionalita` qui sopra?

Ad esempio, se dobbiamo stampare le stringhe della collezione, quante ne stampiamo? Dobbiamo scorrere l'array, ok.
Ma dove smettiamo di scorrere?

Ad altro esempio, per aggiungere una nuova stringa ... dove la aggiungiamo? Cioe` a quale elemento dell'array la
assegnamo?

Nella struttura dati c'e` un dato che permetta di aggiungere la nuova stringa al posto glusto? O fermarsi quando le
stringhe effettivamente presenti nella collezione sono state tutte stampate?
Anche quando sono 2, o 3, o 4, come in figura, ma non N?

47/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Programma gestione stringhe - introduzione
gestione di un array di al piu` N stringhe, ciascuna di al + LUNGMAX caratteri (array usato parzialmente

Struttura dati e Funzionalita` per la gestione del TIPO
COLLEZIONE di stringhe

^
stringhe

?
?

^^^

s i \0^^^

^^ P O C O \0^^

...
E S T O \0R...

....
O \0RO....

(come rappresentare questo oggetto in memoria?):
- N e` una costante
- sostegno: l'array e` un array di N stringhe:

char *stringhe[N]

? Ma, se l'array e` usato parzialmente,
dove fermare una scansione per stampa o
ricerca? Dove inserire una nuova stringa?

48/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Programma gestione stringhe - introduzione
gestione di un array di al piu` N stringhe, ciascuna di al + LUNGMAX caratteri (array usato parzialmente

Struttura dati e Funzionalita` per la gestione del TIPO
COLLEZIONE di stringhe

^
stringhe

?
?

^^^

s i \0^^^

^^ P O C O \0^^

...
E S T O \0R...

....
O \0RO....

(come rappresentare questo oggetto in memoria?):
- N e` una costante
- sostegno: l'array e` un array di N stringhe:

char *stringhe[N]

numeroStringhe 4

? Ma, se l'array e` usato parzialmente,
dove fermare una scansione per stampa o
ricerca? Dove inserire una nuova stringa?

stringhe e` quindi una variabile che va gestita usando
anche l'informazione addizionale su
"quanti elementi/stringhe ci sono attualmente nell'array"

49/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Programma gestione stringhe - introduzione
gestione di un array di al piu` N stringhe, ciascuna di al + LUNGMAX caratteri (array usato parzialmente

Struttura dati e Funzionalita` per la gestione del TIPO
COLLEZIONE di stringhe

^
stringhe

?
?

^^^

s i \0^^^

^^ P O C O \0^^

...
E S T O \0R...

....
O \0RO....

(come rappresentare questo oggetto in memoria?):
- N e` una costante
- sostegno: l'array e` un array di N stringhe:

char *stringhe[N]

numeroStringhe 4

stringhe e` quindi una variabile che va gestita usando
anche l'informazione addizionale su
"quanti elementi/stringhe ci sono attualmente nell'array"

collezione di stringhe = <array + numerostringhe>

in sostanza una collezione di stringhe va rappresentata mediante
la collaborazione di due variabili: stringhe e
numeroStringhe
- un array di stringhe, che faccia da sostegno per la

memorizzazione delle stringhe;
- una variabile intera che dica in ogni momento quante

stringhe ci sono nell'array

50/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Gestione di tabella (collezione) di stringhe - 1/8 -
#include ...
#define N ...
... (dich.) ...
int main() {
scelta --(per il menu` ...)

stringhe, numeroStringhe, ------------------------(per la collezione di stringhe)
buffer1, buffer2, ------------------------------------(buffer per leggere stringhe)

do {
/* ciclo di stampa menu`, lettura scelta funzionalita` da
eseguire, esecuzione della funzionalita` prescelta */

... aggiungi(stringhe, buffer1, &numeroStringhe); (scelta==1)

... stampaTutto(stringhe, numeroStringhe); (scelta==3)

... sostituisci(stringhe, numeroStringhe, buffer1, buffer2);
(scelta==2)

...

} while (scelta!=0)

return 0;
}

SCHEMA DI PROGRAMMA

51/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Gestione di tabella (collezione) di stringhe - 1/8 -
#include ...
#define N ...
... (dich.) ...
int main() {
scelta --(per il menu` ...)

stringhe, numeroStringhe, ------------------------(per la collezione di stringhe)
buffer1, buffer2, ------------------------------------(buffer per leggere stringhe)

do {
/* ciclo di stampa menu`, lettura scelta funzionalita` da
eseguire, esecuzione della funzionalita` prescelta */

... aggiungi(stringhe, buffer1, &numeroStringhe); (scelta==1)

... stampaTutto(stringhe, numeroStringhe); (scelta==3)

... sostituisci(stringhe, numeroStringhe, buffer1, buffer2);
(scelta==2)

...

} while (scelta!=0)

return 0;
}

SCHEMA DI PROGRAMMA
NB la coppia <stringhe, numeroStringhe> rappresenta
la collezione di stringhe; collezione che a sua
volta e` proprieta` della funzione main() ...

NB2 la struttura dati "tabella di stringhe" e`
la coppia stringhe, numeroStringhe. Infatti sono
quelle due componenti che permettono di
gestirla. E infatti sono quelle due componenti
che dobbiamo passare alle funzioni interessate.

52/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Programma gestione stringhe - 2/8 -
#include <stdio.h>
#include <stdlib.h> #define N ... #define LUNGMAX
... (dich.)

int main() { char *stringhe[N], char buffer1[LUNGMAX+1],
buffer2[LUNGMAX+1];

int numeroStringhe, scelta;
numeroStringhe = 0; /* init struttura dati array stringhe */

do { stampaMenu(); /* una funzione che stampa il
menu' di scelte ... 1=aggiungi
2=sostituisci ... */

scanf("%d", &scelta); /* lettura scelta */

main()

53/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Programma gestione stringhe - 2/8 -
#include <stdio.h>
#include <stdlib.h> #define N ... #define LUNGMAX
... (dich.)

int main() { char *stringhe[N], char buffer1[LUNGMAX+1],
buffer2[LUNGMAX+1];

int numeroStringhe, scelta;
numeroStringhe = 0; /* init struttura dati array stringhe */

do { stampaMenu(); /* 1=aggiungi 2=sostitui... */
scanf("%d", &scelta); /* lettura scelta */

switch(scelta) {
case 1: /* inserimento nuova stringa in stringhe oppure

messaggio di errore */
break;

case 2: /* lett. stringa da sost. e sostituta; chiamata sostituisci() */

break;

case 3: ...

main()

54/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

BTW - SWITCH ...
#include <stdio.h>
#include <stdlib.h> #define N ... #define LUNGMAX
... (dich.)

int main() { char *stringhe[N], char buffer1[LUNGMAX+1],
buffer2[LUNGMAX+1];

int numeroStringhe, scelta;
numeroStringhe = 0; /* init struttura dati array stringhe */

do { stampaMenu(); /* 1=aggiungi 2=sostitui... */
scanf("%d", &scelta); /* lettura scelta */

switch(scelta) {
case 1: /* inserimento nuova stringa in stringhe oppure

messaggio di errore */
break;

case 2: /* lett. stringa da sost. e sostituta; chiamata sostituisci() */
break;

case 3: stampaTutto(stringhe, numeroStringhe); break;

switch(scelta) {
case 1:

codice da eseguire nel caso in cui scelta==1
break;

...
case VAL:

codice da eseguire nel caso in cui scelta==VAL
break;

...
case ALTROVAL:

codice da eseguire nel caso in cui scelta==VALVAL
break;

default: printf(" scelta sbagliata \n\n");
} /* fine switch */

55/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Programma gestione stringhe - 2/8 -
#include <stdio.h>
#include <stdlib.h> #define N ... #define LUNGMAX
... (dich.)

int main() { char *stringhe[N], char buffer1[LUNGMAX+1],
buffer2[LUNGMAX+1];

int numeroStringhe, scelta;
numeroStringhe = 0; /* init struttura dati array stringhe */

do { stampaMenu(); /* 1=aggiungi 2=sostitui... */
scanf("%d", &scelta); /* lettura scelta */

switch(scelta) {
case 1: ... aggiungi(stringhe, buffer1, &numeroStringhe);
break;

case 0: printf("FINE PROGRAMMA\n"); break;
default: printf(" scelta sbagliata \n\n");

} /* fine switch */
} while (scelta!=0)
return 0;
}

main()

NB stampaTutto riceve “la
collezione”, sotto forma
di una coppia di parametri

56/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Programma gestione stringhe - 2/8 -
#include <stdio.h>
#include <stdlib.h> #define N ... #define LUNGMAX
... (dich.)

int main() { char *stringhe[N], char buffer1[LUNGMAX+1],
buffer2[LUNGMAX+1];

int numeroStringhe, scelta;
numeroStringhe = 0; /* init struttura dati array stringhe */

do { stampaMenu(); /* 1=aggiungi 2=sostitui... */
scanf("%d", &scelta); /* lettura scelta */

switch(scelta) {
case 1: ... aggiungi(stringhe, buffer1, &numeroStringhe);
break;

case 2: ... sostituisci(stringhe, numeroStringhe, buffer1,
buffer2);

break;

case 0: printf("FINE PROGRAMMA\n"); break;
default: printf(" scelta sbagliata \n\n");

} /* fine switch */
} while (scelta!=0)
return 0;
}

main()

NB stampaTutto riceve “la
collezione”, sotto forma
di una coppia di parametri

57/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Programma gestione stringhe - 2/8 -
#include <stdio.h>
#include <stdlib.h> #define N ... #define LUNGMAX
... (dich.)

int main() { char *stringhe[N], char buffer1[LUNGMAX+1],
buffer2[LUNGMAX+1];

int numeroStringhe, scelta;
numeroStringhe = 0; /* init struttura dati array stringhe */

do { stampaMenu(); /* 1=aggiungi 2=sostitui... */
scanf("%d", &scelta); /* lettura scelta */

switch(scelta) {
case 1: ... aggiungi(stringhe, buffer1, &numeroStringhe);
break;

case 2: ... sostituisci(stringhe, numeroStringhe, buffer1,
buffer2);

break;
case 3: stampaTutto(stringhe, numeroStringhe); break;
case 0: printf("FINE PROGRAMMA\n"); break;
default: printf(" scelta sbagliata \n\n");

} /* fine switch */
} while (scelta!=0)
return 0;
}

main()

NB stampaTutto riceve “la
collezione”, sotto forma
di una coppia di parametri

58/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Programma gestione stringhe - 3/8 -
#include <stdio.h>
#include <stdlib.h> #define N ... #define LUNGMAX
... (dich.)
int main() { char *stringhe[N], char buffer1[LUNGMAX+1], buffer2[LUNGMAX+1];

int numeroStringhe, scelta;

numeroStringhe = 0; /* init struttura dati array stringhe */

do { stampaMenu(); /* 1=aggiungi 2=sostitui... */
scanf("", &scelta); /* lettura scelta */

switch(scelta) {
case 1:
if (numeroStringhe<N) {
printf("quale stringa da aggiungere? ");
scanf("%s", buffer1);
aggiungi(stringhe, buffer1, &numeroStringhe);

}
else printf("spazio insufficiente, tsk.\n\n");
break;

case 2:
printf("stringa da sostituire: ");

scanf("%s", buffer1);
printf("stringa con cui sostituire: ");

scanf("%s", buffer2);
sostituisci(stringhe, numeroStringhe, buffer1, buffer2);
break;

main()

59/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Programma gestione stringhe - 3/8 -
#include <stdio.h>
#include <stdlib.h> #define N ... #define LUNGMAX
... (dich.)
int main() { char *stringhe[N], char buffer1[LUNGMAX+1], buffer2[LUNGMAX+1];

int numeroStringhe, scelta;

numeroStringhe = 0; /* init struttura dati array stringhe */

do { stampaMenu(); /* 1=aggiungi 2=sostitui... */
scanf("", &scelta); /* lettura scelta */

switch(scelta) {
case 1:
if (numeroStringhe<N) {
printf("quale stringa da aggiungere? ");
scanf("%s", buffer1);
aggiungi(stringhe, buffer1, &numeroStringhe);

}
else printf("spazio insufficiente, tsk.\n\n");
break;

case 2:
printf("stringa da sostituire: ");

scanf("%s", buffer1);
printf("stringa con cui sostituire: ");

scanf("%s", buffer2);
sostituisci(stringhe, numeroStringhe, buffer1, buffer2);
break;

main()

Controllo se c'è spazio per una
nuova stringa, nell’array sostegno

NB aggiungi riceve “la
collezione”, sotto forma di
una coppia di parametri

60/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Programma gestione stringhe - 3/8 -
#include <stdio.h>
#include <stdlib.h> #define N ... #define LUNGMAX
... (dich.)
int main() { char *stringhe[N], char buffer1[LUNGMAX+1], buffer2[LUNGMAX+1];

int numeroStringhe, scelta;

numeroStringhe = 0; /* init struttura dati array stringhe */

do { stampaMenu(); /* 1=aggiungi 2=sostitui... */
scanf("", &scelta); /* lettura scelta */

switch(scelta) {
case 1:
if (numeroStringhe<N) {
printf("quale stringa da aggiungere? ");
scanf("%s", buffer1);
aggiungi(stringhe, buffer1, &numeroStringhe);

}
else printf("spazio insufficiente, tsk.\n\n");
break;

case 2:
printf("stringa da sostituire: ");

scanf("%s", buffer1);
printf("stringa con cui sostituire: ");

scanf("%s", buffer2);
sostituisci(stringhe, numeroStringhe, buffer1, buffer2);
break;

main()

NB aggiungi riceve “la
collezione”, sotto forma di
una coppia di parametri

perche'? 

61/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Programma gestione stringhe - 3/8 -
#include <stdio.h>
#include <stdlib.h> #define N ... #define LUNGMAX
... (dich.)
int main() { char *stringhe[N], char buffer1[LUNGMAX+1], buffer2[LUNGMAX+1];

int numeroStringhe, scelta;

numeroStringhe = 0; /* init struttura dati array stringhe */

do { stampaMenu(); /* 1=aggiungi 2=sostitui... */
scanf("", &scelta); /* lettura scelta */

switch(scelta) {
case 1:
if (numeroStringhe<N) {
printf("quale stringa da aggiungere? ");
scanf("%s", buffer1);
aggiungi(stringhe, buffer1, &numeroStringhe);

}
else printf("spazio insufficiente, tsk.\n\n");
break;

case 2:
printf("stringa da sostituire: ");

scanf("%s", buffer1);
printf("stringa con cui sostituire: ");

scanf("%s", buffer2);
sostituisci(stringhe, numeroStringhe, buffer1, buffer2);
break;

main()

NB aggiungi riceve “la collezione”,
sotto forma di una coppia di parametri
(stringhe e numeroStringhe)

perche' dovra` subire un effetto
collaterale, crescendo di 1 dopo l'aggiunta

di una nuova stringa alla collezione

62/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Programma gestione stringhe - 4/8 -
#include <stdio.h>
#include <stdlib.h> #define N ... #define LUNGMAX
... (dich.)
int main() { char *stringhe[N], char buffer1[LUNGMAX+1], buffer2[LUNGMAX+1];

int numeroStringhe, scelta;

numeroStringhe = 0; /* init struttura dati array stringhe */

do { stampaMenu(); /* 1=aggiungi 2=sostitui... */
scanf("", &scelta); /* lettura scelta */

switch(scelta) {
case 1:

if (numeroStringhe<N) {
printf("quale stringa da aggiungere? ");

scanf("%s", buffer1);
aggiungi(stringhe, buffer1, &numeroStringhe);

}
else printf("spazio insufficiente, tsk.\n\n");
break;

case 2:



sostituisci(stringhe, numeroStringhe, buffer1, buffer2);
break;

...

main()

63/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Programma gestione stringhe - 4/8 -
#include <stdio.h>
#include <stdlib.h> #define N ... #define LUNGMAX
... (dich.)
int main() { char *stringhe[N], char buffer1[LUNGMAX+1], buffer2[LUNGMAX+1];

int numeroStringhe, scelta;

numeroStringhe = 0; /* init struttura dati array stringhe */

do { stampaMenu(); /* 1=aggiungi 2=sostitui... */
scanf("", &scelta); /* lettura scelta */

switch(scelta) {
case 1:

if (numeroStringhe<N) {
printf("quale stringa da aggiungere? ");

scanf("%s", buffer1);
aggiungi(stringhe, buffer1, &numeroStringhe);

}
else printf("spazio insufficiente, tsk.\n\n");
break;

case 2:
printf("stringa da sostituire: ");
scanf("%s", buffer1);
printf("stringa con cui sostituire: ");
scanf("%s", buffer2);
sostituisci(stringhe, numeroStringhe, buffer1, buffer2);
break;

...

main()

64/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Programma gestione stringhe - 4/8 -
#include <stdio.h>
#include <stdlib.h> #define N ... #define LUNGMAX
... (dich.)
int main() { char *stringhe[N], char buffer1[LUNGMAX+1], buffer2[LUNGMAX+1];

int numeroStringhe, scelta;

numeroStringhe = 0; /* init struttura dati array stringhe */

do { stampaMenu(); /* 1=aggiungi 2=sostitui... */
scanf("", &scelta); /* lettura scelta */

switch(scelta) {
case 1:

if (numeroStringhe<N) {
printf("quale stringa da aggiungere? ");

scanf("%s", buffer1);
aggiungi(stringhe, buffer1, &numeroStringhe);

}
else printf("spazio insufficiente, tsk.\n\n");
break;

case 2:
printf("stringa da sostituire: ");
scanf("%s", buffer1);
printf("stringa con cui sostituire: ");
scanf("%s", buffer2);
sostituisci(stringhe, numeroStringhe, buffer1, buffer2);
break;

...

main()

NB sostituisci riceve “la collezione”,
sotto forma di una coppia di parametri

65/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Programma gestione stringhe - 5/8 -

void stampaTutto(char *v[], int quanteSono) {
int i;

for (i=0; i<quanteSono; i++)
printf("%s\n", v[i]);

return; /* o anche *(v+i) */
}

^
stringhe

?
?

^^^

s i \0^^^

^^ P O C O \0^^

...
E S T O \0R...

....
O \0RO....

numeroStringhe 4

memoria

^v

R
D

A

stampaTutto(stringhe, numeroStringhe);

4
quanteSono

PAR

stampaTutto()
...

case 3: stampaTutto(stringhe, numeroStringhe);

break; ...

66/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Programma gestione stringhe - 5/8 -

void stampaTutto(char *v[], int quanteSono) {
int i;

for (i=0; i<quanteSono; i++)
printf("%s\n", v[i]);

return; /* o anche *(v+i) */
}

^
stringhe

?
?

^^^

s i \0^^^

^^ P O C O \0^^

...
E S T O \0R...

....
O \0RO....

numeroStringhe 4

memoria

^v

R
D

A

stampaTutto(stringhe, numeroStringhe);

4
quanteSono

PAR

- a che tipo è equivalente char *v[] (solo dal punto di vista dei
tipi nei parametri)

- v[i] è il alla ...-esima di v

- v[i] si può scrivere anche come

- cosa è v, tra le scelte seguenti?

"doppio puntatore”, "puntatore a puntatore", indirizzo
di un puntatore, indirizzo di una locazione che
contiene un ind.

- cosa vuol dire "stampare v[i] con formato %s"

stampaTutto()
...

case 3: stampaTutto(stringhe, numeroStringhe);

break; ...



67/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Programma gestione stringhe - 5/8 -

void stampaTutto(char *v[], int quanteSono) {
int i;

for (i=0; i<quanteSono; i++)
printf("%s\n", v[i]);

return; /* o anche *(v+i) */
}

^
stringhe

?
?

^^^

s i \0^^^

^^ P O C O \0^^

...
E S T O \0R...

....
O \0RO....

numeroStringhe 4

memoria

^v

R
D

A

stampaTutto(stringhe, numeroStringhe);

4
quanteSono

PAR

- char *v[] equivalente a char **

- v[i] = puntatore alla i-esima stringa = *(v+i);

- v è "doppio puntatore”

= "puntatore a puntatore"

= indirizzo di un puntatore

= ind. di una locazione che contiene un ind.

- stampare v[i] con formato %s vuol dire stampare la
stringa v[i], cioè la stringa puntata dal puntatore v[i]

stampaTutto()
...

case 3: stampaTutto(stringhe, numeroStringhe);

break; ...

68/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Programma gestione stringhe - 6/8 -
void aggiungi (char **v, char *nuovaStringa, int *pQuante) {
/* il controllo sulla disponibilita` di spazio nell'array
si suppone fatto all'esterno, dalla funzione chiamante
(non è bello, ma ora ci stiamo concentrando su altro */

int j = *pQuante; /* solo per comodita` */

v[j] = malloc (strlen(nuovaStringa)+1);

if (!v[j])
printf("errore in alloc. ...");

else {
strcpy(v[j], nuovaStringa);
*pQuante+=1;

}
return;
} ^

stringhe

?
?

^^^
s i \0^^^

^^ P O C O \0^^

...
E S T O \0R...

....
O \0RO....

numeroStringhe 4

memoria

^v

R
D

A

aggiungi(stringhe, buffer1,
&numeroStringhe);

#pQuante

PAR

#

nuovaStringa

buffer1## F O C O \0

VARj

X

X

aggiungi()

#^

##
4

69/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Programma gestione stringhe - 6/8 -
void aggiungi (char **v, char *nuovaStringa, int *pQuante) {
/* il controllo sulla disponibilita` di spazio nell'array
si suppone fatto all'esterno, dalla funzione chiamante
(non e` bello, ma ora ci stiamo concentrando su altro */

int j = *pQuante; /* solo per comodita` */

v[j] = malloc (strlen(nuovaStringa)+1);

if (!v[j])
printf("errore in alloc. ...");

else {
strcpy(v[j], nuovaStringa);
*pQuante+=1;

}
return;
} ^

stringhe

?
?

^^^
s i \0^^^

^^ P O C O \0^^

...
E S T O \0R...

....
O \0RO....

numeroStringhe 4

memoria

^v

R
D

A

aggiungi(stringhe, buffer1,
&numeroStringhe);

#pQuante

PAR

#

nuovaStringa

buffer1## F O C O \0

VARj

X

X

aggiungi()

#^

##
4

F O C O \0

Y

Y

70/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Programma gestione stringhe - 6/8 -
void aggiungi (char **v, char *nuovaStringa, int *pQuante) {
/* il controllo sulla disponibilita` di spazio nell'array
si suppone fatto all'esterno, dalla funzione chiamante
(non e` bello, ma ora ci stiamo concentrando su altro */

int j = *pQuante; /* solo per comodita` */

v[j] = malloc (strlen(nuovaStringa)+1);

if (!v[j])
printf("errore in alloc. ...");

else {
strcpy(v[j], nuovaStringa);
*pQuante+=1;

}
return;
} ^

stringhe

?
?

^^^
s i \0^^^

^^ P O C O \0^^

...
E S T O \0R...

....
O \0RO....

numeroStringhe 4

memoria

^v

R
D

A

aggiungi(stringhe, buffer1,
&numeroStringhe);

#pQuante

PAR

#

nuovaStringa

buffer1## F O C O \0

VARj

Z

aggiungi()

#^

##
4

5

F O C O \0

Z

71/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Programma gestione stringhe - 6/8 -
void aggiungi (char **v, char *nuovaStringa, int *pQuante) {
/* il controllo sulla disponibilita` di spazio nell'array
si suppone fatto all'esterno, dalla funzione chiamante
(non e` bello, ma ora ci stiamo concentrando su altro */

int j = *pQuante; /* solo per comodita` */

v[j] = malloc (strlen(nuovaStringa)+1);

if (!v[j])
printf("errore in alloc. ...");

else {
strcpy(v[j], nuovaStringa);
*pQuante+=1;

}
return;
} ^

stringhe

?
?

^^^
s i \0^^^

^^ P O C O \0^^

...
E S T O \0R...

....
O \0RO....

numeroStringhe 4

memoria

^v

R
D

A

aggiungi(stringhe, buffer1,
&numeroStringhe);

#pQuante

PAR

ALCUNE Verità

- la funzione ha aggiunto una stringa
in posizione numeroStringhe+1; quindi
subito prima del termine
dell'attivazione, numeroStringhe viene
incrementato di 1;

- l'espressione (!v[j]) è equiv. a
(v[j]==NULL)

#

nuovaStringa

buffer1## F O C O \0

VARj

aggiungi()

#^

##
4

5

F O C O \0

72/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Programma gestione stringhe - 7/8 -
void sostituisci (char **v, int quanteSono,

char *daSost, char *conChi) {
/* cerchiamo l'indice della stringa da sostituire con

una funzione di servizio che restituisce l'indice
della stringa nell'array, oppure -1 (se non c'e`)*/
int indice =

ricerca(v,quanteSono, daSost);

if (indice==-1)
printf("non presente\n\n");

else {

v[indice]=malloc(strlen(conChi)+1);

if (!v[indice])
printf("errore in alloc. ...");

else
strcpy(v[indice], conChi);

} /* fine primo if */
return;
}

^
stringhe

#^
?

^^^
s i \0^^^

^^ P O C O \0^^

...
E S T O \0R...

....
O \0RO....

numeroStringhe 5

memoria prima della chiamata

^v

R
D

A

sostituisci(stringhe,
numeroStringh, buffer1, buffer2);

5quanteSono

PAR

#

##daSost

buffer1## R E S T O

VARindice

buffer2
#.

F O C O \0L A R E

#.conChi

\0

sostituisci()

73/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Programma gestione stringhe - 7/8 -
void sostituisci (char **v, int quanteSono,

char *daSost, char *conChi) {
/* cerchiamo l'indice della stringa da sostituire con

una funzione di servizio che restituisce l'indice
della stringa nell'array, oppure -1 (se non c'e`)*/
int indice =

ricerca(v,quanteSono, daSost);

if (indice==-1)
printf("non presente\n\n");

else {

v[indice]=malloc(strlen(conChi)+1);

if (!v[indice])
printf("errore in alloc. ...");

else
strcpy(v[indice], conChi);

} /* fine primo if */
return;
}

^
stringhe

#^
?

^^^
s i \0^^^

^^ P O C O \0^^

...
E S T O \0R...

....
O \0RO....

numeroStringhe 5

memoria prima della chiamata

^v

R
D

A

sostituisci(stringhe,
numeroStringh, buffer1, buffer2);

5quanteSono

PAR

#

##daSost

buffer1## R E S T O

VAR2indice

buffer2
#.

F O C O \0L A R E

#.conChi

\0

sostituisci()

Z

Z

?

?

74/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Programma gestione stringhe - 7/8 -
void sostituisci (char **v, int quanteSono,

char *daSost, char *conChi) {
/* cerchiamo l'indice della stringa da sostituire con

una funzione di servizio che restituisce l'indice
della stringa nell'array, oppure -1 (se non c'e`)*/
int indice =

ricerca(v,quanteSono, daSost);

if (indice==-1)
printf("non presente\n\n");

else {
free(v[indice]; /* deall. stringa da sost.

e allocazione stringa sostituto */
v[indice]=malloc(strlen(conChi)+1);

if (!v[indice])
printf("errore in alloc. ...");

else
strcpy(v[indice], conChi);

} /* fine primo if */
return;
}

^
stringhe

#^
?

^^^
s i \0^^^

^^ P O C O \0^^

...
E S T O \0R...

....
O \0RO....

numeroStringhe 5

memoria prima della chiamata

^v

R
D

A

sostituisci(stringhe,
numeroStringh, buffer1, buffer2);

5quanteSono

PAR

#

##daSost

buffer1## R E S T O

VAR2indice

buffer2
#.

F O C O \0L A R E

#.conChi

\0

sostituisci()

75/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Programma gestione stringhe - 7/8 -
void sostituisci (char **v, int quanteSono,

char *daSost, char *conChi) {
/* cerchiamo l'indice della stringa da sostituire con

una funzione di servizio che restituisce l'indice
della stringa nell'array, oppure -1 (se non c'e`)*/
int indice =

ricerca(v,quanteSono, daSost);

if (indice==-1)
printf("non presente\n\n");

else {
free(v[indice]; /* deall. stringa da sost.

e allocazione stringa sostituto */
v[indice]=malloc(strlen(conChi)+1);

if (!v[indice])
printf("errore in alloc. ...");

else
strcpy(v[indice], conChi);

} /* fine primo if */
return;
}

^
stringhe

#^
?

^^^
s i \0^^^

^^ P O C O \0^^

...

....
O \0RO....

numeroStringhe 5

memoria prima della chiamata

^v

R
D

A

sostituisci(stringhe,
numeroStringh, buffer1, buffer2);

5quanteSono

PAR

#

##daSost

buffer1## R E S T O

VAR2indice

buffer2
#.

F O C O \0L A R E

#.conChi

\0

sostituisci()

76/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Programma gestione stringhe - 7/8 -
void sostituisci (char **v, int quanteSono,

char *daSost, char *conChi) {
/* cerchiamo l'indice della stringa da sostituire con

una funzione di servizio che restituisce l'indice
della stringa nell'array, oppure -1 (se non c'e`)*/
int indice =

ricerca(v,quanteSono, daSost);

if (indice==-1)
printf("non presente\n\n");

else {
free(v[indice]; /* deall. stringa da sost.

e allocazione stringa sostituto */
v[indice]=malloc(strlen(conChi)+1);

if (!v[indice])
printf("errore in alloc. ...");

else
strcpy(v[indice], conChi);

} /* fine primo if */
return;
}

^
stringhe

#^
?

^^^
s i \0^^^

^^ P O C O \0^^

...

....
O \0RO....

numeroStringhe 5

memoria prima della chiamata

^v

R
D

A

sostituisci(stringhe,
numeroStringh, buffer1, buffer2);

5quanteSono

PAR

#

##daSost

buffer1## R E S T O

VAR2indice

buffer2
#.

F O C O \0L A R E

#.conChi

\0

sostituisci()

O C … …F...

77/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Programma gestione stringhe - 8/8 -
int ricerca (char **v, int quanteSono, char *strCercata) {
/* restituisce l'indice di strCercata in v, oppure -1 */
int i = 0,

for (; i<quanteSono; i++)
if (strcmp((v[i], strCercata)==0)
return i; /* stringa trovata: rest. l'indice */

return -1;
}

^
stringhe

^.
?

^^^
s i \0^^^

^^ P O C O \0^^
....

O \0RO....

numeroStringhe 5

memoria

^v

R
D

A

ricerca (stringhe, numeroStringh,
buffer1);

5quanteSono

PAR

#

##strCercata

buffer1## R E S T O

VARi

\0

ricerca()

...
E S T O \0R...

78/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Programma gestione stringhe - 8/8 -
int ricerca (char **v, int quanteSono, char *strCercata) {
/* restituisce l'indice di strCercata in v, oppure -1 */
int i = 0,

for (; i<quanteSono; i++)
if (strcmp((v[i], strCercata)==0)
return i; /* stringa trovata: rest. l'indice */

return -1;
}

^
stringhe

^.
?

^^^
s i \0^^^

^^ P O C O \0^^
....

O \0RO....

numeroStringhe 5

memoria

^v

R
D

A

ricerca (stringhe, numeroStringh,
buffer1);

5quanteSono

PAR

#

##strCercata

buffer1## R E S T O

VAR0i

\0

ricerca()

...
E S T O \0R...

79/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Programma gestione stringhe - 8/8 -
int ricerca (char **v, int quanteSono, char *strCercata) {
/* restituisce l'indice di strCercata in v, oppure -1 */
int i = 0,

for (; i<quanteSono; i++)
if (strcmp((v[i], strCercata)==0)
return i; /* stringa trovata: rest. l'indice */

return -1;
}

^
stringhe

^.
?

^^^
s i \0^^^

^^ P O C O \0^^
....

O \0RO....

numeroStringhe 5

memoria

^v

R
D

A

ricerca (stringhe, numeroStringh,
buffer1);

5quanteSono

PAR

#

##strCercata

buffer1## R E S T O

VAR0i

\0

ricerca()

2

...
E S T O \0R...

80/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Programma gestione stringhe - 8/8 -
int ricerca (char **v, int quanteSono, char *strCercata) {
/* restituisce l'indice di strCercata in v, oppure -1 */
int i = 0,

for (; i<quanteSono; i++)
if (strcmp((v[i], strCercata)==0)
return i; /* stringa trovata: rest. l'indice */

/* se siamo usciti dal ciclo senza mai trovare la stringa,
... vuol dire che non l'abbiamo trovata ... */
return -1;
}

^
stringhe

^.
?

^^^
s i \0^^^

^^ P O C O \0^^
....

O \0RO....

numeroStringhe 5

memoria

^v

R
D

A

ricerca (stringhe, numeroStringh,
buffer1);

5quanteSono

PAR

#

##strCercata

buffer1## R E S T O

VAR0i

\0

ricerca()

esercizio: riflettere sul perche', nella funzione sostituisci, per sostituire la stringa
v{indice] con quella conChi, dopo free(v[indice]), invece di fare

v[indice] = conChi

abbiamo usato codice differente per creare una copia esatta di conChi e poi
assegnare a v[indice] tale nuova stringa

2

...
E S T O \0R...

81/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Approfondimenti

Tecniche della Programmazione, lez. 16

82/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Array di stringhe (lettura) – 3 – esecuzione simulata
continua funzione che legge un array di N stringhe, ciascuna di al piu` 80 char

/* 3a fase: definizione funzione */
void costruisciArrayStringhe(char * v[N]);
char buffer[LUNGMAX+1];
int i;

for (i=0; i<N; i++) {
/* lettura di una stringa ... */

printf("scrivi una str ...\n");
scanf("%s", buffer);

/* ... e sua memorizzazione */

v[i] = malloc(strlen(buffer)+1); /* 1.2 */
if (v[i])

strcpy(v[i], buffer); /* 1.3 */

else {
printf("eeekkk\n");
break;

}
} /* fine for */

return;
} memoria

^v

R
D

A

costruisciArrayStringhe(arrStr);

^
arrStr

buffer

i
...



esecuzione simulata: riempire il disegno qui sopra,
mostrando come le stringhe lette in input (POCO,
ORO, RESTO, si, PRO, PROMOZion) vengono piazzate in
memria e puntate dagli elementi dell'array. Poi
confrontare con la slide successiva

83/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Array di stringhe (lettura) – 3.2 –
continua funzione che legge un array di N stringhe, ciascuna di al piu` 80 char

/* 3a fase: definizione funzione */
void costruisciArrayStringhe(char * v[N]);
char buffer[LUNGMAX+1];
int i;

for (i=0; i<N; i++) {
/* lettura di una stringa ... */

printf("scrivi una str ...\n");
scanf("%s", buffer);

/* ... e sua memorizzazione */

v[i] = malloc(strlen(buffer)+1); /* 1.2 */
if (v[i])

strcpy(v[i], buffer); /* 1.3 */

else {
printf("eeekkk\n");
break;

}
} /* fine for */

return;
} memoria

^v

R
D

A

costruisciArrayStringhe(arrStr);

^
arrStr

p
buffer

0i
o c o ...

84/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Array di stringhe (lettura) – 3.3 –
continua funzione che legge un array di N stringhe, ciascuna di al piu` 80 char

/* 3a fase: definizione funzione */
void costruisciArrayStringhe(char * v[N]);
char buffer[LUNGMAX+1];
int i;

for (i=0; i<N; i++) {
/* lettura di una stringa ... */

printf("scrivi una str ...\n");
scanf("%s", buffer);

/* ... e sua memorizzazione */

v[i] = malloc(strlen(buffer)+1); /* 1.2 */
if (v[i])

strcpy(v[i], buffer); /* 1.3 */

else {
printf("eeekkk\n");
break;

}
} /* fine for */

return;
} memoria

^v

R
D

A

costruisciArrayStringhe(arrStr);

^
arrStr

p
buffer

0i
o c o ...

^^

P O C O \0^^

85/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Array di stringhe (lettura) – 3.4 –
continua funzione che legge un array di N stringhe, ciascuna di al piu` 80 char

/* 3a fase: definizione funzione */
void costruisciArrayStringhe(char * v[N]);
char buffer[LUNGMAX+1];
int i;

for (i=0; i<N; i++) {
/* lettura di una stringa ... */

printf("scrivi una str ...\n");
scanf("%s", buffer);

/* ... e sua memorizzazione */

v[i] = malloc(strlen(buffer)+1); /* 1.2 */
if (v[i])

strcpy(v[i], buffer); /* 1.3 */

else {
printf("eeekkk\n");
break;

}
} /* fine for */

return;
} memoria

^v

R
D

A

costruisciArrayStringhe(arrStr);

^
arrStr

O
buffer

1i
R O \0 ...

^^

P O C O \0^^

86/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Array di stringhe (lettura) – 3.5 –
continua funzione che legge un array di N stringhe, ciascuna di al piu` 80 char

/* 3a fase: definizione funzione */
void costruisciArrayStringhe(char * v[N]);
char buffer[LUNGMAX+1];
int i;

for (i=0; i<N; i++) {
/* lettura di una stringa ... */

printf("scrivi una str ...\n");
scanf("%s", buffer);

/* ... e sua memorizzazione */

v[i] = malloc(strlen(buffer)+1); /* 1.2 */
if (v[i])

strcpy(v[i], buffer); /* 1.3 */

else {
printf("eeekkk\n");
break;

}
} /* fine for */

return;
} memoria

costruisciArrayStringhe(arrStr);

^
arrStr
^^

P O C O \0^^

....

O \0RO....

^v

R
D

A

O
buffer

1i
R O \0 ...

87/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Array di stringhe (lettura) – 3.6 –
continua funzione che legge un array di N stringhe, ciascuna di al piu` 80 char

/* 3a fase: definizione funzione */
void costruisciArrayStringhe(char * v[N]);
char buffer[LUNGMAX+1];
int i;

for (i=0; i<N; i++) {
/* lettura di una stringa ... */

printf("scrivi una str ...\n");
scanf("%s", buffer);

/* ... e sua memorizzazione */

v[i] = malloc(strlen(buffer)+1); /* 1.2 */
if (v[i])

strcpy(v[i], buffer); /* 1.3 */

else {
printf("eeekkk\n");
break;

}
} /* fine for */

return;
} memoria

costruisciArrayStringhe(arrStr);

^
arrStr

^v

R
D

A

R
buffer

2i
E S T ...

^^

P O C O \0^^

....

O \0RO....

88/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Array di stringhe (lettura) – 3.7 –
continua funzione che legge un array di N stringhe, ciascuna di al piu` 80 char

/* 3a fase: definizione funzione */
void costruisciArrayStringhe(char * v[N]);
char buffer[LUNGMAX+1];
int i;

for (i=0; i<N; i++) {
/* lettura di una stringa ... */

printf("scrivi una str ...\n");
scanf("%s", buffer);

/* ... e sua memorizzazione */

v[i] = malloc(strlen(buffer)+1); /* 1.2 */
if (v[i])

strcpy(v[i], buffer); /* 1.3 */

else {
printf("eeekkk\n");
break;

}
} /* fine for */

return;
} memoria

costruisciArrayStringhe(arrStr);

^
arrStr

^^

P O C O \0^^

....

O \0RO....

...

E S T O \0R...

^v

R
D

A

R
buffer

2i
E S T ...

89/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Array di stringhe (lettura) – 3.8 –
funzione che legge un array di N stringhe, ciascuna di al piu` 80 char

/* 3a fase: definizione funzione */
void costruisciArrayStringhe(char * v[N]){
char buffer[LUNGMAX+1];
int i;

for (i=0; i<N; i++) {
/* lettura di una stringa ... */

printf("scrivi una str ...\n");
scanf("%s", buffer);

/* ... e sua memorizzazione */

v[i] = malloc(strlen(buffer)+1);
if (v[i])

strcpy(v[i], buffer);
else {

printf("eeekkk\n");
break;

}
} /* fine for */

return;
} memoria

^v

R
D

A

costruisciArrayStringhe(arrStr);

^
arrStr

...

E S T O \0R...

....

O \0RO....

.

R O \0P.

..

.. i o nZR O M OP \0

^^

P O C O \0^^

^^^

s i \0^^^

abbiamo letto le stringhe da input e le abbiamo
memorizzate, come stringhe esatte, nell'array
di stringhe (cioè di puntatori) arrStr

90/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Esercizi

- duplicazione con side effect sulla nuova stringa

- duplicazione con restituzione del grado di successo

- UN complicato esercizio con un array dinamico, da
realizzare seguendo passo passo lo sviluppo
proposto nelle slide.

Tecniche della Programmazione, lez. 16

91/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Esercizio (duplica stringa)
programma che esegue una duplicazione di stringa mediante side effect

da parte della funzione duplica()
#include <stdio.h>
#include <stdlib.h>

int main() { char *string1, *string2;
...

/* string1 e` una stringa effettiva; string2 e` un
puntatore cui attacchiamo un duplicato della string1 */
...

duplica(string1, &string2);
...
return 0;
}

memoria

P O C O \0

string1
^^

string2

void duplica(char * s1, char **pCopia) {
*pCopia = malloc(strlen(s1)+1);

return;
}

void duplica(char *, char **);

^

Questo parametro attuale
e` un “indirizzo di
locazione capace di
contenere un indirizzo”
(l’indirizzo di un
indirizzo …)

Questo parametro formale
e` capace di ricevere un
valore che e` indirizzo di
un indirizzo di carattere

^^

if (*pCopia)

strcpy(*pCopia, s1);

Questo e` il prototipo della funzione duplica()

Obiettivo: dopo la
chiamata

duplica(string1, &string2)

string2 e` una stringa
identica a string1.

92/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Esercizio (duplica stringa)
programma che esegue una duplicazione di stringa mediante side effect

da parte della funzione duplica()
#include <stdio.h>
#include <stdlib.h>

int main() { char *string1, *string2;
...

/* string1 e` una stringa effettiva; string2 e` un
puntatore cui attacchiamo un duplicato della string1 */
...

duplica(string1, &string2);
...
return 0;
}

memoria

P O C O \0

string1
^^

string2

void duplica(char * s1, char **pCopia) {
*pCopia = malloc(strlen(s1)+1);

return;
}

void duplica(char *, char **);

^

...

Questo parametro attuale
e` un “indirizzo di
locazione capace di
contenere un indirizzo”
(l’indirizzo di un
indirizzo …)

Questo parametro formale
e` capace di ricevere un
valore che e` indirizzo di
un indirizzo di carattere

^^

P O C O \0...

if (*pCopia)

strcpy(*pCopia, s1);

Questo e` il prototipo della funzione duplica()

Obiettivo: dopo la
chiamata

duplica(string1, &string2)

string2 e` una stringa
identica a string1.

93/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Esercizio (duplica stringa)
programma che esegue una duplicazione di stringa mediante side effect

da parte della funzione duplica()
#include <stdio.h>
#include <stdlib.h>

int main() { char *string1, *string2;
...

/* string1 e` una stringa effettiva; string2 e` un
puntatore cui attacchiamo un duplicato della string1 */
...

duplica(string1, &string2);
...
return 0;
}

memoria

P O C O \0

string1
^^

string2

^^s1

R
D

A

duplica(string1, &string2);

^
pCopia

PAR

void duplica(char * s1, char **pCopia) {
*pCopia = malloc(strlen(s1)+1);

return;
}

void duplica(char *, char **);

^

^^

if (*pCopia)

strcpy(*pCopia, s1);

94/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Esercizio (duplica stringa)
programma che esegue una duplicazione di stringa mediante side effect

da parte della funzione duplica()
#include <stdio.h>
#include <stdlib.h>

int main() { char *string1, *string2;
...

/* string1 e` una stringa effettiva; string2 e` un
puntatore cui attacchiamo un duplicato della string1 */
...

duplica(string1, &string2);
...
return 0;
}

memoria

P O C O \0

string1
^^

string2

^^s1

R
D

A

duplica(string1, &string2);

^
pCopia

PAR

void duplica(char * s1, char **pCopia) {
*pCopia = malloc(strlen(s1)+1);

return;
}

void duplica(char *, char **);

^

...

^^

if (*pCopia)

strcpy(*pCopia, s1);

95/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Esercizio (duplica stringa)
programma che esegue una duplicazione di stringa mediante side effect

da parte della funzione duplica()
#include <stdio.h>
#include <stdlib.h>

int main() { char *string1, *string2;
...

/* string1 e` una stringa effettiva; string2 e` un
puntatore cui attacchiamo un duplicato della string1 */
...

duplica(string1, &string2);
...
return 0;
}

memoria

P O C O \0

string1
^^

string2

^^s1

R
D

A

duplica(string1, &string2);

^
pCopia

PAR

void duplica(char * s1, char **pCopia) {
*pCopia = malloc(strlen(s1)+1);

return;
}

void duplica(char *, char **);

^

...

^^

P O C O \0...
if (*pCopia)

strcpy(*pCopia, s1);

96/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Esercizio (duplica stringa)
programma che esegue una duplicazione di stringa mediante side effect

da parte della funzione duplica()

memoria

P O C O \0

string1
^^

string2

^^s1

R
D

A

duplica(string1, &string2);

^
pCopia

PAR

void duplica(char * s1, char **pCopia) {
*pCopia = malloc(strlen(s1)+1);

return;
}

void duplica(char *, char **);

^

^^

if (*pCopia)

strcpy(*pCopia, s1);

osservazione: Cosa c'e` in *pCopia se l'allocazione e`
andata male?
Ora rispondi e poi fai una funzione che duplica come
sopra ma restituisce 1/0 per indicare il successo
dell’operazione. Poi prosegui 

97/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

duplica2
funzione come duplica(), che restituisce 1 o 0 a seconda del successo dell'operazione
di duplicazione

98/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

duplica2
funzione come duplica(), che restituisce 1 o 0 a seconda del successo dell'operazione
di duplicazione

int duplica2(char * s1, char **pCopia) {
*pCopia = malloc(strlen(s1)+1);
if (*pCopia) {
strcpy(*pCopia, s1);
return 1; /* e` andata bene */

} else
return 0; /* e` andata male */

}

99/80Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Esercizio
programma che legge un intero n e poi legge n double;

memorizza i double in un array dinamico esatto,
calcola e stampa minimo, massimo e media dei double

memoria

n somma

auxd

pmin

pmax

pd

1) Allocazione array dinamico, lettura e memorizzazione
dei numeri negli elementi *pd ………. *(pd+n-1)

2) init minimo e massimo parziale, e somma

3) scansione a ritroso da “penultimo” a “primo”
elemento, usando l'algoritmo del massimo (minimo)
parziale
e accumulando i double (per poter calcolare la media)

4) e poi calcolo media e stampa di min, max e media

La scansione viene realizzata mediante un
puntatore: auxd

100/8
0

Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Esercizio
programma che legge un intero n e n double;

li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

memoria

n somma

auxd

pmin

pmax

pd

6

39.12

12.11
81.12

11.12
121.12

45.88

?

1) Allocazione array dinamico, lettura e memorizzazione

2) init minimo e massimo parziale, e somma

3) scansione a ritroso da “penultimo” a “primo”
elemento, trovando max e min, e accumulando

4) e poi calcolo media
MA usiamo (per realizzare l'alg. di

massimo/minimo parziale)
- indirizzo del max parz: pmax
- indirizzo del min parz: pmin
- scansione degli elementi con un puntatore: auxd

- se *auxd e` maggiore di *pmax, allora *auxd e`
un nuovo max parz: pmax = auxd

dei numeri in *pd ………. *(pd+n-1)
(usiamo un puntatore auxd, per scandire gli elementi dell'array, dal primo all'ultimo)

101/8
0

Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Esercizio (o esempio?)
programma che legge un intero n e n double;

li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

memoria

n 6 somma

auxd

pmin

pmax

45.88

pd

39.12

12.11
81.12

11.12
121.12

1) Allocazione array dinamico, lettura e memorizzazione

2) init minimo e massimo parziale, e somma

3) scansione a ritroso da “penultimo” a “primo”
elemento, trovando max e min, e accumulando

4) e poi calcolo media
MA usiamo (per realizzare l'alg. di

massimo/minimo parziale)
- indirizzo del max parz: pmax
- indirizzo del min parz: pmin
- scansione degli elementi con un puntatore: auxd

- se *auxd e` maggiore di *pmax, allora *auxd e`
un nuovo max parz: pmax = auxd

dei numeri in *pd ………. *(pd+n-1)
(usiamo un puntatore auxd, per scandire gli elementi dell'array, dal primo all'ultimo)

102/8
0

Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Esercizio (o esempio?)
programma che legge un intero n e n double;

li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

memoria

n 6 somma

auxd

pmin

pmax

45.88

pd

45.88

39.12

12.11
81.12

11.12
121.12

1) Allocazione array dinamico, lettura e memorizzazione

2) init minimo e massimo parziale, e somma

3) scansione a ritroso da “penultimo” a “primo”
elemento, trovando max e min, e accumulando

4) e poi calcolo media
MA usiamo (per realizzare l'alg. di

massimo/minimo parziale)
- indirizzo del max parz: pmax
- indirizzo del min parz: pmin
- scansione degli elementi con un puntatore: auxd

- se *auxd e` maggiore di *pmax, allora *auxd e`
un nuovo max parz: pmax = auxd

dei numeri in *pd ………. *(pd+n-1)
(usiamo un puntatore auxd, per scandire gli elementi dell'array, dal primo all'ultimo)

103/8
0

Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

1) Allocazione array dinamico, lettura e memorizzazione

2) init minimo e massimo parziale, e somma

3) scansione a ritroso da “penultimo” a “primo”
elemento, trovando max e min, e accumulando

4) e poi calcolo media
MA usiamo (per realizzare l'alg. di

massimo/minimo parziale)
- indirizzo del max parz: pmax
- indirizzo del min parz: pmin
- scansione degli elementi con un puntatore: auxd

- se *auxd e` maggiore di *pmax, allora *auxd e`
un nuovo max parz: pmax = auxd

Esercizio
programma che legge un intero n e n double;

li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

memoria

n 6 somma

auxd

pmin

pmax

45.88

pd

45.88+…

39.12

12.11
81.12

11.12
121.12

(usiamo un puntatore auxd, per scandire gli elementi dell'array, dal primo all'ultimo)
dei numeri in *pd ………. *(pd+n-1)

104/8
0

Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Esercizio
programma che legge un intero n e n double;

li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

memoria

n 6 somma

auxd

pmin

pmax

45.88

pd

45.88+…

39.12

12.11
81.12

11.12
121.12

1) Allocazione array dinamico, lettura e memorizzazione

2) init minimo e massimo parziale, e somma

3) scansione a ritroso da “penultimo” a “primo”
elemento, trovando max e min, e accumulando

4) e poi calcolo media
MA usiamo (per realizzare l'alg. di

massimo/minimo parziale)
- indirizzo del max parz: pmax
- indirizzo del min parz: pmin
- scansione degli elementi con un puntatore: auxd

- se *auxd e` maggiore di *pmax, allora *auxd e`
un nuovo max parz: pmax = auxd

dei numeri in *pd ………. *(pd+n-1)

105/8
0

Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Esercizio
programma che legge un intero n e n double;

li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

memoria

n 6 somma

auxd

pmin

pmax

45.88

pd

45.88+…

39.12

12.11
81.12

11.12
121.12

1) Allocazione array dinamico, lettura e memorizzazione

2) init minimo e massimo parziale, e somma

3) scansione a ritroso da “penultimo” a “primo”
elemento, trovando max e min, e accumulando

4) e poi calcolo media
MA usiamo (per realizzare l'alg. di

massimo/minimo parziale)
- indirizzo del max parz: pmax
- indirizzo del min parz: pmin
- scansione degli elementi con un puntatore: auxd

- se *auxd e` maggiore di *pmax, allora *auxd e`
un nuovo max parz: pmax = auxd

dei numeri in *pd ………. *(pd+n-1)

106/8
0

Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Esercizio
programma che legge un intero n e n double;

li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

memoria

n 6 somma

auxd

pmin

pmax

45.88

pd

45.88+…

39.12

12.11
81.12

11.12
121.12

1) Allocazione array dinamico, lettura e memorizzazione

2) init minimo e massimo parziale, e somma

3) scansione a ritroso da “penultimo” a “primo”
elemento, trovando max e min, e accumulando

4) e poi calcolo media
MA usiamo (per realizzare l'alg. di

massimo/minimo parziale)
- indirizzo del max parz: pmax
- indirizzo del min parz: pmin
- scansione degli elementi con un puntatore: auxd

- se *auxd e` maggiore di *pmax, allora *auxd e`
un nuovo max parz: pmax = auxd

dei numeri in *pd ………. *(pd+n-1)

107/8
0

Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

Esercizio
programma che legge un intero n e n double;

li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

memoria

n 6 somma

auxd

pmin

pmax

45.88

pd

45.88+…

39.12

12.11
81.12

11.12
121.12

1) Allocazione array dinamico, lettura e memorizzazione

2) init minimo e massimo parziale, e somma

3) scansione a ritroso da “penultimo” a “primo”
elemento, trovando max e min, e accumulando

4) e poi calcolo media
MA usiamo (per realizzare l'alg. di

massimo/minimo parziale)
- indirizzo del max parz: pmax
- indirizzo del min parz: pmin
- scansione degli elementi con un puntatore: auxd

- se *auxd e` maggiore di *pmax, allora *auxd e`
un nuovo max parz: pmax = auxd

dei numeri in *pd ………. *(pd+n-1)Quando auxd == pd, siamo sul primo elemento e lo
controlliamo;

quando auxd e` andato un altro passo indietro, e`
auxd < pd e quindi siamo fuori dell'array
e ci dobbiamo fermare.

Ora pmin e pmax effettivamente puntano all'elemento
minimo e massimo, rispettivamente, nell'array

108/8
0

Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

programma che legge un intero n e n double;
li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

#include <stdio.h>
#include <stdlib.h>
int main() {
...

scanf(... &n);
pd = malloc(n*sizeof(double));

if (!pd) printf(" ... ");
else {
for (auxd=pd; auxd-pd < n; auxd++)
scanf("%lf", auxd);

...

int n;

double *pd, *pmax, *pmin, *auxd, somma, ;

memoria

n 6 somma

auxd

pmin

pmax

45.88

pd

39.12

12.11
81.12

11.12
121.12

esercizio su intero n e n double (coding 1/2)

Durante la prima scansione, per la lettura dei dati,

auxd inizialmente punta sull'inizio dell'array (auxd=pd)

In questo momento auxd-pd==0 e la scand mette il dato letto da input nel primo elemento;
poi auxd viene incrementato di uno ... cioe` salta all'elemento successivo (audd-pd==1)

Andando avanti, auxd-pd == 2 (e viene letto il dato per il secondo elemento,

auxd-pd==3 ... terzo elemento

...

Alla fine auxd-pd==n e aud punta fuori dell'array (fine delle letture)

109/8
0

Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

programma che legge un intero n e n double;
li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

#include <stdio.h>
#include <stdlib.h>
int main() {
...

scanf(... &n);
pd = malloc(n*sizeof(double));

if (!pd) printf(" ... ");
else {
for (auxd=pd; auxd-pd < n; auxd++)
scanf("%lf", auxd);

...

int n;

double *pd, *pmax, *pmin, *auxd, somma, ;

memoria

n 6 somma

auxd

pmin

pmax

45.88

pd

39.12

12.11
81.12

11.12
121.12

esercizio su intero n e n double (coding 1/2)

esempio auxpd-pd == 3

auxpd-pd == 5

auxpd-pd == n

110/8
0

Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

programma che legge un intero n e n double;
li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

#include <stdio.h>
#include <stdlib.h>
int main() {
...

scanf(... &n);
pd = malloc(n*sizeof(double));

if (!pd) printf(" ... ");
else {
for (auxd=pd; auxd-pd < n; auxd++)
scanf("%lf", auxd);

/* inizializzazione: pmax e pmin saranno
i puntatori al massimo e minimo;
tecnica del massimo parziale */

pmax = pmin = --auxd;
somma = *auxd;
... memoria

n 6 somma

auxd

pmin

pmax

45.88

pd

39.12

12.11
81.12

11.12
121.12

esercizio su intero n e n double (coding 1/2)

111/8
0

Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

programma che legge un intero n e n double;
li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

#include <stdio.h>
#include <stdlib.h>
int main() {
...

scanf(... &n);
pd = malloc(n*sizeof(double));

if (!pd) printf(" ... ");
else {
for (auxd=pd; auxd-pd < n; auxd++)
scanf("%lf", auxd);

/* inizializzazione: pmax e pmin saranno
i puntatori al massimo e minimo;
tecnica del massimo parziale */

pmax = pmin = --auxd;
somma = *auxd;
... memoria

n 6 somma

auxd

pmin

pmax

45.88

pd

X

auxd-pd=6 X

39.12

12.11
81.12

11.12
121.12

esercizio su intero n e n double (coding 1/2)

112/8
0

Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

programma che legge un intero n e n double;
li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

#include <stdio.h>
#include <stdlib.h>
int main() {
...

scanf(... &n);
pd = malloc(n*sizeof(double));

if (!pd) printf(" ... ");
else {
for (auxd=pd; auxd-pd < n; auxd++)
scanf("%lf", auxd);

/* inizializzazione: pmax e pmin saranno
i puntatori al massimo e minimo;
tecnica del massimo parziale */

pmax = pmin = --auxd;
somma = *auxd;
... memoria

n 6 somma

auxd

pmin

pmax

45.88

pd

X

auxd-pd=6 X
Y

39.12

12.11
81.12

11.12
121.12

esercizio su intero n e n double (coding 1/2)

113/8
0

Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

programma che legge un intero n e n double;
li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

#include <stdio.h>
#include <stdlib.h>
int main() {
...

scanf(... &n);
pd = malloc(n*sizeof(double));

if (!pd) printf(" ... ");
else {
for (auxd=pd; auxd-pd < n; auxd++)
scanf("%lf", auxd);

/* inizializzazione: pmax e pmin saranno
i puntatori al massimo e minimo;
tecnica del massimo parziale */

pmax = pmin = --auxd;
somma = *auxd;
... memoria

n 6 somma

auxd

pmin

pmax

45.88

pd

X

auxd-pd=6 X
Y

45.88+...

Y
Y

39.12

12.11
81.12

11.12
121.12

esercizio su intero n e n double (coding 1/2)

114/8
0

Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

... pmax = pmin = --auxd;
somma = *auxd;
for (auxd--; auxd >= pd; auxd--) {
if (*pmax < *auxd)
pmax=auxd;

if (*pmin > *auxd)
pmin=auxd;

somma += *auxd;
}

media = somma/n;
printf(..., *pmax, *pmin, media);

return 0;
}

memoria

n 6 somma

auxd

pmin

pmax

45.88

pd

45.8845.88

39.12

12.11
81.12

11.12
121.12

esercizio su intero n e n double (coding 2/2)

115/8
0

Tecniche della Programmazione, M.Temperini - lezione 16 Collezione di stringhe

... pmax = pmin = --auxd;
somma = *auxd;
for (auxd--; auxd >= pd; auxd--) {
if (*pmax < *auxd)
pmax=auxd;

if (*pmin > *auxd)
pmin=auxd;

somma += *auxd;
}

media = somma/n;
printf(..., *pmax, *pmin, media);

return 0;
}

memoria

n 6 somma

auxd

pmin

pmax

45.88

pd

auxd viene inizialmente retrocesso all'inizio della componente n-esima (indice
n-1); poi, mentre si mantiene >=pd si decrementa per toccare tutte le altre
componenti dell'array, in ordine inverso (indice n-2, n-3, ... 0).

Per ogni componente toccata (indicata) da auxd, si attua la tecnica di
mantenimento del massimo (e minimo) parziale (*auxd e` il contenuto della
locazione puntata da auxd), e la si somma nell'accumulatore (somma=somma+ *auxd)

45.88

espressione double
(divisione tra un
double e un intero

undefined ... nella pagina prima;

Deve esprimere la media, cioe` un valore double

45.88

39.12

12.11
81.12

11.12
121.12

esercizio su intero n e n double (coding 2/2)

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Slide Number 115

