Tecniche della Programmazione, lez.16

Uso dell'allocazione dinamica; gestione di stringhe;
gestione di una struttura dati per una collezione di
stringhe

allocazione dinamica di (tante) stringhe ("esatte™) in un programma
- array di stringhe ("esatte"): operazioni di "aggiunta" e "ricerca"

- programma di gestione stringhe

- struttura dati piu” complessa per una collezione di stringhe

- funzionalita classiche
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Tecniche della Programmazione, lez. 16

Prima un esercizio:

possiamo fare un duplicato, str2, di una stringa str

- allocando un array di caratteri della dimensione "esatta"
hecessaria per str

- copiando nel nuovo array quello originale

Una stringa "esatta e una stringa dimensionata esattamente per
contenere 1 suol caratteri significativi, senza locazioni sprecate
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duplicazione (esatta) di una stringa

esercizio funzione che
ricevendo una stringa s restituisca una copia (esatta) di s

#include <stdio.h>
#include <stdlib.h>
... (dich.) ...
int main() {
char str[9], *stringa2;
---/* “POCO” 1n stringa2 */
stringa2 = duplicato(str);

return O;

} i

prima

stringa2
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duplicazione (esatta) di una stringa

esercizio funzione che
ricevendo una stringa s restituisca

#include <stdio.h>
#include <stdlib.h>
... (dich.) ...
int main() {
char str[9], *stringa2;
---/* “POCO” 1n stringa2 */
stringa2 = duplicato(str);

return O;

}
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una copia (esatta) di s

O|\O

dopo

$% [plo

C

O|\O

stringa2




duplicazione (esatta) di una stringa

esercizio funzione che
ricevendo una stringa s restituisca

#include <stdio.h>
#include <stdlib.h>
(dich.)
int main() {
char str[9], *stringa2;
---/* “POCO” 1n stringa2 */
stringa2 = duplicato(str);

return O;

}

Alg

O) 1l1a funzione riceve la stringa da duplicare e
restituisce I1"indirizzo della stringa
duplicato
nuovaStringa var. locale
char * duplicato (char *s) {}

1) malloc per nuovaStringa, esattamente
di strlen(s)+1

2) strcpy di s In nuovaStringa

3) return nuovaStringa

una copia (esatta) di s

AN P]O|CIONO

stringa2=duplicato(str);

stringa2

____________
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duplicazione (esatta) di una stringa

esercizio funzione che
ricevendo una stringa s restituisca una copia (esatta) di s

#include <stdio.h>
#include <stdlib.h> .
... (dich.) ...
int main() {
char str[9], *stringa2;
---/* “POCO” 1n stringa2 */
stringa2 = duplicato(str);

stringa2=duplicato(str);

i S AN PAR g i
| > |
return O; | VAR |
} char * duplicato (char *s) { | newstring |

char * newString; ! i
© | i

i stringa2 i

;eturn newString; o memoria !

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 6/80



duplicazione (esatta) di una stringa

esercizio funzione che

ricevendo una stringa s restituisca

#include <stdio.h>
#include <stdlib.h>
... (dich.) ...
int main() {
char str[9], *stringa2;
---/* “POCO” 1n stringa2 */
stringa2 = duplicato(str);

return O;

} char * duplicato (char *s) {
char * newString;

newString=malloc(strlen(s) + 1);

1T(newString)
strcpy(newString, S);

return newString;

}
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una copia (esatta) di s

O|\O

stringa2=duplicato(str);

S

NN\

PAR

newString

VAR

$$

vad

$$

stringa2
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duplicazione (esatta) di una stringa

esercizio funzione che

ricevendo una stringa s restituisca

#include <stdio.h>
#include <stdlib.h>
... (dich.) ...
int main() {
char str[9], *stringa2;
---/* “POCO” 1n stringa2 */
stringa2 = duplicato(str);

return O;

} char * duplicato (char *s) {
char * newString;

newString=malloc(strlen(s) + 1);

1T(newString)
strcpy(newString, S);

return newString;

}

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

una copia (esatta) di s

O|\O

stringa2=duplicato(str);

S

NN\

PAR

newString

VAR

$$

vad

$$ 5

O|C

stringa2
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duplicazione (esatta) di una stringa

esercizio funzione che
ricevendo una stringa s restituisca una copia (esatta) di s

#include <stdio.h>
#include <stdlib.h» -

... (dich.) ... st
int main(Q) { ' An|P|O[C[ONO
char str[9], *stringa2; :
- . ./* “POCO” in stringa2 */ —seopare
stringa2 = duplicato(str); \Smngaz:dum'cato(su);
s AR PAR|ZE
" . | >
return O; ~fimane VAR
} i newString
char * duplicato (char *s) { | s
char * newString; :
QewStrlngfmalIoc(strlen(s) + 1); " $$ [5TolcTomo
1T(nhewString) :
strcpy(newString, S); ' stringa2 [ 88
return newString; i
b e e nemoria _

}
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duplicazione (esatta) di una stringa

esercizio funzione che
ricevendo una stringa s restituisca una copia (esatta) di s

#include <stdio.h>
#include <stdlib.h» -

] |

... (dich.) ... L str !

- - |

int main() { ! An[P|O|C|O[NO !

char str[9], *stringa?2; : :

- _ ..scompare !

- - -/ "POCO" In stringaz */ i stringa2=duplicato(str) :
. - =dupli ;

stringa2 = duplicato(str); \ 2 0 o !

LS AN PAR|S |

=TT ) I > |

return O; ~fimane | VAR|

} i newString i

char * duplicato (char *s) { ! $$ !

char * newString; : :

newString=malloc(strlen(s) + 1); ! i

1T(newString) : 3 :

strcpy(newString, s); ! PI|O[C]ONO !

return newString; i :

¥ . - 1 stringa2 $$ |

Vedi Esercizi ! ;

per altri due modi di realizzare la : : :

gemoria _ _.

duplicazione esatta di una stringa. R
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Tecniche della Programmazione, lez. 16

Gestione di molte stringhe, usando le stringhe "esatte"

quando allochiamo stringhe della dimensione esattamente
necessaria ... invece di allocare array abbondanti
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Allocazione Dinamica: Stringhe Esatte

GESTIONE DI MOLTE STRINGHE alfanumeriche, dimensionate "esattamente” per i caratteri

che contengono;
le stringhe possono essere di lunghezza diversa, ma non oltre una lunghezza massima nota

I______-___-_____:______I SPRECO
1 ... di dimensione | A
ST S S .
CIASCUNA STRINGA e~ | ___--==""~  fissata a priori ' _______ .
memorizzata in un suo k2~~~
array di char ... \\\\\\\‘ ... dimensionato ESATTAMENTE
per la lunghezza effettiva |«
della stringa
RISPARMIO

SCHEMA DI REALIZZAZIONE

- viene definito un "sostegno" di memoria, composto da tante stringhe,
come puntatori a memoria che verra’ allocata esattamente;
esempio char * str, *str2, *str3, *str4; /* per 4 stringhe */

- viene definita una "stringa buffer" abbastanza grande per contenere
qualunque stringa da gestire; char buffer[LUNGMAX+1]

~ per ogni stringa da memorizzare, prima la si legge usando buffer e poi
si alloca e assegna una stringa esatta che duplichi buffer.

E poi si usa buffer per un altro input.
12/80
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Allocazione Dinamica: Stringhe Esatte  SCHEMA DI REALIZZAZIONE

Problema gestione di MOLTE STRINGHE ...

#include <stdio.h>
#define LUNGMAX 50 /* stringhe mai piu~ lunghe di 50 */

e o o e o mm mm e mm e mm e e o Em e e mm e e e e e e = e o

memorial

01 50
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Allocazione Dinamica: Stringhe Esatte  SCHEMA DI REALIZZAZIONE

Problema gestione di MOLTE STRINGHE ...

#include <stdio.h>
#define LUNGMAX 50 /* stringhe mai piu~ lunghe di 50 */

(1) char buffer[LUNGMAX+1], *str, *str2 ...

e o o e o mm mm e mm e mm e e o Em e e mm e e e e e e = e o

! memaorial

T . buffer !
@scanf(---%s---", buffer); . |[Plolc|oNo !
01 50 :

i str i

i str2 i
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Allocazione Dinamica: Stringhe Esatte  SCHEMA DI REALIZZAZIONE

Problema gestione di MOLTE STRINGHE ...

#include <stdio.h>
#define LUNGMAX 50 /* stringhe mai piu~ lunghe di 50 */

(1) char buffer[LUNGMAX+1], *str, *str2 ...

e o o e o mm mm e mm e mm e e o Em e e mm e e e e e e = e o

| memoria
| . buffer !
@scanf(---%s---", buffer); . |[Plolc|oNo !
. 01 strien(buffer): 4 50 :

(3) str=malloc(strlen(buffer)+1); | gy !
T © i

i str2 i
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Allocazione Dinamica: Stringhe Esatte  SCHEMA DI REALIZZAZIONE

Problema gestione di MOLTE STRINGHE ...

#include <stdio.h>
#define LUNGMAX 50 /* stringhe mai piu~ lunghe di 50 */

(1) char buffer[LUNGMAX+1], *str, *str2 ...

e o o e o mm mm e mm e mm e e o Em e e mm e e e e e e = e o

! memaorial

- . buffer !
@scanf(---%s---", buffer); . |[Plolc|oNo !
. 01 strien(buffer): 4 50 :

(3) str=malloc(strlen(buffer)+1); | gy |
if (str) A 7 3 A 4 !

. P[Oo[C[ONO] |

strcpy(str, buffer);(:) " str2 i

else ... /,~ messaggio di errore*/ : :
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Allocazione Dinamica: Stringhe Esatte  SCHEMA DI REALIZZAZIONE
Problema gestione di MOLTE STRINGHE ...

#include <stdio.h>
#define LUNGMAX 50 /* stringhe mai piu~ lunghe di 50 */

(1) char buffer[LUNGMAX+1], *str, *str2 ...

(:)scanf(---%s---", buffer);

(:)str:malIoc(strlen(buffer)+1);

it (str)
strcpy(str, buffer);(:)
else ... /,~ messaggio di errore*/
- :' """""""""""" memoria (2a fas é)':
(:)scanf(---%s---", buffer); ' buffer (®) |
i |NJefa]|r |C]O|\O I
01 50 i
i str i
: N P[O[C[ONO] |
istr2 i
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Allocazione Dinamica: Stringhe Esatte  SCHEMA DI REALIZZAZIONE
Problema gestione di MOLTE STRINGHE ...

#include <stdio.h>
#define LUNGMAX 50 /* stringhe mai piu~ lunghe di 50 */

(1) char buffer[LUNGMAX+1], *str, *str2 ...

(:)scanf(---%s---", buffer);

(:)str:malIoc(strlen(buffer)+1);

it (str)

strcpy(str, buffer);(:)

else ... /,~ messaggio di errore*/
- :' """""""""""" memoria (2a fas é)':
(:)scanf(---%s---", buffer); . buffer ® |
i |NJefa]|r |C]O|\O I
01 50 :
(:)strZ:malIoc(strlen(buffer)+1); : str :
: N P[O[Cc[ONo| |
istr2 (6 i
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Allocazione Dinamica: Stringhe Esatte  SCHEMA DI REALIZZAZIONE
Problema gestione di MOLTE STRINGHE ...

#include <stdio.h>
#define LUNGMAX 50 /* stringhe mai piu~ lunghe di 50 */

(1) char buffer[LUNGMAX+1], *str, *str2 ...

(:)scanf(---%s---", buffer);

(:)str:malIoc(strlen(buffer)+1);

1T (str)

strcpy(str, buffer);(:)

else ... /,~ messaggio di errore*/
e o~ memoria (2afase)
(5) scanf(...%s...", buffer); . buffer  (5) i
1 [N]efa]|r [C]O\O !
. 01 50 :
(:)strZ:malIoc(strlen(buffer)+1); i str i
it (str2) A pTO[C[OND] |
strcpy(str2, buffer)(:) ! i
else ... 1Str2 N6 @Near cloha:
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Tecniche della Programmazione, lez. 16

Possiamo fare meglio: invece di tane variabili staccate,
usiamo un "Array di stringhe"
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Gestione di tante stringhe: Array di stringhe

Array di stringhe array di puntatori;

char * arrStr[6]; ogni elemento punta ad una stringa
(una stringa e un blocco/array di caratteri)

arrStr[5] = malloc(10); ®/* allocazione della

memoria esattamente K
necessaria per una delle arrstr

stringhe (9 char + 1l *\0") */
iIT (arrStr[5] == NULL)
printf("'ERRORE IN ALLOCAZIONE MEMORIA\N");

else /* la memoria disponibile viene
riempita esattamente */

strcpy(arrStr[5], "PROMOZion™);

N
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Gestione di tante stringhe: Array di stringhe

Array di stringhe array di puntatori;

char * arrStr[6]; ogni elemento punta ad una stringa
(una stringa e un blocco/array di caratteri)

arrStr[5] = malloc(10); ®/* allocazione della

memoria esattamente

necessaria per una delle arrStr
stringhe (9 char + i1l "\0") */ |~

iIT (arrStr[5] == NULL)
printf("'ERRORE IN ALLOCAZIONE MEMORIA\N");

N

else /* la memoria disponibile viene
riempita esattamente */
strcpy(arrStr[5], "PROMOZion'); e TN
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Gestione di tante stringhe: Array di stringhe

Array di stringhe array di puntatori;

char * arrStr[6]; ogni elemento punta ad una stringa
(una stringa e un blocco/array di caratteri)

arrStr[5] = malloc(10); ®/* allocazione della

memoria esattamente

necessaria per una delle arrStr
stringhe (9 char + i1l "\0") */ |~

iIT (arrStr[5] == NULL)
printf("'ERRORE IN ALLOCAZIONE MEMORIA\N");

N

else /* la memoria disponibile viene
riempita esattamente */
strcpy(arrStr[5], "PROMOZion'); e TN
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Gestione di tante stringhe: Array di stringhe

Array di stringhe array di puntatori;
char * arrStr[6]; ogni elemento punta ad una stringa
(una stringa e un blocco/array di caratteri)

memoria esattamente

arrStr[5] = malloc(10); ®/* allocazione della

necessaria per una delle
stringhe (9 char + il "\0%) */ | Aa”s”
it (arrStr[5] == NULL) ",
printf("'ERRORE IN ALLOCAZIONE MEMORIA\N"); —
else /* la memoria disponibile viene -
riempita esattamente */ S
strcpy(arrStr[5], "PROMOZion™); e TN
(A

analogamente si puo’ fare per
arrStr[2], arrStr[4], arrStr[1]

........... 24/80
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Gestione di tante stringhe: Array di stringhe

Array di stringhe array di puntatori;
char * arrStr[6]; ogni elemento punta ad una stringa
(una stringa e un blocco/array di caratteri)

arrStr[5] = malloc(10); /* allocazione della
@ memoria esattamente .
necessaria per una delle < arrstr
stringhe (9 char + i1l "\0") */ |~ R
iIT (arrStr[5] == NULL)
printf(""ERRORE IN ALLOCAZIONE MEMORIA\N'); —
else /* la memoria disponibile viene . -
riempita esattamente */ ~rn|P]O|C|ONO
strcpy(arrStr[5], "PROMOZion™); R~
10

arrStr[0]
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Gestione di tante stringhe: Array di stringhe

Array di stringhe
char * arrStr[6];

array di puntatorti;

ogni elemento punta ad una stringa

(una stringa e un blocco/array di caratteri)

arrStr[5] = malloc(10); ®/* allocazione della

memoria esattamente
necessaria per una delle

stringhe (9 char + 1l *\0") */
iIT (arrStr[5] == NULL)
printf("'ERRORE IN ALLOCAZIONE MEMORIA\N");

else /* la memoria disponibile viene
riempita esattamente */

strcpy(arrStr[5], "PROMOZion™);

arrStr[1]
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N

arrStr
NN\ 7
AAA_
AA O[C|O[\O
-
A
nnnls i NO
. PIR|O|M|O ijlo|n[\O
: .|o|rR|O\O
memona -------
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Gestione di tante stringhe: Array di stringhe

Array di stringhe
char * arrStr[6];

array di puntatorti;

ogni elemento punta ad una stringa

(una stringa e un blocco/array di caratteri)

arrStr[5] = malloc(10); ®/* allocazione della

memoria esattamente

necessaria per una delle
stringhe (9 char + 1l *\0") */

iIT (arrStr[5] == NULL)
printf("'ERRORE IN ALLOCAZIONE MEMORIA\N");
else /* la memoria disponibile viene

N

riempita esattamente */

strcpy(arrStr[5], "PROMOZion™);

NB - arrStr[6] non e una locazione dell*array
- qualunque arrStr[1](1=0...5) e un puntatore;

- quando arrStr[5] punta ad un blocco di (9+1) caratteri,
arrStr[5] e I1*indirizzo 1niziale di un array di 10 char:

passando questo indirizzo a strcpy, si puo~ copiare nell"array -

puntato una stringa di al massimo 9 caratteri (+ un carattere
di fine stringa, "\0%);

- 1n particolare, abbiamo dimensionato I"array puntato da
arrStr[5] esattamente per contenere 9 caratteri significativi!
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R |E|s|T|0O\o
arrStr
e P[R[O[\O
/\/\/\_
AN O|C|O|\O
- -
A
ANAN s|i I\O
PIR|O|M|O ijlo|n[\O
: Jo|r| oo
memona --------
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Array di stringhe (lettura) - 1 - ambiente di calcolo

esercizio funzione che

ricevendo un array di stringhe, char * v[N], (\(esatte)
legga N stringhe, ciascuna di al piu” 80 char, e le memorizzi'nell'array

/* la fase: ambiente di calcolo */

#i1nclude <stdio.h>
#include <stdlib.h>
#define N 6
#define LUNGMAX 80
B Gale) A
int main() {

char * arrStr[N];

T
N O
>

costruisciArrayStringhe (arrStr);

return O;
ks

/* 2a fase: PROTOTIPO (dichiarazione) (**) */é,.
void costruisciArrayStringhe (char * []D; '

.......... 28/80
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Array di stringhe (lettura) - 2 - algoritmo per la funzione

continua funzione che legge un array di N stringhe, ciascuna di al piu” 80 char

/* 3a fase: definizione funzione */ "-gostruisciArrayStringhe(arrStr);
void costruisciArrayStringhe( © ); LA 2
char buffer[LUNGMAX+1]; g - >
int i;

for (i=0; i<N; i++) {

arrStr

} /* fine for */

Algoritmo?
ad ogni iterazione sistemiamo una delle
stringhe in input
©

return;

} ................

,‘ . . ja— I . N . . 1 %0 00000
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Array di stringhe (lettura) - 2 -

continua funzione che legge un array di N stringhe, ciascuna di al piu” 80 char

/> 3a fase- definizione funzione */ "--.,.(.:.ostruisciArrayStringhe(arrStr);

void costruisciArrayStringhe( © ); LA 2
char buffer[LUNGMAX+1]; ‘ - >
int i - buffer

for (i=0; i<N; i++) {
©

arrStr

} /* fine for */

si tratta di leggere una sequenza di stringhe date
in input (POCO, ORO, RESTO, Si , PRO, PROMOZion),
memorizzandole secondo 1"ordine di input In arrSTr:
1) iterare

1.1) leggere stringa in buffer

1.2) allocare memoria per arrStr[i]

1.3) copiare da buffer in arrStr[i] ...

return;

}

” . . ju— .. . ~ . . S %% ke’
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Array di stringhe (lettura) - 2 -

continua funzione che legge un array di N stringhe, ciascuna di al piu” 80 char

/* 3a fase: definizione funzione */ ™ COS”UiSCiA”ayStringhe(arrStr):
voild costruisciArrayStringhe(char * v[N]); J oA 2
char buffer[LUNGMAX+1]; o - >
int 1;

for (i=0; i<N; i++) {

/* lettura di una stringa ... */ arrStr
printf('scrivi una str ...\n");
scanf("'%s', buffer);
/* ... e sua memorizzazione */
©
} /7* fine for */
return;
} “memorig..."
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Array di stringhe (lettura) - 2 -

continua funzione che legge un array di N stringhe, ciascuna di al piu” 80 char

/* 3a fase: definizione funzione */ “-costruisciArrayStringhe(arrStr);
voild costruisciArrayStringhe(char * v[N]); } JC A 2
char buffer[LUNGMAX+1]; S - >
int 1;

for (i=0; iI<N; i++) {
/* lettura di una stringa ... */
printf(’'scrivi una str ...\n"");

scanf("'%s', buffer);

/* ... e sua memorizzazione */

vli] = malloc(strlen(buffer)+1); /> 1. s

arrStr

©

} /* fine for */

return;

} ; “memoria

,4 . . ja— I . y N . . S T % a0’
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Array di stringhe (lettura) - 2 -

continua funzione che legge un array di N stringhe, ciascuna di al piu” 80 char

/* 3a Ffase- definizione Ffunzione */"mcmsUMSdAnmﬁmﬂwme@nsux
voild costruisciArrayStringhe(char * v[N]); } JC A 2
char buffer[LUNGMAX+1]; S - >
int 1;

for (i=0; i<N; i++) {

/* lettura di una stringa ... */ arrStr
printf(’'scrivi una str ...\n"");
scanf("'%s', buffer);
/* ... e sua memorizzazione */ ..
v[i] = malloc(strlen(buffer)+1); 7* 1.2 */
it (v[1)]) g
strcpy(v[i], buffer); /* 1.3 % 7
else { 3

©
} /* fine for */

return;

} ; “memoria
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Array di stringhe (lettura) - 2 -

continua funzione che legge un array di N stringhe, ciascuna di al piu” 80 char

/* 3a fTase: definizione funzione */ “-costruisciArrayStringhe(arrstr);

voild costruisciArrayStringhe(char * v[N]); } JC A 2
char buffer[LUNGMAX+1]; S - >
int 1;

for (i=0; i<N; i++) {

/* lettura di una stringa ... */ arrStr
printf(’'scrivi una str ...\n"");
scanf("'%s', buffer);
/* ... e sua memorizzazione */ ..
v[i] = malloc(strlen(buffer)+1); 7* 1.2 */
it (V[iD)
strcpy(v[i1], buffer); /* 1.3 */
else { 3
printf(*'eeekkk\n"");
break;
+

} /* fine for */

return;

} ; “memoria
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Array di stringhe (lettura) - 3 - esecuzione simulata

continua funzione che legge un array di N stringhe, ciascuna di al piu” 80 char

/* 3a fase: definizione funzione */’“CmS”deA”aﬁﬂmeGQHSUx
voild costruisciArrayStringhe(char * v[N]); J oA 2
char buffer[LUNGMAX+1]; — >
int 1; 3

for (i=0; i<N; i++) {

/* lettura di una stringa ... */ arrStr
printf(’'scrivi una str ...\n"");
scanf("'%s', buffer);
/* ... e sua memorizzazione */ ..
v[1] = malloc(strlen(buffer)+1l); /> 1. 2wy "
it (vLil)
strcpy(v[i1], buffer); /* 1.3 */
else { 3
printf(*'eeekkk\n"");
break; =
} _ esecuzione simulata: riempire il disegno qui sopra,
} /* fine for */ mostrando come le stringhe lette in input (POCO,
ORO, RESTO, si, PRO, PROMOZion) vengono piazzate in
memria e puntate dagli elementi dell"array. Poi
return; confrontare con la slide successiva
} Poi vedi Approfondimenti 1OFid
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Tecniche della Programmazione, lez. 16

Ricerca di una stringa in un "Array di stringhe"
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Array di stringhe (ricerca) - 1/2 -

esercizio funzione "presenteln” che

ricevendo una stringa strCercata, un array di stringhe, char * v[N],
la dimensione di vdim
restituisca 1 se strCercata e in v, 0 altrimenti

iInt presenteln(
char *strCercata, char **v, Int dim) {

int trovata, 1;

|
1
1
1
|
1
1
1
|
1
1
1
|
1
1
1
|
1
1
- - - 1
/* alg. di ricerca iIn array, con var. flag */ !
1
1
|
1
1
1
|
1
1
1
|
1
1
1
|
1
1
1

o memaria__.
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Array di stringhe (ricerca) - 1/2 -

esercizio funzione "presenteln” che

ricevendo una stringa strCercata, un array di stringhe, char * v[N],
la dimensione di vdim
restituisca 1 se strCercata e in v, 0 altrimenti

IL TIPO DI UN ARRAY DI STRINGHE
- unarraydichare ................cccovnne. char str[]
equiv. (dal punto di vista dei tipi) a ....... char *str

- analogamente un array di stringhe di char e~
char *str[]

equiv. (dal punto di vistadei tipi) a ........ char **str

iInt presenteln(
char *strCercata, char **v, Int dim) {

se tutto quel che serve e” passare il
parametro, va bene cosi”

int trovata, 1;

|
1
1
1
|
1
1
1
|
1
1
1
|
1
1
1
|
1
1
- - - 1
/* alg. di ricerca iIn array, con var. flag */ !
1
1
|
1
1
1
|
1
1
1
|
1
1
1
|
1
1
1

o memaria__.
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Array di stringhe (ricerca) - 2.1 -

esercizio funzione che

ricevendo una stringa strCercata, un array di stringhe, char * v[N],
la dimensione di vdim
restituisca 1 se strCercata e in v, O altrimenti

/* algoritmo di ricerca i1In array, con var. flag */

int presenteln(

char *strCercata, char **v, Int dim) {
presenteln(str, arrStr, N);

int trovata, i; | |strCercata —ax—1( 3 |

: >

completare (ci sono tre i v N i
osservazioni da fare) g .

- - 1 m 6 1

po1 continuare © : :

) ) ) ) i arrStr i

for (1=0; (i<dim); i1++) i A 17— |
iIT (strcmp(strCercata, v[i])==0) ! 1 — !
trovata=1; | — i
return; i \\\\\:* :
} . memaria__!
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Array di stringhe (ricerca) - 2.2 -

esercizio funzione che

ricevendo una stringa strCercata, un array di stringhe, char * v[N],
la dimensione di vdim
restituisca 1 se strCercata e in v, O altrimenti

/* algoritmo di ricerca i1In array, con var. flag */

int presenteln(

char *strCercata, char **v, Int dim) {
presenteln(str, arrStr, N);

int trovata, i; ' [strcercata —xa— 3
: >

© : v N :

i dim 6 i

© I < :

- - - - ! arrotr I

for (1=0; (i<dim); 1++) : A . :
1T (strcmp(strCercata, v[i1])==0) ! s N !
trovata=1; | i |
}I:etUI’TI trovata; /* dobbiamo restituire 1 00 ... */ i \=> i
S memaria__.

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 40/80



Array di stringhe (ricerca) - 2.3 -

esercizio funzione che

ricevendo una stringa strCercata, un array di stringhe, char * v[N],
la dimensione di v dim
restituisca 1 se strCercatae’ in v, 0 altrimenti

/* algoritmo di ricerca i1In array, con var. flag */

Int presenteln(
char *strCercata, char **v, Int dim) {

iInt trovata, 1; presenteln(str, arrStr, N);

|
|
|
|
|
|
| |
| |
| |
| |
| |
| |
| strCercata AN 2o
trovata = O; ! O
/* INIZIALIZZAZIONE (trovata diventa 1 quando troviamo la stringa I > I
cercata; se non troviamo, rimane O (strCercata mai trovata) */ : \% 7\ ;
| |
© | dim [ 6 |
for (i=0; (i<dim); i++) I o :
- - ! arrotr I
iIT (strcmp(strCercata, v[i1])==0) ! R ////» !
trovata=1; ' = '
: +— :
: +— :
| _ |
| = |
return trovata; i s
| > |
¥ S memaria__.
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Array di stringhe (ricerca) - 2.4 -

esercizio funzione che

ricevendo una stringa strCercata, un array di stringhe, char * v[N],
la dimensione di vdim
restituisca 1 se strCercata e in v, 0 altrimenti

/* algoritmo di ricerca i1In array, con var. flag */

int presenteln(

char *strCercata, char **v, Int dim) {
presenteln(str, arrStr, N);

1
1
1
:
1 1
1 1
1 1
1 1
1 1
1 1
1 ;U 1
int trovata=0, i; | |strCercata x| 5 |
| > !
| v |
/* 1<dim controlla che non abbiamo finito I"array; ma se ! !
trovata non € 0, inutile cercare ancora: gia trovatal! */ ! dim 6 i
for (i1=0; (i<dim && trovata==0); 1++) ! i
1T (strcmp(strCercata, v[i])==0) | a”ST/,,,» :
1 1
trovata=1; A S |
I +— :
: +— :
| _ |
1 = 1
return trovata; : T :
1 o 1
} 1 o 1
S memaria__,
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Tecniche della Programmazione, lez. 16

Verso la struttura dati per la "collezione di stringhe"

Usiamo un sostegno con un certo numero di potenziali puntatori
a stringa, e poi usiamo l'array per aggiungere e togliere stringhe.

Ma l'array e usato parzialmente cioe” non e sempre pieno zeppo
di stringhe ...
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Programma gestione stringhe - introduzione

gestione di un array di al piu™ N stringhe, ciascuna di al +
LUNGMAX caratteri (array usato parzialmente)

Funzionalita™ per la gestione di una COLLEZIONE di
stringhe:

- aggiunta di una stringa (se possibile)

\O

- stampa delle stringhe contenute

- ricerca di una stringa e rest. del suo indice (opp. -1)

\O

(funzione di servizio)

- sostituzione di una stringa con un'altra data

Annfg i \O

__________________________
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Programma gestione stringhe - introduzione

gestione di un array di al piu™ N stringhe, ciascuna di al +

LUNGMAX caratteri

Funzionalita™ per la gestione di una COLLEZIONE di
] _ _ ___ stringhe:
- aggiunta di una stringa (se possibile)
- stampa delle stringhe contenute

- ricerca di una stringa e rest. del suo indice (opp. -1)
(funzione di servizio)

- sostituzione di una stringa con un'altra data
Quanto sopra e parte della definizione di un tipo di dati che
possiamo chiamare « collezione di stringhe »

(in particolare quella sopra e” la raccolta delle FUNZIONALITA™).

E laSTRUTTURA DATI? E™ quella qui sopra a destra ...
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(array usato parzialmente)

\O

\O

NN\N

I \O

__________________________
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Programma gestione stringhe - introduzione

gestione di un array di al piu™ N stringhe, ciascuna di al +

LUNGMAX caratteri

Funzionalita™ per la gestione di una COLLEZIONE di
] _ _ ~__stringhe:
- aggiunta di una stringa (se possibile)
- stampa delle stringhe contenute

- ricerca di una stringa e rest. del suo indice (opp. -1)
(funzione di servizio)

- sostituzione di una stringa con un'altra data

(array usato parzialmente)

\O

OO

O\O

NN\N

I \O

| scrivere le strutture dati necessarie per rappresentare nel programma una collezione di stringhe.

Serve un array, ok. Serve anche N, sicuro.

Bastano queste strutture per realizzare le funzionalita™ qui sopra?

Ad esempio, se dobbiamo stampare le stringhe della collezione, quante ne stampiamo? Dobbiamo scorrere |'array, ok.

Ma dove smettiamo di scorrere?

Ad altro esempio, per aggiungere una nuova stringa ... dove la aggiungiamo? Cioe’ a quale elemento dell'array la

asseghamo?

Nella struttura dati c'e’ un dato che permetta di aggiungere la nuova stringa al posto glusto? O fermarsi quando le

stringhe effettivamente presenti nella collezione sono state tutte stampate?
Anche quando sono 2, o 3, o 4, come in figura, ma non N?
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Programma gestione stringhe - introduzione

gestione di un array di al piu™ N stringhe, ciascuna di al + LUNGMAX caratteri (array usato parzialmente

Struttura dati e Funzionalita™ per la gestione del TIPO

COLLEZIONE di stringhe

(come rappresentare questo oggetto in memoria?):
- N e  una costante

- sostegno: lI'array e un array di N stringhe:
char *stringhe[N]

? Ma, se l"array e usato parzialmente,
dove fermare una scansione per stampa o
ricerca? Dove Inserire una nuova stringa?

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

\O

NN\N
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Programma gestione stringhe - introduzione

gestione di un array di al piu™ N stringhe, ciascuna di al + LUNGMAX caratteri (array usato parzialmente

Struttura dati e Funzionalita™ per la gestione del TIPO

COLLEZIONE di stringhe

(come rappresentare questo oggetto in memoria?):
- N e  una costante

- sostegno: lI'array e un array di N stringhe:
char *stringhe[N]

? Ma, se l*"array e usato parzialmente,
dove fermare una scansione per stampa o
ricerca? Dove i1nserire una nuova stringa?

stringhe e quindi una variabile che va gestita usando
anche lI'informazione addizionale su
"quanti elementi/stringhe ci sono attualmente nell'array"
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Programma gestione stringhe - introduzione

gestione di un array di al piu™ N stringhe, ciascuna di al + LUNGMAX caratteri (array usato parzialmente

Struttura dati e Funzionalita™ per la gestione del TIPO
COLLEZIONE di stringhe

(come rappresentare questo oggetto in memoria?):

- N e” una costante

\O

- sostegno: lI'array e un array di N stringhe:

char *stringhe[N]

OO

\O

stringhe e quindi una variabile che va gestita usando
anche I'informazione addizionale su

NN\N S

I \O

"quanti elementi/stringhe ci sono attualmente nell'array"

in sostanza una collezione di stringhe va rappresentata mediante

la collaborazione di due variabili: stringhe e

numeroStringhe

- unarray di stringhe, che faccia da sostegno per la
memorizzazione delle stringhe;

- unavariabile intera che dica in ogni momento quante
stringhe ci sono nell'array

collezione di stringhe = <array + numerostringhe>
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Gestione di tabella (collezione) di stringhe - 1/8 -

#include ... SCHEMA DI PROGRAMMA
#define N ...
(dich.) ...
int main() {
scelta @ @ ——— - (per il menu™ ...)
stringhe, numeroStringhe, --———ccoeeee______ (per la collezione di stringhe)
bufferl, buffer2, ---— @ (buffer per leggere stringhe)
do {

/* ciclo di stampa menu , lettura scelta funzionalita da
eseguire, esecuzione della funzionalita prescelta */

. aggiungi(stringhe, bufferl, &numeroStringhe); (scelta==1)
. stampaTutto(stringhe, numeroStringhe); (scelta==3)

. sostituisci(stringhe, numeroStringhe, bufferl, buffer2);
(scelta==2)

} while (scelta!=0)

return O;

}
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Gestione di tabella (collezione) di stringhe - 1/8 -

#include ... SCHEMA DI PROGRAMMA

#define N ...

... (dich.) ...

int main() {
scelta W (per il menu™ ...)
stringhe, numeroStringhe, --———-ccoee______ (per la collezione di stringhe)
bufferl, buffer2, ———————————————————————————————————— (buffer per leggere stringhe)

do {

/* ciclo di stampa menu , lettura scelta funzionalita da
eseguire, esecuzione della funzionalita prescelta */

aggiungi(stringhe, bufferl, &numeroStringhe); (scelta==1)

... StampaTutto(stringhe, numeroStringhe); (scelta==3)

... sostituisci(stringhe, numeroStringhe, bufferl, buffer2);
(scelta==2)

NB2 la struttura dati "tabella di stringhe™ e~
} while (scelta!:O) la coppia stringhe, r_1umeroStr|nghe- Infattl sono
quelle due componenti che permettono di
gestirla. E infatti sono quelle due componenti
return O; che dobbiamo passare alle funzioni interessate.

}
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Programma gestione stringhe - 2/8 - main()

#i1nclude <stdio.h>

#include <stdlib.h> #define N ... #define LUNGMAX
. (dich.)
int main() { char *stringhe|[N], char bufferl[LUNGMAX+1],
buffer2] LUNGMAX+1];

Int numeroStringhe, scelta;
numeroStringhe = 0; /* 1nit struttura dati array stringhe */

do { stampaMenu(); /* una funzione che stampa 1l
menu® di scelte ... l=aggiungi
2=sostituisct ... */

scanf("'%d", &scelta); /* lettura scelta */
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Programma gestione stringhe - 2/8 - main()

#i1nclude <stdio.h>

#include <stdlib.h> #define N ... #define LUNGMAX

(dich.)

int main() { char *stringhe[N], char bufferl[LUNGMAX+1],
buffer2] LUNGMAX+1];

Int numeroStringhe, scelta;
numeroStringhe = 0; /* 1nit struttura dati array stringhe */

do { stampaMenu(); /* l=aggiungi 2=sostitui... */
scanf("'%d", &scelta); /* lettura scelta */

switch(scelta) {

case 1: /* inserimento nuova stringa In stringhe oppure
messaggio di errore */

break;

case 2: /* lett. stringa da sost. e sostituta; chiamata sostituisci() */
break;

case 3: ...
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BTW - SWITCH ...

switch(scelta) {
case 1:
codice da eseqguire nel caso 1In cuil scelta==1

break;

case VAL:
codice da eseguire nel caso 1In cuil scelta==VAL

break;

case ALTROVAL:
codice da eseguire nel caso 1In cul scelta==VALVAL

break;

default: printf("" scelta sbagliata \n\n"");
¥} /7* fine switch */
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Programma gestione stringhe - 2/8 - main()

#i1nclude <stdio.h>

#include <stdlib.h> #define N ... #define LUNGMAX

(dich.)

int main() { char *stringhe[N], char bufferl[LUNGMAX+1],
buffer2] LUNGMAX+1];

Int numeroStringhe, scelta;
numeroStringhe = 0; /* 1nit struttura dati array stringhe */

do { stampaMenu(); /* l=aggiungi 2=sostitui... */
scanf("'%d", &scelta); /* lettura scelta */
switch(scelta) {
case 1: ... aggiungi(stringhe, bufferl, &numeroStringhe);
break;

case 0: printf("FINE PROGRAMMA\N"); break;
default: printf(" scelta sbagliata \n\n'");
} /* fine switch */
} while (sceltal!=0) NB stampaTutto riceve “la

return O; collezione”, sotto forma
} di una coppia di parametri

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 55/80



Programma gestione stringhe - 2/8 - main()

#i1nclude <stdio.h>

#include <stdlib.h> #define N ... #define LUNGMAX

(dich.)

int main() { char *stringhe[N], char bufferl[LUNGMAX+1],
buffer2] LUNGMAX+1];

Int numeroStringhe, scelta;
numeroStringhe = 0; /* 1nit struttura dati array stringhe */

do { stampaMenu(); /* l=aggiungi 2=sostitui... */
scanf("'%d", &scelta); /* lettura scelta */
switch(scelta) {
case 1: ... aggiungi(stringhe, bufferl, &numeroStringhe);
break;
case 2: ... sostituisci(stringhe, numeroStringhe, bufferl,
buffer?);
break;

case 0: printf("FINE PROGRAMMA\N"); break;
default: printf(" scelta sbagliata \n\n'");
} /* fine switch */
} while (sceltal!=0) NB stampaTutto riceve “la

return O; collezione”, sotto forma
} di una coppia di parametri
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Programma gestione stringhe - 2/8 - main()

#i1nclude <stdio.h>

#include <stdlib.h> #define N ... #define LUNGMAX

(dich.)

int main() { char *stringhe[N], char bufferl[LUNGMAX+1],
buffer2] LUNGMAX+1];

Int numeroStringhe, scelta;
numeroStringhe = 0; /* 1nit struttura dati array stringhe */

do { stampaMenu(); /* l=aggiungi 2=sostitui... */
scanf("'%d", &scelta); /* lettura scelta */
switch(scelta) {
case 1: ... aggiungi(stringhe, bufferl, &numeroStringhe);
break;
case 2: ... sostituisci(stringhe, numeroStringhe, bufferl,
buffer?);
break;

case 3: stampaTutto(stringhe, numeroStringhe); break;
case O: printf(""FINE PROGRAMMAN\N™); break;
default: printf(" scelta sbagliata \n\n'");
} /7* fine switch */
} while (scelta!:O) NB stampaTutto riceve “la

return O; collezione”, sotto forma
} di una coppia di parametri
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Programma gestione stringhe - 3/8 - main()

#include <stdio.h>

#define LUNGMAX

#include <stdlib_h> #define N ...
.- (dich.)
int main(Q) { char *stringhe[N], char bufferl[LUNGMAX+1], buffer2[ LUNGMAX+1] ;

int numeroStringhe, scelta;

numeroStringhe = 0; /* init struttura dati array stringhe */

do { stampaMenu(); /* l=aggiungi 2=sostitui... */
scanf(""", &scelta); /* lettura scelta */

switch(scelta) {

case 1:
IT (humeroStringhe<N) {
printf("'quale stringa da aggiungere? '');

scanf("'%s", bufferl);
aggiungi(stringhe, bufferl, &numeroStringhe);

}

else printf('spazio insufficiente, tsk.\n\n");
break;

case 2:
printf("'stringa da sostituire: ");

scanf("'%s", bufferl);
printf('stringa con cuil sostituire: ");

scanf("'%s", buffer2);
sostituisci(stringhe, numeroStringhe, bufferl, buffer2);

break;
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Programma gestione stringhe - 3/8 - main()

#include <stdio.h>

#define LUNGMAX

#include <stdlib_h> #define N ...
.- (dich.)
int main(Q) { char *stringhe[N], char bufferl[LUNGMAX+1], buffer2[ LUNGMAX+1] ;

int numeroStringhe, scelta;

numeroStringhe = 0; /* init struttura dati array stringhe */

do { stampaMenu(); /* l=aggiungi 2=sostitui... */

scanf(""", &scelta); /* lettura scelta */
switch(scelta) { Controllo se c"é spazio per una
case 1: nuova stringa, nell’array sostegno

IT (humeroStringhe<N) {
printf("'quale stringa da aggiungere? '');
scanf("'%s", bufferl);
aggiungi(stringhe, bufferl, &numeroStringhe);

}

else printf('spazio insufficiente, tsk.\n\n");
break;

case 2:
printf("'stringa da sostituire: ");

scanf("'%s", bufferl);

printf('stringa con cuil sostituire: ");
scanf(s’, buffer2): NB aggiungi riceve “la
sostituisci(stringhe, numeroStringhe, bufferl, buffer2); gg}_ g )
break; collezione”, sotto forma di
una coppia di parametri
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Programma gestione stringhe - 3/8 - main()

#include <stdio.h>

#define LUNGMAX

#include <stdlib_h> #define N ...
.- (dich.)
int main(Q) { char *stringhe[N], char bufferl[LUNGMAX+1], buffer2[ LUNGMAX+1] ;

int numeroStringhe, scelta;

numeroStringhe = 0; /* init struttura dati array stringhe */

do { stampaMenu(); /* l=aggiungi 2=sostitui... */
scanf(""", &scelta); /* lettura scelta */

switch(scelta) {
case 1: ,
IT (humeroStringhe<N) { perche’? ©
printf(''quale stringa da aggiungere?
scanf("'%s", bufferl);
aggiungi(stringhe, bufferl

eroStringhe);
by

else printf('spazio insufficiente, tsk.\n\n");
break;

case 2:
printf("'stringa da sostituire: ");

scanf("'%s", bufferl);

printf('stringa con cuil sostituire: ");
scanf(s’, buffer2): NB aggiungi riceve “la
sostituisci(stringhe, numeroStringhe, bufferl, buffer2); gg}_ g )
break; collezione”, sotto forma di
una coppia di parametri

60/80
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Programma gestione stringhe - 3/8 - main()

#include <stdio.h>

#define LUNGMAX

#include <stdlib_h> #define N ...
.- (dich.)
int main(Q) { char *stringhe[N], char bufferl[LUNGMAX+1], buffer2[ LUNGMAX+1] ;

int numeroStringhe, scelta;
numeroStringhe = 0; /* init struttura dati array stringhe */

do { stampaMenu(); /* l=aggiungi 2=sostitui... */
scanf(""", &scelta); /* lettura scelta */

switch(scelta) {
case 1: perche' dovra® subire un effetto

1T (numeroStringhe<N) { collaterale, crescendo di 1 dopo |'aggiunta
printf(‘'quale stringa da di una nuova stringa alla collezione

scanf("'%s", bufferl);
aggiungi(stringhe, bufferl w- roStringhe);
¥
else printf('spazio insufficiente, tsk.\n\n");

break;

case 2:
printf("'stringa da sostituire: ");

scanf("'%s", bufferl);
printf('stringa con cuil sostituire: ");

NB aggiungi riceve “la collezione”,

scanf("'%s", buffer2); tto f di ia di i
sostituisci(stringhe, numeroStringhe, bufferl, buffer2); SOTTORTOfMA Gl tinascoppia aliparamesi
break; (stringhe e numeroStringhe)

61/80
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Programma gestione stringhe - 4/8 - main()

#include <stdio.h>

#include <stdlib_h> #define N ... #define LUNGMAX
.- (dich.)
int main(Q) { char *stringhe[N], char bufferl[LUNGMAX+1], buffer2[ LUNGMAX+1] ;

int numeroStringhe, scelta;

numeroStringhe = 0; /* init struttura dati array stringhe */

do { stampaMenu(); /* l=aggiungi 2=sostitui... */
scanf(""", &scelta); /* lettura scelta */

switch(scelta) {

case 1:

if (numeroStringhe<N) {
printf('quale stringa da aggiungere? '");
scanf("'%s", bufferl);
aggiungi(stringhe, bufferl, &numeroStringhe);

else printf(“spazio insufficiente, tsk.\n\n");
break;

case 2:

©

sostituisci(stringhe, numeroStringhe, bufferl, buffer2);
break;
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Programma gestione stringhe - 4/8 - main()

#include <stdio.h>

#include <stdlib_h> #define N ... #define LUNGMAX
.- (dich.)
int main(Q) { char *stringhe[N], char bufferl[LUNGMAX+1], buffer2[ LUNGMAX+1] ;

int numeroStringhe, scelta;

numeroStringhe = 0; /* init struttura dati array stringhe */

do { stampaMenu(); /* l=aggiungi 2=sostitui... */
scanf(""", &scelta); /* lettura scelta */

switch(scelta) {

case 1:

if (numeroStringhe<N) {
printf('quale stringa da aggiungere? '");
scanf("'%s", bufferl);
aggiungi(stringhe, bufferl, &numeroStringhe);

else printf(“spazio insufficiente, tsk.\n\n");
break;

case 2:
printf(’'stringa da sostituire: ");
scanf("'%s', bufferl);
printf(’'stringa con cul sostituilre: ');
scanf("'%s', buffer2);
sostituisci(stringhe, numeroStringhe, bufferl, buffer2);
break;
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Programma gestione stringhe - 4/8 - main()

#include <stdio.h>

#include <stdlib_h> #define N ... #define LUNGMAX
.- (dich.)
int main(Q) { char *stringhe[N], char bufferl[LUNGMAX+1], buffer2[ LUNGMAX+1] ;

int numeroStringhe, scelta;

numeroStringhe = 0; /* init struttura dati array stringhe */

do { stampaMenu(); /* l=aggiungi 2=sostitui... */
scanf(""", &scelta); /* lettura scelta */

switch(scelta) {

case 1:

if (numeroStringhe<N) {
printf('quale stringa da aggiungere? '");
scanf("'%s", bufferl);
aggiungi(stringhe, bufferl, &numeroStringhe);

NB sostituisci riceve “la collezione”,

else rintf("'spazio insufficiente, tsk.\n\n"); - - - -
P ("sp ) sotto forma di una coppia di parametri

break;

case 2:
printf(’'stringa da sostituire: ");
scanf("'%s', bufferl);
printf(’'stringa con cul sostituilre: ');
scanf("'%s', buffer2);
sostituisci(stringhe, numeroStringhe, bufferl, buffer2);
break;
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Programma gestione stringhe - 5/8 - stampaTutto()

case 3: stampaTutto(stringhe, numeroStringhe);

break;

void stampaTutto(char *v[], int quanteSono) {

| |stampaTutto(stringhe, numeroStringhe);

it i B T PAR|Z !

: >

for (i=0; i<quanteSono; i++) | quanteSono i
printfFC'%s\n", v[i]); | = !
return; /* o anche *(v+i) */ . |
> | i
i strinm !

:/\ ~ An|P|1O[C| O[O :

L A :

L= - O[R[ONO |

L[ \}‘R E[S[T[oNd;

1 ? :

: ? :

i AN s | I\NO :

'numeroStringhe 4 :

: memoria

_________________________ d
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Programma gestione stringhe - 5/8 - stampaTutto()

case 3: stampaTutto(stringhe, numeroStringhe);
break;

void stampaTutto(char *v[], int quanteSono) {

_ _ | |stampaTutto(stringhe, numeroStringhe);
Int 1;

VI—= PAR|S
>
for (i=0; i<quanteSono; i++) quanteSono
printf(C%s\n", v[i]); 4
return; /* o anche *(v+i1) */

}

|
|
|
|
|
|
|
|
|
|
|
|
|
|
o
~ a che tipo €& equivalente char *v[] (solo dal punto di vista dei| St”ng))e—\T
tipi nei parametri) NV An|P|1O|C|ONO
: =
|
RV ) - | B alla ...-esima ........ di v L .- {OIR[ONO
- v[i] si puo scrivere anche come ....... : i ‘\)R EISITIONO
vl?
- cosa e v, tra le scelte seguenti? |
_ _ o 1 ANN|g i I\O
"doppio puntatore”, "puntatore a puntatore™, indirizzo I
di un puntatore, indirizzo di una locazione che :
contiene un ind. :
'numeroStringhe 4
|
- cosa vuol dire "stampare v[i] con formato %s" : memoria

_________________________ d
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Programma gestione stringhe - 5/8 - stampaTutto()

case 3: stampaTutto(stringhe, numeroStringhe);

break;

void stampaTutto(char *v[], int quanteSono) {

| |stampaTutto(stringhe, numeroStringhe);

et VIR PAR|S
>
for (i=0; i<quanteSono; i++) quanteSono
printf(C%s\n", v[i]); 4
return; /* o anche *(v+i1) */

}

string)}e—\\ET
N an|P|O[C[O]\O

- char *v[] equivalente a char ** 7

- v[i] = puntatore alla i-esima stringa = *(v+i); = ../ OIR|ONO

- Vv e “doppio puntatore” M? ‘\)R EIS[TIONO
= "puntatore a puntatore" ?'
= indirizzo di un puntatore N AN
= iInd. dir una locazione che contiene un ind.

- stampare v[i] con formato %s vuol dire stampare la :

stringa v[i1], cioe la stringa puntata dal puntatore v[i] numeroStringhe 4

memoria

_________________________ d
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Programma gestione stringhe - 6/8 -

aggiungi()

void aggiungit ( char **v, char *nuovaStringa,

si suppone fatto all"esterno, dalla funzione chiamante
(non & bello, ma ora ci stiamo concentrando su altro */

INt J = *pQuante; /* solo per comodita™ */

®

v[j] = malloc (strlen(nuovaStringa)+1l);

it (v
printf("errore in alloc. ...");
else {
strcpy(v][j], nuovaStringa);
*pQuante+=1;

}

return;

}

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe

I HH#
rhufferl

int *pQuante) {

numeroStringhe

aggiungi(stringhe, bufferl,
&numeroStringhe);

1
|
|
| |
| |
1 |
| |
1 |
| |
| |
1 |
| |
1 |
| |
| |
! :
|
| V= PAR|E !
| > :
: pQuante # I
1 |
| |
H |
E nuovasStringa T :
|
| i [ 4 VAR |
: _ |
! strlnm :
|
: e I
A - Jo[rR[oNg] |
I e I
A b AR IE|S[T[ONO
| #N X annlsTi NO
. ?
1 |
| |
1 |
e e memoria
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Programma gestione stringhe - 6/8 -

aggiungi()

void aggiungit ( char **v, char *nuovaStringa,

si suppone fatto all"esterno, dalla funzione chiamante
(non e~ bello, ma ora ci stiamo concentrando su altro */

INt J = *pQuante; /* solo per comodita™ */

®

v[j] = malloc (strlen(nuovaStringa)+1l);

it (v
printf("errore in alloc. ...");
else {

strcpy(viil, nuovaStringa);(:)
*pQuante+=1;

}

return;

}
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I HH#
rhufferl

int *pQuante) {

numeroStringhe

aggiungi(stringhe, bufferl,
&numeroStringhe);

1
|
|
| |
1 |
| |
| |
| |
| |
1 |
| |
1 |
| |
1 |
| |
! :
|
| VIA PAR|S
1 > :
: pQuante # |
1 |
| |
H |
E nuovasStringa T :
|
| i [ 4 VAR |
: _ |
! strlnm :
|
: e I
A - Jo[rR[oNg] |
I 1
A b AR IE|S[T[ONO
| ;‘7&/\ X annlsTi NO
I N
! Flo] c]o]\o !
| |
.~ memoria
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Programma gestione stringhe - 6/8 -

aggiungi()

void aggiungit ( char **v, char *nuovaStringa,

si suppone fatto all"esterno, dalla funzione chiamante
(non e~ bello, ma ora ci stiamo concentrando su altro */

INt J = *pQuante; /* solo per comodita™ */

v[j] = malloc (strlen(nuovaStringa)+1l);

it (v
printf("errore in alloc. ...");
else {
strcpy(v][j], nuovaStringa);
*pQuante+=1;

} @

return;

}
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I HH#
rhufferl

int *pQuante) {

numeroStringhe

aggiungi(stringhe, bufferl,
&numeroStringhe);

V= PAR|S
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P
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Programma gestione stringhe - 6/8 -

aggiungi()

void aggiungit ( char **v, char *nuovaStringa,

si suppone fatto all"esterno, dalla funzione chiamante
(non e~ bello, ma ora ci stiamo concentrando su altro */

INt J = *pQuante; /* solo per comodita™ */

v[j] = malloc (strlen(nuovaStringa)+1l);

it (v
printf("errore in alloc. ...");
else {
strcpy(v][j], nuovaStringa);
*pQuante+=1;

}

return;
} - la funzione ha aggiunto una stringa

In posizione numeroStringhe+l; quindi
subito prima del termine
dell"attivazione, numeroStringhe viene
incrementato di 1;

ALCUNE Verita

- I"espressione (!v[j]) e equiv. a

(v[i]==NULL)
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| Hf
'bufferl

int *pQuante) {

numeroStringhe

aggiungi(stringhe, bufferl,
&numeroStringhe);

VIR PAR
pQuante #

nuovastringa o

j 4 VAR

vdad

e i

P

i I\O




Programma gestione stringhe - 7/8 - sostituisci()

voild sostituisci (char **v, 1Int quanteSono, i OO

char *daSost, char *conChi) {ibUfferl

/* cerchiamo I"indice della stringa da sostituire con
una funzione di servizio che restituisce I°indice
della stringa nell"array, oppure -1 (se non c"e )*/

Int Indice =
ricerca(v,quanteSono, daSost);

numeroStringhe 5

#.
buffer2 FIOICIO

sostituisci(stringhe,
numeroStringh, bufferl, buffer?2);

1T (indice==-1)

printf(’'non presente\n\n'); v N PAR
else { quanteSono 5
0
daSost HH 2
_ - _ conChi #. >
vlindice]=malloc(strlen(conChi)+1);
indice VAR

1T (Mv[indice])

printf(*'errore 1n alloc. ...");
else

strcpy(v[indice], conChi);

strinh
A ~~[P|O|C[ONO

} /7* fine primo 1f */
return;

1
¥ 'memoria prima della chiamata
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Programma gestione stringhe - 7/8 - sostituisci()

voild sostituisci (char **v, 1Int quanteSono, i OO

char *daSost, char *conChi) {ibUfferl

/* cerchiamo I"indice della stringa da sostituire con
una funzione di servizio che restituisce I°indice
della stringa nell"array, oppure -1 (se non c"e )*/

Int Indice =
ricerca(v,quanteSono, daSost);(:)

numeroStringhe 5

#.
buffer2 FIOICIO

sostituisci(stringhe,
numeroStringh, bufferl, buffer?2);

1T (indice==-1)

printf(‘'non presente\n\n"); v A PAR
else { quanteSono 5
0
daSost H -
_ - _ conChi #. >
vlindice]=malloc(strlen(conChi)+1); (:)
indice 2 VAR
1T (Mv[indice]) 7,
printf(*'errore 1n alloc. ..."); snmgpe~\\7
else A 7R An[P]O[C|ONO

strepy(v[indice], conChi); (2)

} /7* fine primo 1f */
return;

1
¥ 'memoria prima della chiamata
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Programma gestione stringhe - 7/8 - sostituisci()

voild sostituisci (char **v, 1Int quanteSono,

char *daSost, char *conChi) {

/* cerchiamo I"indice della stringa da sostituire con
una funzione di servizio che restituisce I°indice
della stringa nell"array, oppure -1 (se non c"e )*/

Int Indice =
ricerca(v,quanteSono, daSost);

HH#
bufferl RIE[S|T]ONO

numeroStringhe 5

#.
buffer2 FIOICIO

sostituisci(stringhe,

1T (indice==-1) numeroStringh, bufferl, buffer2);

printf('non presente\n\n"); v~ PAR
else { guanteSono 5
L0
] ] e allocazione string_a sostituto */ conChi m g
vLindice]=malloc(strilen(conChi)+1);
indice 2 VAR

1T (Mv[indice])

printf(*'errore 1n alloc. ...");
else

strcpy(v[indice], conChi);

strinh
A an|P|O[C[O]\O

} /7* fine primo 1f */
return;

} !

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
— — - — I
free(v[lindice];| 7* deall. stringa da sost. | [dasost T
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
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Programma gestione stringhe - 7/8 - sostituisci()

voild sostituisci (char **v, 1Int quanteSono,

= buffe#f RIE[S|TIONO
char *daSost, char *conChi) { o
/* cerchlam(_) I'mgllce dgl!a stringa gla §ost|tl.J!re_con numeroStringhe 5
una funzione di servizio che restituisce I°indice
della stringa nell"array, oppure -1 (se non c"e )*/ #
int Indice = buffero LELOICIO[ L] Al R ENNO

ricerca(v,quanteSono, daSost);

sostituisci(stringhe

if (indice==-1)

numeroStringh, bufferl, buffer?2);

printf("'non presente\n\n'); v A PAR
else { guanteSono 5
## g
e allocazione stringa sostituto */ conChi i S
vlindice]=malloc(strlen(conChi)+1); '
indice 2 VAR
iIf ('v[indice])
printf("'errore in alloc. ..."); SUmgh€‘\\T
else A 7R An[P]O[C|ONO

strcpy(vLindice], conChi);

} /7* fine primo 1f */

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
_ _ 1
free(v[indice]; /* deall. stringa da sost. | [dasost
:
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

- I I\O
return;
b memoria prima della chiamata _
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Programma gestione stringhe - 7/8 -

sostituisci()

voild sostituisci (char **v, 1Int quanteSono,

char *daSost, char *conChi) {

/* cerchiamo I"indice della stringa da sostituire con
una funzione di servizio che restituisce I°indice
della stringa nell"array, oppure -1 (se non c"e )*/

Int Indice =
ricerca(v,quanteSono, daSost);

iIf (indice==-1)
printf(’'non presente\n\n');
else {

free(v[indice]; 7/* deall. stringa da sost.
e allocazione stringa sostituto */

vlindice]=malloc(strlen(conChi)+1);

1T (Mv[indice])
printf('errore i1n alloc.

else

strcpy(v[indice], conChi);

=)

} /7* fine primo 1f */
return;

}
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i

bufferl

numeroStringhe

#.
buffer2

O|C|O

\O

sostituisci(stringhe,
numeroStringh, bufferl, buffer?2);

! I
! I
1 1
! I
! I
! I
! I
! I
1 1
! I
! I
! I
! I
! I
! I
! I
! I
! I
! I
: v A PAR !
! I
1
' |guanteSono S i
. |dasost Ht 0 !
1 U 1
! |conChi #. > |
1
! I
i indice 2 VAR| |
! :
: I
| strinh :
N An[P[O|C|ONO|
7 i
' T 1 .7]JO[R|ONO !
:l ANA] !
. 2 |
T EE s
| ? :
! I
1

'memoria prima della chiamata




Programma gestione stringhe - 8/8 -

ricerca()

int ricerca (char **v, iInt quanteSono, char *strCercata) {

/* restituisce I*indice di strCercata in v, oppure -1 */
int 1 =0,

for ( ; 1I<quanteSono; i1++)

IT (stremp((v[i1], strCercata)==0)
return 1; /* stringa trovata: rest. I"indice */

return -1;

}
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Programma gestione stringhe - 8/8 -

ricerca()

int ricerca (char **v, iInt quanteSono, char *strCercata) {

/* restituisce I*indice di strCercata in v, oppure -1 */
int 1 =0,

for ( ; 1I<quanteSono; i1++)

IT (stremp((v[i1], strCercata)==0)
return 1; /* stringa trovata: rest. I"indice */

return -1;

}
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Programma gestione stringhe - 8/8 -

ricerca()

int ricerca (char **v, iInt quanteSono, char *strCercata) {

/* restituisce I*indice di strCercata in v, oppure -1 */
int 1 =0,

for ( ; 1I<quanteSono; i1++)

IT (stremp((v[i1], strCercata)==0)
return 1; /* stringa trovata: rest. I"indice */

return -1;

}
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Programma gestione stringhe - 8/8 -

ricerca()

int ricerca (char **v, iInt quanteSono, char *strCercata) {

/* restituisce I*indice di strCercata in v, oppure -1 */
int 1 =0,

for ( ; 1I<quanteSono; i1++)
IT (stremp((v[i1], strCercata)==0)
return 1; /* stringa trovata: rest. I"indice */

/* se siamo usciti dal ciclo senza mai trovare la stringa}
- vuol dire che non I"abbiamo trovata ... Tk 1y P */!
S0 wiuek

return -1; |

}

esercizio: riflettere sul perche’, nella funzione sostituisci, per sostituire la stringa
v{indice] con quella conChi, dopo free(v[indice]), invece di fare
N

v[indice] =

abbiamo usato codice differente per creare una copia esatta di conChi e poi
assegnare a v[indice] tale nuova stringa
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ricerca (stringhe, numeroStringh,

bufferl);
v N PAR !
guanteSono )
t L0
strCercata HH E
>
i VAR

o
memoriai



Tecniche della Programmazione, lez. 16

Approfondimenti
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Array di stringhe (lettura) - 3 - esecuzione simulata

continua funzione che legge un array di N stringhe, ciascuna di al piu” 80 char

/* 3a fTase: definizione funzione */’“CmS”deA”aﬁﬂmeGQHSUx
voild costruisciArrayStringhe(char * v[N]); J oA 2
char buffer[LUNGMAX+1]; o - >
int 1;

for (i=0; i<N; i++) {

/* lettura di una stringa ... */ arrStr
printf(’'scrivi una str ...\n"");
scanf("'%s', buffer);
/* ... e sua memorizzazione */ ..
v[1] = malloc(strlen(buffer)+1l); /> 1. 2wy "
it (vLil) h
strcpy(v[i], buffer); /* 1.3 % 7
else { 3
printf(*'eeekkk\n"");
break; =
} _ esecuzione simulata: riempire il disegno qui sopra,
} /* fine for */ mostrando come le stringhe lette in input (POCO,
ORO, RESTO, si, PRO, PROMOZion) vengono piazzate in
memria e puntate dagli elementi dell"array. Poi
return; confrontare con la slide successiva
¥ memoria’~

82/80
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Array di stringhe (lettura) - 3.2 -

continua funzione che legge un array di N stringhe, ciascuna di al piu” 80 char

/* 3a Ffase- definizione Ffunzione */"mcmsUMSdAnmﬁmﬂwme@nsux
voild costruisciArrayStringhe(char * v[N]); } JC A 2
char buffer[LUNGMAX+1]; S - >
lnt l - buffer

lplolclo ...[ ]
for (i=0} i<N; i++) {

i 1 0
/* lettura di una stringa ... */
printf(’'scrivi una str ...\n"");
scanf("'"%s'", buffer):

/* ... e sua memorizzazione */ ..
v[i] = malloc(strlen(buffer)+1); 7* 1.2 */
it (V[iD)
strcpy(v[i1], buffer); /* 1.3 */
else { 3
printf(*'eeekkk\n"");
break;

arrStr

+
} /* fine for */

return;

} ; “memoria

,4 . . ja— I . y N . . S T % a0’
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Array di stringhe (lettura) - 3.3 -

continua funzione che legge un array di N stringhe, ciascuna di al piu” 80 char

costruisciArrayStringhe(arrStr);

gy
N\

V_— W)
" ™
buffer
[plolclo ... |

i | 0O

/* 3a fase: definizione funzione */
voild costruisciArrayStringhe(char * v[N]);
char buffer[LUNGMAX+1];

int 1;

for (i=0; iI<N; i++) {

/* lettura di una stringa ... */
printf(’'scrivi una str ...\n"");
scanf("'%s', buffer);

/* ... e sua memorizzazione */ .
v[1] = malloc(strlen(buffer)+1); /k1.2*/'“3
it (v[iD S an[PlO|C|ONO
strcepy(v[i], buffer); /1.3 % 7
else { <
printf(*'eeekkk\n"");
break;

arrStr

NN

+
} /* fine for */

return;
+ “memoria
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Array di stringhe (lettura) - 3.4 -

continua funzione che legge un array di N stringhe, ciascuna di al piu” 80 char

costruisciArrayStringhe(arrStr);

Py,
/\

v O
buffer

/* 3a fase: definizione funzione */
voild costruisciArrayStringhe(char * v[N]);
char buffer[LUNGMAX+1];

int 1;

[O|RIO[\O ... ||
i 1

for (i=0; i<N; |[i++) {

/* lettura di una stringa ... */
printf(’'scrivi una str ...\n"");
scanf("'"%s'", buffer):

/* ... e sua memorizzazione */ ..
v[1] = malloc(strlen(buffer)+1l); /> 1. 2*/'“3
it (v[iD S an[PlO|C|ONO
strcpy(v[i], buffer); /* 1.3 % 7
else { <
printf(*'eeekkk\n"");
break;

arrStr

NN

+
} /* fine for */

return;
+ “memoria
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Array di stringhe (lettura) - 3.5 -

continua funzione che legge un array di N stringhe, ciascuna di al piu” 80 char

/* 3a fase: definizione funzione */ "-costruisciArrayStringhe(arrstr);

voild costruisciArrayStringhe(char * v[N]);
char buffer[LUNGMAX+1];

int 1;

for (i=0; iI<N; i++) {

/* lettura di una stringa ... */
printf(’'scrivi una str ...\n"");
scanf("'%s', buffer);

/* ... e sua memorizzazione */ .
v[i] = malloc(strlen(buffer)+1); s} 1.2 */
it (v

strcepy(v[i], buffer); /1.3 % 7
else { 3
printf(*'eeekkk\n"");
break;
+
} /* fine for */
return;
}
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Array di stringhe (lettura) - 3.6 -

continua funzione che legge un array di N stringhe, ciascuna di al piu” 80 char
costruisciArrayStringhe(arrStr);

/* 3a fase: definizione funzione */
voild costruisciArrayStringhe(char * v[N]);
char buffer[LUNGMAX+1];

int I;
for (i=0; i<N; |[i++) {

/> lettura di una stringa ... */
printf(’'scrivi una str ...\n"");
scanf(''%s'", buffer);

/* ... e sua memorizzazione */

vli] = malloc(strien(buffer)+1l); /> 1. s

it (viD

else {
printf(*'eeekkk\n"");

break;

+
} /* fine for */

return;

}
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strcpy(v[i], buffer); /*1"3*/.fj

0
Vv N O
>
buffer
[RIEJSIT ...[ ]
i| 2
arrStr
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Array di stringhe (lettura) - 3.7 -

continua funzione che legge un array di N stringhe, ciascuna di al piu” 80 char

/* 3a Fase: deFfinizione Ffunzione */ costruisciArrayStringhe(arrStr);

voild costruisciArrayStringhe(char * v[N]);
char buffer[LUNGMAX+1];

int 1;

for (i=0; iI<N; i++) {

/* lettura di una stringa ... */
printf(’'scrivi una str ...\n"");
scanf("'%s', buffer);

/* ... e sua memorizzazione */ .
v[i] = malloc(strlen(buffer)+1); s} 1.2 */
it (v

strcepy(v[i], buffer); /1.3 % 7
else { 3
printf(*'eeekkk\n"");
break;
+
} /* fine for */
return;
}
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Array di stringhe (lettura) - 3.8 -

funzione che legge un array di N stringhe, ciascuna di al piu” 80 char

/> 3a fase: definizione funzione */

costruisciArrayStringhe(arrStr);
void costruisciArrayStringhe(char * v[N]){

- Y

- o
char buffer[LUNGMAX+1]; >
int 1;

for (i=0; iI<N; i++) {

/* lettura di una stringa ... */

printf(*'scrivi una str ...\n"");
scanf("'%s'", buffer);

/* ... e sua memorizzazione */
v[1] = malloc(strlen(buffer)+1);
it (v
strcpy(v[i1], buffer);
else {

printf(*'eeekkk\n"");
break;

..
o NNN
o -

Annls i INO

+
} /* fine for */

- abbiamo letto le stringhe da input e le abbiamo .LO[R[ONO
return
}. ? memorizzate, come stringhe esatte, nell*array =~ "
di stringhe (cioé di puntatori) arrStr | e . et
ghe ( i ) “memorig..-
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Tecniche della Programmazione, lez. 16

Esercizi
- duplicazione con side effect sulla nuova stringa
- duplicazione con restituzione del grado di successo

- UN complicato esercizio con un array dinamico, da
realizzare seguendo passo passo lo sviluppo
proposto nelle slide.

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe 90/80



Esercizio (duplica stringa)

programma che

da parte della funzione duplica()

#include <stdio.h>
#include <stdlib.h>

esegue una duplicazione di stringa mediante side effect

Questo e~ il prototipo della funzione duplica()

void duplica(char *, char **);

int main() { char *stringl, *string2;

/* stringl e una stringa effettiva; string2 e un
puntatore cui attacchiamo un duplicato della stringl */

dUpIica(Stringl, &Strfﬁazjj\%wmmpmmﬂmaﬂwMe

return O;

}

e” un “indirizzo di
locazione capace di
contenere un indirizzo”
(I’indirizzo di un
indirizzo ..)

void duplica(char * s1, char **pCopia) {
*pCopia = malloc(strlen(sl)+l);

1T (*pCopia)

strcpy(*pCopia, sl);
return;

}

Questo parametro formale ®

e~ capace di ricevere un
valore che e” indirizzo di
un indirizzo di carattere

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe
te) > S

stringl

NN P

O

C

Obiettivo: dopo la
chiamata

duplica(stringl, &string2)

string2 e” una stringa
identica a stringl.

N

string2

memoria _ _ .
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Esercizio (duplica stringa)

programma che

da parte della funzione duplica()

#include <stdio.h>
#include <stdlib.h>

esegue una duplicazione di stringa mediante side effect

Questo e~ il prototipo della funzione duplica()

void duplica(char *, char **);

int main() { char *stringl, *string2;

/* stringl e una stringa effettiva; string2 e un
puntatore cui attacchiamo un duplicato della stringl */

dUpIica(Stringl, &Strfﬁazjj\%wmmpmmﬂmaﬂwMe

return O;

}

e” un “indirizzo di
locazione capace di
contenere un indirizzo”
(I’indirizzo di un
indirizzo ..)

void duplica(char * s1, char **pCopia) {
*pCopia = malloc(strlen(sl)+l);

1T (*pCopia)

strcpy(*pCopia, sl);
return;

}

Questo parametro formale ®

e~ capace di ricevere un
valore che e” indirizzo di
un indirizzo di carattere

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe
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stringl

NN P

O

C

Obiettivo: dopo la
chiamata

duplica(stringl, &string2)

string2 e” una stringa
identica a stringl.

1

:

1

‘|P|O]C|O\O !

:

1

N\ 1

1

string2 !
___________ memoria _ _ .
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Esercizio (duplica stringa)

programma che esegue una duplicazione di stringa mediante side effect
da parte della funzione duplica()

#include <stdio.h>

#include <stdlib.h>
voild duplica(char *, char **);

int main() { char *stringl, *string2;

stringl__ aa
ANPIOJCIONO

/* stringl e una stringa effettiva; string2 e un

puntatore cui attacchiamo un duplicato della stringl */ duplica(string1, &string2);

"-duplica(stringl, &string2); slI—AR PAR|ZE i
>

return O; pCopia i
} Jp i i
void duplica(char * sl1, char **pCopia) { i i
*pCopia = malloc(strlen(sl)+1l); ! !
iT (*pCopia) : . :
strcpy(*pCopia, sl1); | string?2 i
return; ! memoria
} L o o o o o o o o o R |
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Esercizio (duplica stringa)

programma che esegue una duplicazione di stringa mediante side effect

da parte della funzione duplica()

#include <stdio.h>
#include <stdlib.h>

void duplica(char *, char **);

stringl

int main() { char *stringl, *string2;

NN P

O|C

/* stringl e una stringa effettiva; string2 e un
puntatore cui attacchiamo un duplicato della stringl */

duplica(stringl, &string2);

"-duplica(stringl, &string2); slI—AR PAR g i
return 0; 5Copia i
} P §
void duplica(char * sl1, char **pCopia) { ! i
*pCopia = malloc(strlen(sl)+1); | i
1T (FpCopia) ! |
strcpy(*pCopia, sl); : —> N i
return; i string2 i
¥ i ___________ UEHDDIEl__j
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Esercizio (duplica stringa)

programma che esegue una duplicazione di stringa mediante side effect
da parte della funzione duplica()

#include <stdio.h>

#include <stdlib.h>
voild duplica(char *, char **);

int main() { char *stringl, *string2;

stringl__ aa
ANPIOJCIONO

/* stringl e una stringa effettiva; string2 e un

puntatore cui attacchiamo un duplicato della stringl */ duplica(string1, &string2);

"-duplica(stringl, &string2); slI—AR PAR|ZE i
>

return O; pCopia i
} P A i
void duplica(char * s1, char **pCopia) { ! i
*pCopia = malloc(strlen(sl)+1); o i
ifT (*pCopia) i P]OJC]ONO :
strcpy(*pCopia, s1); — |
return; i string2 i
¥ b e e e o memoria __.
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Esercizio (duplica stringa)

programma che esegue una duplicazione di stringa mediante side effect
da parte della funzione duplica()

stringl__ aa
ANPIOJCIONO

void duplica(char *, char **);

osservazione: Cosa c'e’ in *pCopia se 1'allocazione e’

andata male? duplica(stringl, &string?2);

Ora rispondi e poi fai una funzione che duplica come i sl—An PAR g i

sopra ma restituisce 1/0 per indicare il successo : >
dell’operazione. Poi prosegui © ' | pcopia i

! A :

void duplica(char * sl1, char **pCopia) { i |
*pCopia = malloc(strlen(sl)+1); | |
iIT (*pCopia) ! !
strepy(*pCopia, s1); i ; i
return; | string2 !
¥ e memoria __.
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duplica2

funzione come duplica(), che restituisce 1 0 0 a seconda del successo dell'operazione
di duplicazione

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe
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duplica2

funzione come duplica(), che restituisce 1 0 0 a seconda del successo dell'operazione
di duplicazione

int duplica2(char * sl1, char **pCopia) {
*pCopia = malloc(strlen(sl)+l);
1T (*pCopia) {
strcpy(*pCopia, sl);

return 1; /* e andata bene */
} else
return O; /* e andata male */
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Esercizio

programma che legge un intero n e poi legge n double;
memorizza i double in un array dinamico esatto,
calcola e stampa minimo, massimo e media dei double

1) Allocazione array dinamico, lettura e memorizzazione
dei numeri negli elementi *pd .......... *(pd+n-1)

2) init minimo e massimo parziale, e somma

1 |
|
i n somma |
1 |

3) scansione a ritroso da “penultimo” a “primo” : auxd
elemento, usando l'algoritmo del massimo (minimo) . pd !

. |

parziale ! :
e accumulando i double (per poter calcolare la media) :pmin !
: :
|
. . . . | pmax !
4) e poi calcolo media e stampa di min, max e media i !
: :
| |
1 |
La scansione viene realizzata mediante un ; I
puntatore: auxd : :
|
: :
| |
1 |
i 1
e memaria_ _
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Esercizio

programma che legge un intero n e n double;
li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

1) _Allocazione array dinamico, lettura e memorizzazione dei numeri in *pd .......... *(pd+n-1)
(usiamo un puntatore auxd, per scandire gli elementi dell'array, dal primo all'ultimo)

2) init minimo e massimo parziale, e somma

3) scansione a ritroso da “penultimo” a “primo” n |6 somma
elemento, trovando max e min, e accumulando

)

4) e poi calcolo media

MA usiamo (per realizzare l'alg. di pmin
massimo/minimo parziale)

pmax

- indirizzo del max parz: pmax

- indirizzo del min parz: pmin

- scansione degli elementi con un puntatore: auxd

- se *auxd e” maggiore di *pmax, allora *auxd e"
un NUOVO Max parz: pmax = auxd

e o e e memaria___
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Esercizio (o esempio?)

programma che legge un intero n e n double;
li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

1) Allocazione array dinamico, lettura e memorizzazione dei numeri in *pd .......... *(pd+n-1)

(usiamo un puntatore auxd, per scandire gli elementi dell'array, dal primo all'ultimo)

2) init minimo e massimo parziale, e sommao

3) scansione a ritroso da “penultimo” a “primo”

elemento, trovando max e min, e accumulando auxd

4) e poi calcolo media

pmin

MA usiamo (per realizzare I'alg. di
massimo/minimo parziale) pmax

- indirizzo del max parz: pmax

- indirizzo del min parz: pmin

- scansione degli elementi con un puntatore: auxd

- se *auxd e~ maggiore di *pmax, allora *auxd e~ 45.88
un NnUovo Max parz: pmax = auxd

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe
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Esercizio (o esempio?)

programma che legge un intero n e n double;
li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

1) Allocazione array dinamico, lettura e memorizzazione dei numeri in *pd .......... *(pd+n-1)

(usiamo un puntatore auxd, per scandire gli elementi dell'array, dal primo all'ultimo)

2) init minimo e massimo parziale, e sommao

_ _ . L n |6 somma [45.88

3) scansione a ritroso da “penultimo” a “primo |
elemento, trovando max e min, e accumulando auxd I
pd \ :
|
4) e poi calcolo media _ :
_ _ _ pmin |, !
MA usiamo (per realizzare I'alg. di |
. . . . |
massimo/minimo parziale) pmax | !
|
- indirizzo del max parz: pmax !
|
- indirizzo del min parz: pmin :
|
- scansione degli elementi con un puntatore: auxd :
|
~ . . < 1
- se *auxd e~ maggiore di *pmax, allora *auxd e 45.88 i
- = . |
un nuovo max parz: pmax =auxd ~~ —— memaria__
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Esercizio

programma che legge un intero n e n double;
li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

1) Allocazione array dinamico, lettura e memorizzazione dei numeri in *pd .......... *(pd+n-1)

(usiamo un puntatore auxd, per scandire gli elementi dell'array, dal primo all'ultimo)

2) init minimo e massimo parziale, e somma

|
|
: : . . rn |6 somma [45.88+
3) scansione a ritroso da “penultimo” a “primo” O : |
elemento, trovando max e min, e accumulando : auxd I
|
' pd \ :
| |
4) e poi calcolo media L :
: : : pmin| :
MA usiamo (per realizzare I'alg. di | 7/ !
massimo/minimo parziale) | pmax / / !
|
. - . | |
- indirizzo del max parz: pmax ! !
| |
- indirizzo del min parz: pmin ! :
| |
- scansione degli elementi con un puntatore: auxd : :
| |
~ . . < 1
- se *auxd e~ maggiore di *pmax, allora *auxd e i 45.88 i
- = . |
un NUOVO Mmax parz: pmax = auxd LN memaria__
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Esercizio

programma che legge un intero n e n double;
li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

1) Allocazione array dinamico, lettura e memorizzazione dei numeri in *pd .......... *(pd+n-1)

2) init minimo e massimo parziale, e somma

3) scansione a ritroso da “penultimo” a “primo” O
elemento, trovando max e min, e accumulando

4) e poi calcolo media

pmin | ,

MA usiamo (per realizzare I'alg. di
massimo/minimo parziale) pmax /

- indirizzo del max parz: pmax

- indirizzo del min parz: pmin

- scansione degli elementi con un puntatore: auxd

- se *auxd e~ maggiore di *pmax, allora *auxd e~ 45.88
un NnUovo Max parz: pmax = auxd

Tecniche della Programmazione, M. Temperini - lezione 16 Collezione di stringhe
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Esercizio

programma che legge un intero n e n double;
li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

1) Allocazione array dinamico, lettura e memorizzazione dei numeri in *pd .......... *(pd+n-1)

2) init minimo e massimo parziale, e somma

3) scansione a ritroso da “penultimo” a “primo” O |
elemento, trovando max e min, e accumulando

4) e poi calcolo media

pmin | ,

MA usiamo (per realizzare I'alg. di
massimo/minimo parziale) pmaxj

- indirizzo del max parz: pmax

- indirizzo del min parz: pmin

- scansione degli elementi con un puntatore: auxd

- se *auxd e~ maggiore di *pmax, allora *auxd e~ 45.88
un NnUovo Max parz: pmax = auxd

____________________ memaria___
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Esercizio

programma che legge un intero n e n double;
li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

1) Allocazione array dinamico, lettura e memorizzazione dei numeri in *pd .......... *(pd+n-1)

2) init minimo e massimo parziale, e somma

3) scansione a ritroso da “penultimo” a “primo” O |
elemento, trovando max e min, e accumulando

4) e poi calcolo media

pmin | ,

MA usiamo (per realizzare I'alg. di
massimo/minimo parziale) pmaxj

- indirizzo del max parz: pmax

- indirizzo del min parz: pmin

- scansione degli elementi con un puntatore: auxd

- se *auxd e~ maggiore di *pmax, allora *auxd e~ 45.88
un NnUovo Max parz: pmax = auxd

____________________ memaria___
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Esercizio

programma che legge un intero n e n double;
li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

Quando auxd == pd, siamo sul primo elemento e lo 2 dei numeri in *pd .......... *(pd+n-1)
controlliamo;

quando auxd e~ andato un altro passo indietro, e
auxd < pd e quindi siamo fuori dell"array

e ci dobbiamo fermare. n 6 somma |45.88+...

Ora pmin e pmax effettivamente puntano all®elemento

minimo e massimo, rispettivamente, nell"array pci N\

4) e poi calcolo media O

MA usiamo (per realizzare I'alg. di
massimo/minimo parziale) pma %

pmin | ,

- indirizzo del max parz: pmax

- indirizzo del min parz: pmin

- scansione degli elementi con un puntatore: auxd

- se *auxd e~ maggiore di *pmax, allora *auxd e~ 45.88
un NnUovo Max parz: pmax = auxd
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esercizio su intero n e n double (coding 1/2)

programma che legge un intero n e n double;
li memorizza in un array dinamico esatto

calcola e stampa minimo, massimo e media dei double

#include <stdio.h> - -
’ert n;

#include <stdlib.h>
int main() i;///////////'double *pd, *pmax, *pmin, *auxd, somma, ;

v
o
=
=
Y

tis

il

scanf( ... &n); n |6
pd = malloc(n*sizeof(double)); |
_ ) ' pd \
it (1pd) printf("" ... "); |
else { ' pmin
for (auxd=pd; auxd-pd < n; auxd++) i
scanf("%1f", auxd); ' pmax

Durante la prima scansione, per la lettura dei dati,

auxd inizialmente punta sull®inizio dell"array (auxd=pd)

poi auxd viene incrementato di uno ... cioe salta all“elemento successivo (audd-pd==1)
Andando avanti, auxd-pd == 2 (e viene letto il dato per i1l secondo elemento,
auxd-pd==3 ... terzo elemento

Alla fine auxd-pd==n e aud punta fuori dell"array (fine delle letture)

In questo momento auxd-pd==0 e la scand mette i1l dato letto da input nel primo elemento;
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esercizio su intero n e n double (coding 1/2)

programma che legge un intero n e n double;

li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

#include <stdio.h> - -
’lnt n;

#include <stdlib.h>
int main() / double *pd, *pmax,

*pmin, *auxd, somma, ;

scanf( ... &n);
pd = malloc(n*sizeof(double));

it (1pd) printf("" ... ");
else {
for (auxd=pd; auxd-pd < nj; auxd++)
scant("%If"", auxd);

esempio
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pd \ 2
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esercizio su intero n e n double (coding 1/2)

programma che legge un intero n e n double;

li memorizza in un array dinamico esatto

calcola e stampa minimo, massimo e media dei double
#include <stdio.h>

#include <stdlib.h>
int main(Q) {

scanf( ... &n);
pd = malloc(n*sizeof(double));

it (1pd) printf(" ... ");

else { pmin \

for (auxd=pd; auxd-pd < n; auxd++) ipmax

scant("%If"", auxd);

/* inizializzazione: pmax e pmin saranno
I puntatori al massimo e minimo;
tecnica del massimo parziale */

pmax = pmin = —-auxd;
somma = *auxd;

45.88

____________________ memaria___
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esercizio su intero n e n double (coding 1/2)

programma che legge un intero n e n double;
li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

#include <stdio.h>
#include <stdlib.h>
int main(Q) {

scanf( ... &n);

pd = malloc(n*sizeof(double));
it (1pd) printf("" ... ");
else {

for (auxd=pd; auxd-pd < n; auxd++)
scant("%If"", auxd);

/* inizializzazione: pmax € pmin saranno
I puntatori al massimo e minimo;
tecnica del massimo parziale */

pmax = pmin = —-auxd;
somma = *auxd;
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esercizio su intero n e n double (coding 1/2)

programma che legge un intero n e n double;
li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

#include <stdio.h>
#include <stdlib.h>
int main(Q) {

scanf( ... &n);

pd = malloc(n*sizeof(double));
it (1pd) printf("" ... ");
else {

for (auxd=pd; auxd-pd < n; auxd++)
scant("%If"", auxd);

/* inizializzazione: pmax € pmin saranno
I puntatori al massimo e minimo;
tecnica del massimo parziale */

pmax = pmin = —-auxd;
somma = *auxd;
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n |6 somma i
auxd |

pd \ :
pmin \\\\N i
pmax i
45.88

auxd-pd=6 .
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esercizio su intero n e n double (coding 1/2)

programma che legge un intero n e n double;
li memorizza in un array dinamico esatto
calcola e stampa minimo, massimo e media dei double

#include <stdio.h>
#include <stdlib.h>
int main(Q) {

scanf( ... &n);

pd = malloc(n*sizeof(double));
it (1pd) printf("" ... ");
else {

for (auxd=pd; auxd-pd < n; auxd++)
scant("%If", auxd);

/* inizializzazione: pmax € pmin saranno
I puntatori al massimo e minimo;
tecnica del massimo parziale */

pmax = pmin = —-auxd;
somma = *auxd;
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esercizio su intero n e n double (coding 2/2)

--- pmax=pmin=-auxd; [TTTTITmTmmmmsmmmsmsmmmmeemmmee- !

|
somma = *auxd; i n |[6 somma [45.88
for (auxd--; auxd >= pd; auxd--) { | '
: * * ! auxd
1T (pmax < *auxd) ' nd N ,
pmax=auxd; : :
| |
1 . 1
- - rpmin 4 I
it (*pmin > *auxd) :p/xjj’ :
pmin=auxd; rpmiax | |
;! A '
Sy et :
somma += *auxd; Loy s |
} / /: :"/ // !
A / A I
Iy s / e :
= I [ i l // /“/ ‘./7 |
media = somma/n; w7 75 4588 |
printf( ..., *pmax, *pmin, media§i\:\‘t?‘i7” //" ’ :
LM e— - L~ |
return O; NRGAEILEEEEED FRRREEEE fenonia. -
} o
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esercizio su intero n e n double (coding 2/2)

--- pmax=pmin=-auxd; [TTTTITmTmmmmsmmmsmsmmmmeemmmee- !

|
somma = *auxd; i n |6 somma |45.88

for (auxd--; auxd >= pd; auxd--) { | '

- * * ! auxd
1T (pmax < *auxd) ' pd N ,
pmax=auxd; : :
| |
| . |
_ . rpmin. g !
it (pmin > *auxd) :p/x;j/ :
- . S |
pmin=auxd; ' pmax|’ i
R ’/’/// / 1
oy / / !
somma += *auxd; / ;/@/ T |

. - I

| /' 'R 7 1
}- ¥ espressione double ; : ;ﬂ [ / A |
‘/////// (divisione tra un : ! / I // /;‘/ i I
- _ - double e un intero ] / l K / o ‘327 I
media = somma/n; “ - -7 |45.88 !
|
|
1

- = = : U AN L -
rintfG. .., *pmax, *pmin, med|a>a LT T :
D iﬁS\\\\\ P P oLl Lo memaria__

return O; - Gt -
}_ undefined ... nella pagina prima; . o
Deve esprimere la media, cioe™ un valore double | 7

auxd viene i1nizialmente retrocesso all"inizio della componente n-esima (indice
n-1); poi, mentre si mantiene >=pd si decrementa per toccare tutte le altre
componenti dell"array, in ordine inverso (indice n-2, n-3, ... 0).

Per ogni componente toccata (indicata) da auxd, si attua la tecnica di
mantenimento del massimo (e minimo) parziale (*auxd e 1l contenuto della
locazione puntata da auxd), e la si somma nell“accumulatore (somma=somma+ *auxd)
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