
1/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Tecniche della Programmazione, lez.10

Recap su array monodimensionali

Gli array multidimensionali (multi == bi …)

2/35Tecniche della Programmazione, M.Temperini - lezione 10-array

#include <stdio.h>

int main () {
int i,j;

for (INIT i; CHECK i; ADVANCE i)
USE i and j

printf ("\nFINE programma\n");
return 0;
}

Programma che stampa i primi 100 numeri interi positivi, su 10 righe di 10
numeri ciascuna

Déjà vu - dieci per dieci

In base a quanto detto a lezione, prova a scrivere e testare
il programma.
Comunque poi vedi Approfondimenti

Ah, dimenticavo. Vedi EserciziExtra in fondo alle slide, per un ulteriore esercizio. Prima provate a farlo.
Poi trovate qualcosa nei complementi didattici, per confrontare le soluzioni e verificarle.

3/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Problema: Trasferimento Dimensionale

Due punti, PEP ∈ E_P e PEI ∈ E_I, si dicono solidali, sse per ogni i=1,…,6 la
coordinata i-esima di PEP è
- uguale alla coordinata i-esima di PEI, se questa è pari
- uguale a 0, se la coordinata i-esima di PEI è dispari o nulla

Nello Spazio esadimensionale_intero (E_I), i punti PEI sono definiti da (6)
coordinate intere.

Nello Spazio esadimensionale_PARI (E_P) i punti PEP sono definiti da (6) coordinate
intere che possono essere solo pari o nulle.

ad esempio,
questi due

sono
solidali

puntoEI = (3259, 116, 5008, 5618, 47, 42)

puntoEP = (0, 116, 5008, 5618, 0, 42)

Dato puntoEI ∈ E_I, calcolare il punto solidale puntoEP ∈ E_P (unico)

strutture dati?
variabili e costanti? Algoritmo?

4/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Problema del trasferimento di un puntoEI in un puntoEP

Rappresentiamo i due punti (vettori di coordinate) come array di interi;

puntoEI = (3259, 116, 5008, 5618, 47, 42) (vettoreEI)


puntoEP = (?, ?, ?, ?, ?, ?) (vettoreEP all'inizio)

puntoEP = (0, 116, 5008, 5618, 0, 42) (vettoreEP alla fine)

#define N 6
int main () {
int vettoreEI[N], vettoreEP[N];

Algoritmo (del programma)? 
Sottoproblemi?
Funzioni? 

5/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Rappresentiamo i due punti (vettori di coordinate) come array di interi;

puntoEI = (3259, 116, 5008, 5618, 47, 42) (vettoreEI)


puntoEP = (?, ?, ?, ?, ?, ?) (vettoreEP)

puntoEP = (0, 116, 5008, 5618, 0, 42) (vettoreEP)

#define N 6
int main () {
int vettoreEI[N], vettoreEP[N];

vettoreEP[0] = vettoreEI[0] ????
vettoreEP[1] = vettoreEI[1] ??
vettoreEP[2] = ??
...
vettoreEP[5] = ??

Problema del trasferimento di un puntoEI in un puntoEP

vettoreEP[i] = vettoreEI[i] oppure 0 ... dipende

Algoritmo (del programma)? 
Sottoproblemi?
Funzioni? 

6/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Rappresentiamo i due punti (vettori di coordinate) come array di interi;

puntoEI = (3259, 116, 5008, 5618, 47, 42) (vettoreEI)


puntoEP = (?, ?, ?, ?, ?, ?) (vettoreEP)

puntoEP = (0, 116, 5008, 5618, 0, 42) (vettoreEP)

#define N 6
int main () {
int vettoreEI[N], vettoreEP[N];

cioè
assegnazione dell'elemento i-esimo di vettoreEP con
- l'elemento i-esimo di vettoreEI (se questo è pari)
- 0, se l'elemento i-esimo di vettoreEI è dispari o nullo

Problema del trasferimento di un puntoEI in un puntoEP

il nucleo del problema è nel trasferimento parziale, cioè nella
copia degli elementi pari di vettoreEI in vettoreEP – nelle
medesime posizioni, e inserimento di zero altrove in vettoreEP

Algoritmo (del programma)? 
Sottoproblemi?
Funzioni? 

7/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Problema del trasferimento di un puntoEI in un puntoEP

Rappresentiamo i due punti (vettori di coordinate) come array di interi;

puntoEI = (3259, 116, 5008, 5618, 47, 42) (vettoreEI)


puntoEP = (?, ?, ?, ?, ?, ?) (vettoreEP
all'inizio)

puntoEP = (0, 116, 5008, 5618, 0, 42) (vettoreEP alla fine)

#define N 6
int main () {
int vettoreEI[N], vettoreEP[N];

Algoritmo (del programma)? 
Sottoproblemi?
Funzioni? 

8/35Tecniche della Programmazione, M.Temperini - lezione 10-array

vettoreEI = (3259, 116, 5008, 5618, 47, 42)
 vettoreEP = (0, 116, 5008, 5618, 0, 42)

#define N 6
int main () {
int vettoreEI[N], vettoreEP[N];

Algoritmo
0) … strutture dati …
1) lettura del primo vettore
2) stampa del primo vettore
3) trasferimento dal primo al secondo vettore
4) stampa del secondo vettore
5) FINE

Sottoproblemi?
Funzioni? 

Problema del trasferimento di un puntoEI in un puntoEP

9/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Trasferimento tra array – main()
vettoreEI = (3259, 116, 5008, 5618, 47, 42)

 vettoreEP = (0, 116, 5008, 5618, 0, 42)
#include <stdio.h>
#define N 6

/* dichiarazioni delle funzioni usate dalla main() */
...

int main () {
int vettoreEI[N], vettoreEP[N];

printf ("caro/a utente, … dati del vettore: \n");
leggiVettore(vettoreEI);
printf ("ho letto il seguente vettore:\n");
stampaVettore(vettoreEI);
printf ("\n... hold on, transfer in progress ...\n\n");
trasferimentoPari(vettoreEI, vettoreEP);
printf ("dopo il trasferimento …: \n");
stampaVettore(vettoreEP);

printf ("\nFINE programma\n");

10/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Trasferimento tra array – main()
vettoreEI = (3259, 116, 5008, 5618, 47, 42)

 vettoreEP = (0, 116, 5008, 5618, 0, 42)
#include <stdio.h>
#define N 6

/* dichiarazioni delle funzioni usate dalla main() */
void leggiVettore(int [N]);
void stampaVettore(int [N]);
void trasferimentoPari(int v1[N], int v2[N]);

int main () {
int vettoreEI[N], vettoreEP[N];

printf ("caro/a utente, … dati del vettore: \n");
leggiVettore(vettoreEI);
printf ("ho letto il seguente vettore:\n");
stampaVettore(vettoreEI);
printf ("\n... hold on, transfer in progress ...\n\n");
trasferimentoPari(vettoreEI, vettoreEP);
printf ("dopo il trasferimento …: \n");
stampaVettore(vettoreEP);

printf ("\nFINE programma\n");

11/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Trasferimento tra array - algoritmo
vettoreEI = (3259, 116, 5008, 5618, 47, 42)

 vettoreEP = (0, 116, 5008, 5618, 0, 42)

#define N 6
int main () {
int vettoreEI[N], vettoreEP[N];

Algoritmo
0) …
1) lettura del primo vettore
2) stampa del primo vettore
3) trasferimento dal primo al secondo vettore
4) stampa del secondo vettore
5) FINE

Funzioni (sottoproblemi)
void leggiVettore(int []),
void stampaVettore(int[]),
void trasferisci(int [], int [])

int []

12/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Trasferimento tra array - algoritmo
vettoreEI = (3259, 116, 5008, 5618, 47, 42)

 vettoreEP = (0, 116, 5008, 5618, 0, 42)

#define N 6
int main () {
int vettoreEI[N], vettoreEP[N];

Algoritmo
0) …
1) lettura del primo vettore
2) stampa del primo vettore
3) trasferimento dal primo al secondo vettore
4) stampa del secondo vettore
5) FINE

Funzioni (sottoproblemi)
void leggiVettore(int []),
void stampaVettore(int[]),
void trasferisci(int [], int [])

int [] è il nome del tipo
dell'array di interi, se
omettiamo la dimensione
va bene lo stesso, ma
vedi slide successiva ...

13/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Programma per il trasferimento dimensionale: prototipi

vettoreEI = (3259, 116, 5008, 5618, 47, 42)
 vettoreEP = (0, 116, 5008, 5618, 0, 42)

#include <stdio.h>
#define N 6

/* dichiarazioni delle funzioni usate dalla main() */
void leggiVettore(int [N]);
void stampaVettore(int []);
void trasferimentoPari(int v1[N], int v2[N]);

int main () {
int vettoreEI[N], vettoreEP[N];

printf ("caro/a utente, … dati del vettore: \n");

14/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Trasferimento tra array – prototipi
vettoreEI = (3259, 116, 5008, 5618, 47, 42)

 vettoreEP = (0, 116, 5008, 5618, 0, 42)
#include <stdio.h>
#define N 6

/* dichiarazioni delle funzioni usate dalla main() */
void leggiVettore(int [N]);
void stampaVettore(int []);
void trasferimentoPari(int v1[N], int v2[N]);

int main () {
int vettoreEI[N], vettoreEP[N];

printf ("caro/a utente, … dati del vettore: \n");

La dimensione si può omettere nella dichiarazione
del parametro
(ma metterla rende le cose più chiare a chi voglia
riusare questa funzione, quindi è meglio)

15/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Trasferimento tra array – funzione di lettura

/* funzione di lettura di un vettore di N interi */
void leggiVettore(int v[N]) {

int i;


}

return;
}

16/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Trasferimento tra array – funzione di lettura
/* funzione di lettura di un vettore di N interi */
void leggiVettore(int v[N]) {

int i;
for (i=0; i<N; i++) {
printf("- elemento [%d]:", i);
scanf("%d", &v[i]);

}
return;
}

17/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Trasferimento tra array – funzione di stampa
/* funzione di stampa di un vettore di N interi,
nel formato [num, num, num ..., num] */

[3259, 116, 5008, 5618, 47, 42]

void stampaVettore(int v[N]) {
int i;
printf("[");
for (i=0; i<N; i++)



printf("]\n");
return;
}

18/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Trasferimento tra array – funzione di stampa
/* funzione di stampa di un vettore di N interi,
nel formato [num, num, num ..., num] */

[3259, 116, 5008, 5618, 47, 42]

void stampaVettore(int v[N]) {
int i;
printf("[");
for (i=0; i<N; i++)

:> il primo viene stampato seguito da
una ',' e da un ' '
… l'ultimo no

printf("]\n");
return;
}

19/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Trasferimento tra array – funzione di stampa
/* funzione di stampa di un vettore di N interi,
nel formato [num, num, num ..., num] */

[3259, 116, 5008, 5618, 47, 42]

void stampaVettore(int v[N]) {
int i;
printf("[");
for (i=0; i<N; i++)
if (i==N-1)
printf("%d", v[i]);

else printf("%d, ", v[i]);

printf("]\n");
return;
}

20/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Trasferimento tra array – funzione finale
/* definizione della funzione che trasferisce i pari dal
primo al secondo vettore e azzera gli altri elementi del
secondo vettore */

void trasferimentoPari(int v1[N], int v2[N]) {
int i;
for (i=0; i<N; i++)
if ((v1[i]%2)==0)

else 

return;
}

3259 116 5008 5618 47 42v1

v2 0 116 5008 5618 0 42

21/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Trasferimento tra array – funzione finale
/* definizione della funzione che trasferisce i pari dal
primo al secondo vettore e azzera gli altri elementi del
secondo vettore */

void trasferimentoPari(int v1[N], int v2[N]) {
int i;
for (i=0; i<N; i++)
if ((v1[i]%2)==0)
v2[i]=v1[i];

else
v2[i]=0;

return;
}

3259 116 5008 5618 47 42v1

v2 0 116 5008 5618 0 42

22/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Array  una riga  1 indice

Array bidimensionale  righe per colonne  2 indici
1° indice = di riga
2° indice = di colonna

int mat[3][4] dichiarazione di array bidimensionale di
3 righe per 4 colonne ad elementi interi

mat[i][j] è l'elemento (la variabile semplice)
corrispondente a riga i e colonna j

Array multidimensionali

mat[0][0]

mat[1][0]

mat[2][0]

mat[0][1]

mat[1][1]

mat[2][1]

mat[0][2]

mat[1][2]

mat[2][2]

mat[0][3]

mat[1][3]

mat[2][3]

23/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Le variabili di un array bidimensionale sono individuate da due
indici, quindi bisogna far variare il primo indice e, per ogni suo
valore, far variare il secondo indice – riferendosi così a tutti
gli elementi.
Si tratta di due
cicli annidati.

int mat[3][4];
…
for (i=0; i<3; i++)

stampa riga i 

Iterazioni su array bidimensionali

0

0

i

j

mat[0][0]

mat[1][0]

mat[2][0]

mat[0][1]

mat[1][1]

mat[2][1]

mat[0][2]

mat[1][2]

mat[2][2]

mat[0][3]

mat[1][3]

mat[2][3]

24/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Le variabili di un array bidimensionale sono individuate da due indici, quindi
bisogna far variare il primo indice e, per ogni suo valore, far variare il
secondo indice – riferendosi così a tutti gli elementi.
Si tratta di due cicli annidati.

fissato i,
qual è il codice che gestisce la riga i, cioè stampa gli elementi
mat[i][0], mat[i][1], mat[i][2], mat[i][3]

…
for (i=0; i<3; i++)

...
printf("mat[%d][%d]: %d\n",

indici ..., mat[i][j]);

Iterazioni su array bidimensionali – stampa (2 dimensioni)

mat[0][0]

mat[1][0]

mat[2][0]

mat[0][1]

mat[1][1]

mat[2][1]

mat[0][2]

mat[1][2]

mat[2][2]

mat[0][3]

mat[1][3]

mat[2][3]

25/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Algoritmo per la stampa di una matrice (tsk array bidimensionale)

#define N 3
#define M 4
int mat[N][M];

Algoritmo (per la parte di codice che stampa la matrice)

0) … N, M, ...
1) ripetere, per tutte le righe

1.1) stampa la riga i-esima
2) fine stampa

26/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Algoritmo per la stampa di una matrice: raffinamento

#define N 3
#define M 4
int mat[N][M];

Algoritmo (per la parte di codice che stampa la matrice)

Raffinamento ...

0) … N, M, indice_riga, indice_colonna, mat[][] ...
1) ripetere, con indice_riga=0...N-1

1.1) stampa mat[i][0] ... mat[i][M-1]
2) fine stampa

27/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Le variabili di un array bidimensionale sono individuate da due indici, quindi
bisogna far variare il primo indice e, per ogni suo valore, far variare il
secondo indice – riferendosi così a tutti gli elementi.
Si tratta di due cicli annidati.

fissato i,
questo è il codice che gestisce la riga i, cioè gli elementi
mat[i][0], mat[i][1], mat[i][2], mat[i][3]

j j j j
…
for (i=0; i<3; i++)

for (j=0; j<4; j++)
printf("mat[%d][%d]: %d\n",

i, j, mat[i][j]);

Torniamo al codice

mat[0][0]

mat[1][0]

mat[2][0]

mat[0][1]

mat[1][1]

mat[2][1]

mat[0][2]

mat[1][2]

mat[2][2]

mat[0][3]

mat[1][3]

mat[2][3]

28/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Le variabili di un array bidimensionale sono individuate da due
indici, quindi bisogna far variare il primo indice e, per ogni suo
valore, far variare il secondo indice – riferendosi così a tutti
gli elementi.
Si tratta di due
cicli annidati.

int mat[3][4];
…
for (i=0; i<3; i++)

for (j=0; j<4; j++)
printf("mat[%d][%d]: %d\n",

i, j, mat[i][j]);

Iterazioni su array bidimensionali

0

0

i

j

mat[0][0]

mat[1][0]

mat[2][0]

mat[0][1]

mat[1][1]

mat[2][1]

mat[0][2]

mat[1][2]

mat[2][2]

mat[0][3]

mat[1][3]

mat[2][3]

Eseguire questo codice in modo simulato, passo passo ... tenedo anche traccia dell'output via via prodotto.
E poi vedi Esercizi

29/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Algoritmo per la stampa di una matrice: altro raffinamento

#define N 3
#define M 4
int mat[N][M];

Algoritmo (per la parte di codice che stampa la matrice)

Raffinamento ulteriore...

0) … N, M, indice_riga, indice_colonna, mat[][] ...
1) ripetere, con indice_riga=0...N-1

1.1) ripetere, con indice_colonna=0, ..., M-1
1.1.1) stampa mat[indice_riga][indice_colonna]

2) fine stampa

30/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Algoritmo per la stampa di una matrice: ulteriore raffinamento

#define N 3
#define M 4
int mat[N][M];

Algoritmo (per la parte di codice che stampa la matrice)

Questione pratica, e ultimo raffinamento: dopo ogni riga
bisogna andare a capo, e poi i valori vanno stampati
incolonnati ...

0) … N, M, indice_riga, indice_colonna, mat[][] ...
1) ripetere, con indice_riga=0...N-1

1.1) ripetere, con indice_colonna=0, ..., M-1
1.1.1) stampa mat[indice_riga][indice_colonna], nella forma

"mat[indice_riga][indice_colonna]: il suo valore, su tre colonne

1.2) stampare '\n'
2) fine stampa

31/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Una stampa migliore

for (i=0; i<3; i++) {
for (j=0; j<4; j++)

printf(" mat[%d][%d]: %3d ",
i, j, mat[i][j]);

putchar('\n');
}

0 1 2 3

i

j

mat[0][0]

mat[1][0]

mat[2][0]

mat[0][1]

mat[1][1]

mat[2][1]

mat[0][2]

mat[1][2]

mat[2][2]

mat[0][3]

mat[1][3]

mat[2][3]

0 1

A) Per ogni valore
di i (per ogni
riga)

A.1) Stampa gli
elementi mat[i][j]
Per j = 0…3

A.2) E poi va a capo

Dall'algoritmo al codice per la stampa di una matrice

32/35Tecniche della Programmazione, M.Temperini - lezione 10-array

#define N 3
#define M 4

for (i=0; i<N; i++) {
for (j=0; j<M; j++)

printf(" mat[%d][%d]: %3d ",
i, j, mat[i][j]);

putchar('\n');
}

Array bidimensionali: uso di costanti per le dimensioni

1

i

j

mat[0][0]

mat[1][0]

mat[2][0]

mat[0][1]

mat[1][1]

mat[2][1]

mat[0][2]

mat[1][2]

mat[2][2]

mat[0][3]

mat[1][3]

mat[2][3]

1

NB … Nelle prossime slide usiamo 3 e 4 in esempi ad hoc …
MA dobbiamo abituarci ad usare le costanti per le dimensioni!

Ok, tempo di esercizi (per i quali potreste trovare qualcosa nella directory dei complementi didattici.

1) Scrivere un programma che riceve in input una matrice NxM e la stampa per bene come visto sopra.

2) Idem, ma realizzando la stampa mediante un ciclo while. Conviene riscrivere l'algoritmo ricordando
bene le relazioni tra while e for ... su questo, una slide e` nella zona Esercizi

33/35Tecniche della Programmazione, M.Temperini - lezione 10-array

NB la lettura da input di un array bidimensionale scandisce gli elementi così
come visto per la stampa … solo che si usa scanf() …

L’inizializzazione in definizione
è possibile, così come per gli
array monodimensionali:

MA si può omettere solo la prima dimensione. Per il resto, ci sono varie possibilità …

int mat[3][4] = { {1, 2, 3, 4},
{10, 20, 30, 40},
{100, 200, 300, 400} };

int matt[][4] = { {1, 2, 3}, {10, 20, 30},
{100, 200, 300, 400} };

int mattt[3][4] = { 1, 2, 3, 4, 10, 20, 30,
40, 100, 200, 300, 400 };

Inizializzazione di un array bidimensionale

mat[0][0]

mat[1][0]

mat[2][0]

mat[0][1]

mat[1][1]

mat[2][1]

mat[0][2]

mat[1][2]

mat[2][2]

mat[0][3]

mat[1][3]

mat[2][3]

34/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Serve almeno la
seconda dimensione;
Per il resto,
varie possibilità

int mat[3][4] = { {1, 2, 3, 4},
{10, 20, 30, 40},
{100, 200, 300, 400} };

int matt[][4] = { {1, 2, 3}, {10, 20, 30},
{100, 200, 300, 400} };

int mattt[3][4] = { 1, 2, 3, 4, 10, 20, 30,
40, 100, 200, 300, 400 };

Inizializzazione di un array bidimensionale

mat[0][0]

mat[1][0]

mat[2][0]

mat[0][1]

mat[1][1]

mat[2][1]

mat[0][2]

mat[1][2]

mat[2][2]

mat[0][3]

mat[1][3]

mat[2][3]

sperimentare queste inizializzzioni in un nuovo programma, ottenuto da quello precedente. L'utilita` sta nel riflettere su come gli elementi
dell'array bidiensionale sono memorizzati nella RAM ... Poi Vedi Approfondimenti

35/35Tecniche della Programmazione, M.Temperini - lezione 10-array

La disposizione in memoria è sequenziale, riga per riga

int mat[3][4] = { {1, 2, 3, 4},
{10, 20, 30, 40},
{100, 200, 300, 400} };

for (i=0; i<3; i++)
for (j=0; j<4; j++)

printf("l'elemento mat[%d][%d]
è di %d byte, ha indirizzo %p
e valore %d\n",
i, j, sizeof(mat[i][j]),
&mat[i][j], mat[i][j]);

Si’, ma in memoria?

mat[0][0]

mat[1][0]

mat[2][0]

mat[0][1]

mat[1][1]

mat[2][1]

mat[0][2]

mat[1][2]

mat[2][2]

mat[0][3]

mat[1][3]

mat[2][3]

…
…

mat[0][0]

mat[0][1]

mat[0][2]

mat[0][3]

mat[1][0]

mat[1][1]

mat[1][2]

mat[1][3]

mat[2][0]

mat[2][1]

mat[2][2]

mat[2][3]

…

36/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Tecniche della Programmazione, lez. 10

- Approfondimenti

37/35Tecniche della Programmazione, M.Temperini - lezione 10-array

#include <stdio.h>

int main () {
int i,j;

for (INIT i; CHECK i; ADVANCE i)
USE i and j

printf ("\nFINE programma\n");
return 0;
}

Programma che stampa i primi 100 numeri interi positivi, su 10 righe di 10
numeri ciascuna

Déjà vu - dieci per dieci

38/35Tecniche della Programmazione, M.Temperini - lezione 10-array

#include <stdio.h>

int main () {
int i,j;

ALGORITMO
- ciclo con i che va da 0 a 9

- ad ogni iterazione (i==0, i==1, …, i==9)
- viene stampata una riga di numeri che sono quelli che vanno

da i*10 a i*10 + 9
- fine riga (insomma: si va a capo)

printf ("\nFINE programma\n");
return 0;
}

Programma che stampa i primi 100 numeri interi positivi, su 10 righe di10
numeri ciascuna

Esercizio – dieci per dieci – annidamento di cicli

 prova a spiegare cosa avviene ad ogni iterazione del ciclo su i

 prova a spiegare cosa avviene ad ogni iterazione del ciclo su j
 (cioe`, cosa succede per j=0? Cosa per j=1? 2 3 ... 9?

39/35Tecniche della Programmazione, M.Temperini - lezione 10-array

#include <stdio.h>

int main () {
int i,j;

ALGORITMO
1) ciclo con i che va da 0 a 9

- ad ogni iterazione viene stampata una riga di numeri che sono quelli
che vanno da i*10 a i*10 + 9
CIOE`

1.1) ciclo con j che va da 0 a 9
- ad ogni iterazione viene stampato il numero i*10 + j

1.2) andare a capo per la prossima riga di numeri
- fine …
printf ("\nFINE programma\n");
return 0;
}

Programma che stampa i primi 100 numeri interi positivi, su 10 righe di10
numeri ciascuna

Esercizio – dieci per dieci – annidamento

40/35Tecniche della Programmazione, M.Temperini - lezione 10-array

#include <stdio.h>

int main () {
int i,j;

for (i=0; i<10; i++) {
/* stampa la riga i-esima di 10 numeri */
for (j=0; j<10; j++) /* 1) */

printf ("%2d ", i*10 + j);
printf ("\n"); /* 2) fine riga */

}
printf ("\nFINE programma\n");
return 0;
}

Esercizio – dieci per dieci
Programma che stampa i primi 100 numeri interi positivi, su 10 righe di10
numeri ciascuna

41/35Tecniche della Programmazione, M.Temperini - lezione 10-array

La disposizione in memoria è sequenziale, riga per riga

int mat[3][4] = { {1, 2, 3, 4},
{10, 20, 30, 40},
{100, 200, 300, 400} };

for (i=0; i<3; i++)
for (j=0; j<4; j++)

printf("l'elemento mat[%d][%d]
è di %d byte, ha indirizzo %p
e valore %d\n",
i, j, sizeof(mat[i][j]),
&mat[i][j], mat[i][j]);

Si’, ma in memoria?

mat[0][0]

mat[1][0]

mat[2][0]

mat[0][1]

mat[1][1]

mat[2][1]

mat[0][2]

mat[1][2]

mat[2][2]

mat[0][3]

mat[1][3]

mat[2][3]

…
…

mat[0][0]

mat[0][1]

mat[0][2]

mat[0][3]

mat[1][0]

mat[1][1]

mat[1][2]

mat[1][3]

mat[2][0]

mat[2][1]

mat[2][2]

mat[2][3]

…

42/35Tecniche della Programmazione, M.Temperini - lezione 10-array

La disposizione in memoria è sequenziale, riga per riga

int mat[3][4] = { {1, 2, 3, 4},
{10, 20, 30, 40},
{100, 200, 300, 400} };

for (i=0; i<3; i++)
for (j=0; j<4; j++)

printf("l'elemento mat[%d][%d]
è di %d byte, ha indirizzo %p
e valore %d\n",
i, j, sizeof(mat[i][j]),
&mat[i][j], mat[i][j]);

Si`, ma in memoria?

mat[0][0]

mat[1][0]

mat[2][0]

mat[0][1]

mat[1][1]

mat[2][1]

mat[0][2]

mat[1][2]

mat[2][2]

mat[0][3]

mat[1][3]

mat[2][3]

…
…

mat[0][0] = 1

mat[0][1]

mat[0][2] = 3

mat[0][3]

mat[1][0] = 10

mat[1][1] = 20

mat[1][2]

mat[1][3]

mat[2][0]

mat[2][1] =
200

mat[2][2]
mat[2][3] =

400

…

43/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Tecniche della Programmazione, lez. 10

- Esercizi

44/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Le variabili di un array bidimensionale sono individuate da due
indici, quindi bisogna far variare il primo indice e, per ogni suo
valore, far variare il secondo indice – riferendosi così a tutti
gli elementi.
Si tratta di due
cicli annidati.

int mat[3][4];
…
for (i=0; i<3; i++)

for (j=0; j<4; j++)
printf("mat[%d][%d]: %d\n",

i, j, mat[i][j]);

Iterazioni su array bidimensionali

0

0

i

j

mat[0][0]

mat[1][0]

mat[2][0]

mat[0][1]

mat[1][1]

mat[2][1]

mat[0][2]

mat[1][2]

mat[2][2]

mat[0][3]

mat[1][3]

mat[2][3]

45/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Le variabili di un array bidimensionale sono individuate da due
indici, quindi bisogna far variare il primo indice e, per ogni suo
valore, far variare il secondo indice – riferendosi così a tutti
gli elementi.
Si tratta di due
cicli annidati.

int mat[3][4];
…
for (i=0; i<3; i++)

for (j=0; j<4; j++)
printf("mat[%d][%d]: %d\n",

i, j, mat[i][j]);

Iterazioni su array bidimensionali

0

0 1

i

j

mat[0][0]

mat[1][0]

mat[2][0]

mat[0][1]

mat[1][1]

mat[2][1]

mat[0][2]

mat[1][2]

mat[2][2]

mat[0][3]

mat[1][3]

mat[2][3]

46/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Le variabili di un array bidimensionale sono individuate da due
indici, quindi bisogna far variare il primo indice e, per ogni suo
valore, far variare il secondo indice – riferendosi così a tutti
gli elementi.
Si tratta di due
cicli annidati.

int mat[3][4];
…
for (i=0; i<3; i++)

for (j=0; j<4; j++)
printf("mat[%d][%d]: %d\n",

i, j, mat[i][j]);

Iterazioni su array bidimensionali

0

0 1 2

i

j

mat[0][0]

mat[1][0]

mat[2][0]

mat[0][1]

mat[1][1]

mat[2][1]

mat[0][2]

mat[1][2]

mat[2][2]

mat[0][3]

mat[1][3]

mat[2][3]

47/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Le variabili di un array bidimensionale sono individuate da due
indici, quindi bisogna far variare il primo indice e, per ogni suo
valore, far variare il secondo indice – riferendosi così a tutti
gli elementi.
Si tratta di due
cicli annidati.

int mat[3][4];
…
for (i=0; i<3; i++)

for (j=0; j<4; j++)
printf("mat[%d][%d]: %d\n",

i, j, mat[i][j]);

Iterazioni su array bidimensionali

0

0 1 2 3

i

j

mat[0][0]

mat[1][0]

mat[2][0]

mat[0][1]

mat[1][1]

mat[2][1]

mat[0][2]

mat[1][2]

mat[2][2]

mat[0][3]

mat[1][3]

mat[2][3]

48/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Le variabili di un array bidimensionale sono individuate da due
indici, quindi bisogna far variare il primo indice e, per ogni suo
valore, far variare il secondo indice – riferendosi così a tutti
gli elementi.
Si tratta di due
cicli annidati.

int mat[3][4];
…
for (i=0; i<3; i++)

for (j=0; j<4; j++)
printf("mat[%d][%d]: %d\n",

i, j, mat[i][j]);

Iterazioni su array bidimensionali

0 1

0

i

j

mat[0][0]

mat[1][0]

mat[2][0]

mat[0][1]

mat[1][1]

mat[2][1]

mat[0][2]

mat[1][2]

mat[2][2]

mat[0][3]

mat[1][3]

mat[2][3]

49/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Le variabili di un array bidimensionale sono individuate da due
indici, quindi bisogna far variare il primo indice e, per ogni suo
valore, far variare il secondo indice – riferendosi così a tutti
gli elementi.
Si tratta di due
cicli annidati.

int mat[3][4];
…
for (i=0; i<3; i++)

for (j=0; j<4; j++)
printf("mat[%d][%d]: %d\n",

i, j, mat[i][j]);

Iterazioni su array bidimensionali

0 1

i

j

mat[0][0]

mat[1][0]

mat[2][0]

mat[0][1]

mat[1][1]

mat[2][1]

mat[0][2]

mat[1][2]

mat[2][2]

mat[0][3]

mat[1][3]

mat[2][3]

0 1

50/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Le variabili di un array bidimensionale sono individuate da due
indici, quindi bisogna far variare il primo indice e, per ogni suo
valore, far variare il secondo indice – riferendosi così a tutti
gli elementi.
Si tratta di due
cicli annidati.

int mat[3][4];
…
for (i=0; i<3; i++)

for (j=0; j<4; j++)
printf("mat[%d][%d]: %d\n",

i, j, mat[i][j]);

Iterazioni su array bidimensionali

0 1 2

i

j

mat[0][0]

mat[1][0]

mat[2][0]

mat[0][1]

mat[1][1]

mat[2][1]

mat[0][2]

mat[1][2]

mat[2][2]

mat[0][3]

mat[1][3]

mat[2][3]

0 1

51/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Le variabili di un array bidimensionale sono individuate da due
indici, quindi bisogna far variare il primo indice e, per ogni suo
valore, far variare il secondo indice – riferendosi così a tutti
gli elementi.
Si tratta di due
cicli annidati.

int mat[3][4];
…
for (i=0; i<3; i++)

for (j=0; j<4; j++)
printf("mat[%d][%d]: %d\n",

i, j, mat[i][j]);

Iterazioni su array bidimensionali

0 1 2 3

i

j

mat[0][0]

mat[1][0]

mat[2][0]

mat[0][1]

mat[1][1]

mat[2][1]

mat[0][2]

mat[1][2]

mat[2][2]

mat[0][3]

mat[1][3]

mat[2][3]

0 1

52/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Le variabili di un array bidimensionale sono individuate da due
indici, quindi bisogna far variare il primo indice e, per ogni suo
valore, far variare il secondo indice – riferendosi così a tutti
gli elementi.
Si tratta di due
cicli annidati.

int mat[3][4];
…
for (i=0; i<3; i++)

for (j=0; j<4; j++)
printf("mat[%d][%d]: %d\n",

i, j, mat[i][j]);

Iterazioni su array bidimensionali

0 1 2 3

i

j

1

10

mat[2][0]

2

mat[1][1]

200

3

mat[1][2]

mat[2][2]

4

mat[1][3]

400

0 1

53/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Algoritmo per la stampa di una matrice

#define N 3
#define M 4
int mat[N][M];

Algoritmo (per la parte di codice che stampa la matrice)

0) … N, M, mat, indice_riga, indice_colonna
1) indice_riga = 0;
2) mentre indice_riga < N

2.1) indice_colonna = 0
2.2) mentre indice_colonna < M

2.2.1) stampa mat[indice_riga][indice_colonna]\n
2.2.2) indice_colonna += 1

2.3) indice_riga += 1
3) fine stampa

"while like"

54/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Tecniche della Programmazione, lez. 10

- Esercizio Extra

55/35Tecniche della Programmazione, M.Temperini - lezione 10-array

esercizio extra – su array

Scrivere un programma che mostri l'output in immagine.
Inizializzare l'array in definizione.

"in previsione della EG ..."

	Tecniche della Programmazione, lez.10
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55

