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Tecniche della Programmazione, lez.10

Recap su array monodimensionali

Gli array multidimensionali (multi == bi …)
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#include <stdio.h>

int main () {
int i,j;

for (INIT i; CHECK i; ADVANCE i) 
USE i and j

printf ("\nFINE programma\n");
return 0;
}

Programma che stampa i primi 100 numeri interi positivi, su 10 righe di 10 
numeri ciascuna

Déjà vu - dieci per dieci

In base a quanto detto a lezione, prova a scrivere e testare
il programma.
Comunque poi vedi Approfondimenti

Ah, dimenticavo. Vedi EserciziExtra in fondo alle slide, per un ulteriore esercizio. Prima provate a farlo.
Poi trovate qualcosa nei complementi didattici, per confrontare le soluzioni e verificarle. 
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Problema: Trasferimento Dimensionale

Due punti, PEP ∈ E_P  e  PEI ∈ E_I, si dicono solidali, sse per ogni i=1,…,6 la 
coordinata i-esima di PEP è
- uguale alla coordinata i-esima di PEI, se questa è pari
- uguale a 0, se la coordinata i-esima di PEI è dispari o nulla 

Nello Spazio esadimensionale_intero (E_I), i punti PEI sono definiti da (6) 
coordinate intere.

Nello Spazio esadimensionale_PARI (E_P) i punti PEP sono definiti da (6) coordinate 
intere che possono essere solo pari o nulle.

ad esempio, 
questi due 

sono 
solidali

puntoEI = (3259, 116, 5008, 5618, 47, 42) 

puntoEP = (0, 116, 5008, 5618, 0, 42)

Dato puntoEI ∈ E_I, calcolare il punto solidale puntoEP ∈ E_P (unico) 

strutture dati?
variabili e costanti? Algoritmo?
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Problema del trasferimento di un puntoEI in un puntoEP

Rappresentiamo i due punti (vettori di coordinate) come array di interi; 

puntoEI = (3259, 116, 5008, 5618, 47, 42) (vettoreEI)


puntoEP = (?, ?, ?, ?, ?, ?) (vettoreEP all'inizio)

puntoEP = (0, 116, 5008, 5618, 0, 42) (vettoreEP alla fine)

#define N 6
int main () {
int vettoreEI[N], vettoreEP[N];

Algoritmo (del programma)? 
Sottoproblemi? 
Funzioni? 
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Rappresentiamo i due punti (vettori di coordinate) come array di interi; 

puntoEI = (3259, 116, 5008, 5618, 47, 42) (vettoreEI)


puntoEP = (?, ?, ?, ?, ?, ?) (vettoreEP)

puntoEP = (0, 116, 5008, 5618, 0, 42) (vettoreEP)

#define N 6
int main () {
int vettoreEI[N], vettoreEP[N];

vettoreEP[0] = vettoreEI[0] ????
vettoreEP[1] = vettoreEI[1] ??
vettoreEP[2] = ??
...
vettoreEP[5] = ??

Problema del trasferimento di un puntoEI in un puntoEP

vettoreEP[i] = vettoreEI[i] oppure 0 ... dipende

Algoritmo (del programma)? 
Sottoproblemi? 
Funzioni? 
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Rappresentiamo i due punti (vettori di coordinate) come array di interi; 

puntoEI = (3259, 116, 5008, 5618, 47, 42) (vettoreEI)


puntoEP = (?, ?, ?, ?, ?, ?) (vettoreEP)

puntoEP = (0, 116, 5008, 5618, 0, 42) (vettoreEP)

#define N 6
int main () {
int vettoreEI[N], vettoreEP[N];

cioè 
assegnazione dell'elemento i-esimo di vettoreEP con 
- l'elemento i-esimo di vettoreEI (se questo è pari)
- 0, se l'elemento i-esimo di vettoreEI è dispari o nullo

Problema del trasferimento di un puntoEI in un puntoEP

il nucleo del problema è nel trasferimento parziale, cioè nella 
copia degli elementi pari di vettoreEI in vettoreEP – nelle 
medesime posizioni, e inserimento di zero altrove in vettoreEP

Algoritmo (del programma)? 
Sottoproblemi? 
Funzioni? 
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Problema del trasferimento di un puntoEI in un puntoEP

Rappresentiamo i due punti (vettori di coordinate) come array di interi; 

puntoEI = (3259, 116, 5008, 5618, 47, 42) (vettoreEI)


puntoEP = (?, ?, ?, ?, ?, ?) (vettoreEP
all'inizio)

puntoEP = (0, 116, 5008, 5618, 0, 42) (vettoreEP alla fine)

#define N 6
int main () {
int vettoreEI[N], vettoreEP[N];

Algoritmo (del programma)? 
Sottoproblemi? 
Funzioni? 
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vettoreEI = (3259, 116, 5008, 5618, 47, 42) 
 vettoreEP = (0, 116, 5008, 5618, 0, 42)

#define N 6
int main () {
int vettoreEI[N], vettoreEP[N];

Algoritmo
0) … strutture dati …
1) lettura del primo vettore
2) stampa del primo vettore
3) trasferimento dal primo al secondo vettore
4) stampa del secondo vettore
5) FINE

Sottoproblemi? 
Funzioni? 

Problema del trasferimento di un puntoEI in un puntoEP
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Trasferimento tra array – main()
vettoreEI = (3259, 116, 5008, 5618, 47, 42) 

 vettoreEP = (0, 116, 5008, 5618, 0, 42)
#include <stdio.h>
#define N 6

/* dichiarazioni delle funzioni usate dalla main() */
...

int main () {
int vettoreEI[N], vettoreEP[N];

printf ("caro/a utente, … dati del vettore: \n");
leggiVettore(vettoreEI);  
printf ("ho letto il seguente vettore:\n");
stampaVettore(vettoreEI);
printf ("\n... hold on, transfer in progress ...\n\n");
trasferimentoPari(vettoreEI, vettoreEP);
printf ("dopo il trasferimento …: \n");
stampaVettore(vettoreEP);

printf ("\nFINE programma\n");
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Trasferimento tra array – main()
vettoreEI = (3259, 116, 5008, 5618, 47, 42) 

 vettoreEP = (0, 116, 5008, 5618, 0, 42)
#include <stdio.h>
#define N 6

/* dichiarazioni delle funzioni usate dalla main() */
void leggiVettore(int [N]);
void stampaVettore(int [N]);
void trasferimentoPari(int v1[N], int v2[N]);

int main () {
int vettoreEI[N], vettoreEP[N];

printf ("caro/a utente, … dati del vettore: \n");
leggiVettore(vettoreEI);  
printf ("ho letto il seguente vettore:\n");
stampaVettore(vettoreEI);
printf ("\n... hold on, transfer in progress ...\n\n");
trasferimentoPari(vettoreEI, vettoreEP);
printf ("dopo il trasferimento …: \n");
stampaVettore(vettoreEP);

printf ("\nFINE programma\n");
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Trasferimento tra array - algoritmo
vettoreEI = (3259, 116, 5008, 5618, 47, 42) 

 vettoreEP = (0, 116, 5008, 5618, 0, 42)

#define N 6
int main () {
int vettoreEI[N], vettoreEP[N];

Algoritmo
0) …
1) lettura del primo vettore
2) stampa del primo vettore
3) trasferimento dal primo al secondo vettore
4) stampa del secondo vettore
5) FINE

Funzioni (sottoproblemi)
void leggiVettore(int []), 
void stampaVettore(int[]), 
void trasferisci( int [], int [])

int []  
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Trasferimento tra array - algoritmo
vettoreEI = (3259, 116, 5008, 5618, 47, 42) 

 vettoreEP = (0, 116, 5008, 5618, 0, 42)

#define N 6
int main () {
int vettoreEI[N], vettoreEP[N];

Algoritmo
0) …
1) lettura del primo vettore
2) stampa del primo vettore
3) trasferimento dal primo al secondo vettore
4) stampa del secondo vettore
5) FINE

Funzioni (sottoproblemi)
void leggiVettore(int []), 
void stampaVettore(int[]), 
void trasferisci( int [], int [])

int [] è il nome del tipo 
dell'array di interi, se 
omettiamo la dimensione 
va bene lo stesso, ma 
vedi slide successiva ...
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Programma per il trasferimento dimensionale: prototipi

vettoreEI = (3259, 116, 5008, 5618, 47, 42) 
 vettoreEP = (0, 116, 5008, 5618, 0, 42)

#include <stdio.h>
#define N 6

/* dichiarazioni delle funzioni usate dalla main() */
void leggiVettore(int [N]);
void stampaVettore(int []);
void trasferimentoPari(int v1[N], int v2[N]);

int main () {
int vettoreEI[N], vettoreEP[N];

printf ("caro/a utente, … dati del vettore: \n");
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Trasferimento tra array – prototipi
vettoreEI = (3259, 116, 5008, 5618, 47, 42) 

 vettoreEP = (0, 116, 5008, 5618, 0, 42)
#include <stdio.h>
#define N 6

/* dichiarazioni delle funzioni usate dalla main() */
void leggiVettore(int [N]);
void stampaVettore(int []);
void trasferimentoPari(int v1[N], int v2[N]);

int main () {
int vettoreEI[N], vettoreEP[N];

printf ("caro/a utente, … dati del vettore: \n");

La dimensione si può omettere nella dichiarazione 
del parametro
(ma metterla rende le cose più chiare a chi voglia 
riusare questa funzione, quindi è meglio)
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Trasferimento tra array – funzione di lettura

/* funzione di lettura di un vettore di N interi */
void leggiVettore(int v[N]) {

int i;


}

return;
}
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Trasferimento tra array – funzione di lettura
/* funzione di lettura di un vettore di N interi */
void leggiVettore(int v[N]) {

int i;
for (i=0; i<N; i++) {
printf("- elemento [%d]:", i);
scanf("%d", &v[i]);

}
return;
}
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Trasferimento tra array – funzione di stampa
/* funzione di stampa di un vettore di N interi, 
nel formato [num, num, num ..., num] */

[3259, 116, 5008, 5618, 47, 42]

void stampaVettore(int v[N]) {
int i;
printf("[");
for (i=0; i<N; i++) 



printf("]\n");
return;
}
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Trasferimento tra array – funzione di stampa
/* funzione di stampa di un vettore di N interi, 
nel formato [num, num, num ..., num] */

[3259, 116, 5008, 5618, 47, 42]

void stampaVettore(int v[N]) {
int i;
printf("[");
for (i=0; i<N; i++) 

:> il primo viene stampato seguito da 
una ',' e da un ' ' 
… l'ultimo no

printf("]\n");
return;
}
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Trasferimento tra array – funzione di stampa
/* funzione di stampa di un vettore di N interi, 
nel formato [num, num, num ..., num] */

[3259, 116, 5008, 5618, 47, 42]

void stampaVettore(int v[N]) {
int i;
printf("[");
for (i=0; i<N; i++) 
if (i==N-1)          
printf("%d", v[i]);

else  printf("%d, ", v[i]);

printf("]\n");
return;
}
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Trasferimento tra array – funzione finale
/* definizione della funzione che trasferisce i pari dal 
primo al secondo vettore e azzera gli altri elementi del 
secondo vettore */

void trasferimentoPari(int v1[N], int v2[N]) {
int i;
for (i=0; i<N; i++) 
if ((v1[i]%2)==0) 

else 

return;
}

3259 116 5008 5618 47 42v1

v2 0 116 5008 5618 0 42
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Trasferimento tra array – funzione finale
/* definizione della funzione che trasferisce i pari dal 
primo al secondo vettore e azzera gli altri elementi del 
secondo vettore */

void trasferimentoPari(int v1[N], int v2[N]) {
int i;
for (i=0; i<N; i++) 
if ((v1[i]%2)==0) 
v2[i]=v1[i];

else  
v2[i]=0;

return;
}

3259 116 5008 5618 47 42v1

v2 0 116 5008 5618 0 42
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Array  una riga  1 indice

Array bidimensionale  righe per colonne  2 indici
1° indice = di riga
2° indice = di colonna

int mat[3][4] dichiarazione di array bidimensionale di 
3 righe per 4 colonne ad elementi interi

mat[i][j] è l'elemento (la variabile semplice) 
corrispondente a riga i e colonna j

Array multidimensionali

mat[0][0]

mat[1][0]

mat[2][0]

mat[0][1]

mat[1][1]

mat[2][1]

mat[0][2]

mat[1][2]

mat[2][2]

mat[0][3]

mat[1][3]

mat[2][3]
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Le variabili di un array bidimensionale sono individuate da due 
indici, quindi bisogna far variare il primo indice e, per ogni suo 
valore, far variare il secondo indice – riferendosi così a tutti 
gli elementi.
Si tratta di due 
cicli annidati.

int mat[3][4];
…
for (i=0; i<3; i++) 

stampa riga i 

Iterazioni su array bidimensionali

0

0

i

j

mat[0][0]

mat[1][0]

mat[2][0]

mat[0][1]

mat[1][1]

mat[2][1]

mat[0][2]

mat[1][2]

mat[2][2]

mat[0][3]

mat[1][3]

mat[2][3]
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Le variabili di un array bidimensionale sono individuate da due indici, quindi 
bisogna far variare il primo indice e, per ogni suo valore, far variare il 
secondo indice – riferendosi così a tutti gli elementi.
Si tratta di due cicli annidati.

fissato i, 
qual è il codice che gestisce la riga i, cioè stampa gli elementi  
mat[i][0], mat[i][1], mat[i][2], mat[i][3]

…
for (i=0; i<3; i++) 

...
printf("mat[%d][%d]: %d\n", 

indici ..., mat[i][j]);

Iterazioni su array bidimensionali – stampa (2 dimensioni)

mat[0][0]

mat[1][0]

mat[2][0]

mat[0][1]

mat[1][1]

mat[2][1]

mat[0][2]

mat[1][2]

mat[2][2]

mat[0][3]

mat[1][3]

mat[2][3]
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Algoritmo per la stampa di una matrice (tsk array bidimensionale)

#define N 3
#define M 4
int mat[N][M];

Algoritmo (per la parte di codice che stampa la matrice)

0) …  N, M, ...
1) ripetere, per tutte le righe

1.1) stampa la riga i-esima
2) fine stampa
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Algoritmo per la stampa di una matrice: raffinamento

#define N 3
#define M 4
int mat[N][M];

Algoritmo (per la parte di codice che stampa la matrice)

Raffinamento ...

0) …  N, M, indice_riga, indice_colonna, mat[][] ...
1) ripetere, con indice_riga=0...N-1

1.1) stampa mat[i][0] ... mat[i][M-1]
2) fine stampa
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Le variabili di un array bidimensionale sono individuate da due indici, quindi 
bisogna far variare il primo indice e, per ogni suo valore, far variare il 
secondo indice – riferendosi così a tutti gli elementi.
Si tratta di due cicli annidati.

fissato i, 
questo è il codice che gestisce la riga i, cioè gli elementi  
mat[i][0], mat[i][1], mat[i][2], mat[i][3]

j          j j j
…
for (i=0; i<3; i++) 

for (j=0; j<4; j++) 
printf("mat[%d][%d]: %d\n", 

i, j,  mat[i][j]);

Torniamo al codice

mat[0][0]

mat[1][0]

mat[2][0]

mat[0][1]

mat[1][1]

mat[2][1]

mat[0][2]

mat[1][2]

mat[2][2]

mat[0][3]

mat[1][3]

mat[2][3]
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Le variabili di un array bidimensionale sono individuate da due 
indici, quindi bisogna far variare il primo indice e, per ogni suo 
valore, far variare il secondo indice – riferendosi così a tutti 
gli elementi.
Si tratta di due 
cicli annidati.

int mat[3][4];
…
for (i=0; i<3; i++) 

for (j=0; j<4; j++) 
printf("mat[%d][%d]: %d\n", 

i, j,  mat[i][j]);

Iterazioni su array bidimensionali

0

0

i

j

mat[0][0]

mat[1][0]

mat[2][0]

mat[0][1]

mat[1][1]

mat[2][1]

mat[0][2]

mat[1][2]

mat[2][2]

mat[0][3]

mat[1][3]

mat[2][3]

Eseguire questo codice in modo simulato, passo passo ... tenedo anche traccia dell'output via via prodotto.
E poi vedi Esercizi
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Algoritmo per la stampa di una matrice: altro raffinamento

#define N 3
#define M 4
int mat[N][M];

Algoritmo (per la parte di codice che stampa la matrice)

Raffinamento ulteriore...

0) …  N, M, indice_riga, indice_colonna, mat[][] ...
1) ripetere, con indice_riga=0...N-1

1.1) ripetere, con indice_colonna=0, ..., M-1
1.1.1) stampa mat[indice_riga][indice_colonna]

2) fine stampa
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Algoritmo per la stampa di una matrice: ulteriore raffinamento

#define N 3
#define M 4
int mat[N][M];

Algoritmo (per la parte di codice che stampa la matrice)

Questione pratica, e ultimo raffinamento: dopo ogni riga 
bisogna andare a capo, e poi i valori vanno stampati 
incolonnati ...

0) …  N, M, indice_riga, indice_colonna, mat[][] ...
1) ripetere, con indice_riga=0...N-1

1.1) ripetere, con indice_colonna=0, ..., M-1
1.1.1) stampa mat[indice_riga][indice_colonna], nella forma 

"mat[indice_riga][indice_colonna]: il suo valore, su tre colonne

1.2) stampare '\n'
2) fine stampa
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Una stampa migliore

for (i=0; i<3; i++) {
for (j=0; j<4; j++) 

printf(" mat[%d][%d]: %3d ", 
i, j, mat[i][j]);

putchar('\n');
}

0 1 2  3

i

j

mat[0][0]

mat[1][0]

mat[2][0]

mat[0][1]

mat[1][1]

mat[2][1]

mat[0][2]

mat[1][2]

mat[2][2]

mat[0][3]

mat[1][3]

mat[2][3]

0  1

A) Per ogni valore 
di i (per ogni 
riga)

A.1) Stampa gli 
elementi mat[i][j]
Per j = 0…3

A.2) E poi va a capo

Dall'algoritmo al codice per la stampa di una matrice
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#define N 3
#define M 4

for (i=0; i<N; i++) {
for (j=0; j<M; j++) 

printf(" mat[%d][%d]: %3d ", 
i, j, mat[i][j]);

putchar('\n');
}

Array bidimensionali: uso di costanti per le dimensioni

1

i

j

mat[0][0]

mat[1][0]

mat[2][0]

mat[0][1]

mat[1][1]

mat[2][1]

mat[0][2]

mat[1][2]

mat[2][2]

mat[0][3]

mat[1][3]

mat[2][3]

1

NB … Nelle prossime slide usiamo 3 e 4 in esempi ad hoc … 
MA dobbiamo abituarci ad usare le costanti per le dimensioni! 

Ok, tempo di esercizi (per i quali potreste trovare qualcosa nella directory dei complementi didattici.

1) Scrivere un programma che riceve in input una matrice NxM e la stampa per bene come visto sopra.

2) Idem, ma realizzando la stampa mediante un ciclo while. Conviene riscrivere l'algoritmo ricordando
bene le relazioni tra while e for ... su questo, una slide e` nella zona  Esercizi
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NB la lettura da input di un array bidimensionale scandisce gli elementi così 
come visto per la stampa … solo che si usa scanf() …

L’inizializzazione in definizione 
è possibile, così come per gli 
array monodimensionali:

MA si può omettere solo la prima dimensione. Per il resto, ci sono varie possibilità …

int mat[3][4] = { {1, 2, 3, 4}, 
{10, 20, 30, 40}, 
{100, 200, 300, 400} };

int matt[][4] = { {1, 2, 3}, {10, 20, 30}, 
{100, 200, 300, 400} };

int mattt[3][4] = { 1, 2, 3, 4, 10, 20, 30, 
40, 100, 200, 300, 400 };

Inizializzazione di un array bidimensionale

mat[0][0]

mat[1][0]

mat[2][0]

mat[0][1]

mat[1][1]

mat[2][1]

mat[0][2]

mat[1][2]

mat[2][2]

mat[0][3]

mat[1][3]

mat[2][3]
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Serve almeno la 
seconda dimensione;
Per il resto, 
varie possibilità

int mat[3][4] = { {1, 2, 3, 4}, 
{10, 20, 30, 40}, 
{100, 200, 300, 400} };

int matt[][4] = { {1, 2, 3}, {10, 20, 30}, 
{100, 200, 300, 400} };

int mattt[3][4] = { 1, 2, 3, 4, 10, 20, 30, 
40, 100, 200, 300, 400 };

Inizializzazione di un array bidimensionale

mat[0][0]

mat[1][0]

mat[2][0]

mat[0][1]

mat[1][1]

mat[2][1]

mat[0][2]

mat[1][2]

mat[2][2]

mat[0][3]

mat[1][3]

mat[2][3]

sperimentare queste inizializzzioni in un nuovo programma, ottenuto da quello precedente. L'utilita` sta nel riflettere su come gli elementi
dell'array bidiensionale sono memorizzati nella RAM ... Poi Vedi Approfondimenti
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La disposizione in memoria è sequenziale, riga per riga

int mat[3][4] = { {1, 2, 3, 4}, 
{10, 20, 30, 40}, 
{100, 200, 300, 400} };

for (i=0; i<3; i++) 
for (j=0; j<4; j++) 

printf("l'elemento mat[%d][%d] 
è di %d byte, ha indirizzo %p
e valore %d\n", 
i, j, sizeof(mat[i][j]), 
&mat[i][j], mat[i][j]);

Si’, ma in memoria?

mat[0][0]

mat[1][0]

mat[2][0]

mat[0][1]

mat[1][1]

mat[2][1]

mat[0][2]

mat[1][2]

mat[2][2]

mat[0][3]

mat[1][3]

mat[2][3]

…
…

mat[0][0]

mat[0][1]

mat[0][2]

mat[0][3]

mat[1][0]

mat[1][1]

mat[1][2]

mat[1][3]

mat[2][0]

mat[2][1]

mat[2][2]

mat[2][3]

…
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#include <stdio.h>

int main () {
int i,j;

for (INIT i; CHECK i; ADVANCE i) 
USE i and j

printf ("\nFINE programma\n");
return 0;
}

Programma che stampa i primi 100 numeri interi positivi, su 10 righe di 10 
numeri ciascuna

Déjà vu - dieci per dieci
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#include <stdio.h>

int main () {
int i,j;

ALGORITMO  
- ciclo con i che va da 0 a 9

- ad ogni iterazione (i==0, i==1, …, i==9)
- viene stampata una riga di numeri che sono quelli che vanno 

da i*10 a i*10 + 9
- fine riga (insomma: si va a capo)

printf ("\nFINE programma\n");
return 0;
}

Programma che stampa i primi 100 numeri interi positivi, su 10 righe di10 
numeri ciascuna

Esercizio – dieci per dieci – annidamento di cicli

 prova a spiegare cosa avviene ad ogni iterazione del ciclo su i

 prova a spiegare cosa avviene ad ogni iterazione del ciclo su j
 (cioe`, cosa succede per j=0? Cosa per j=1? 2 3 ... 9?
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#include <stdio.h>

int main () {
int i,j;

ALGORITMO  
1) ciclo con i che va da 0 a 9

- ad ogni iterazione viene stampata una riga di numeri che sono quelli 
che vanno da i*10 a i*10 + 9
CIOE`

1.1)  ciclo con j che va da 0 a 9
- ad ogni iterazione viene stampato il numero i*10 + j

1.2)  andare a capo per la prossima riga di numeri
- fine …
printf ("\nFINE programma\n");
return 0;
}

Programma che stampa i primi 100 numeri interi positivi, su 10 righe di10 
numeri ciascuna

Esercizio – dieci per dieci – annidamento
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#include <stdio.h>

int main () {
int i,j;

for (i=0; i<10; i++) {
/* stampa la riga i-esima di 10 numeri */
for (j=0; j<10; j++) /* 1) */

printf ("%2d ", i*10 + j);
printf ("\n");                  /* 2) fine riga */ 

}
printf ("\nFINE programma\n");
return 0;
}

Esercizio – dieci per dieci
Programma che stampa i primi 100 numeri interi positivi, su 10 righe di10 
numeri ciascuna
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La disposizione in memoria è sequenziale, riga per riga

int mat[3][4] = { {1, 2, 3, 4}, 
{10, 20, 30, 40}, 
{100, 200, 300, 400} };

for (i=0; i<3; i++) 
for (j=0; j<4; j++) 

printf("l'elemento mat[%d][%d] 
è di %d byte, ha indirizzo %p
e valore %d\n", 
i, j, sizeof(mat[i][j]), 
&mat[i][j], mat[i][j]);

Si’, ma in memoria?

mat[0][0]

mat[1][0]

mat[2][0]

mat[0][1]

mat[1][1]

mat[2][1]

mat[0][2]

mat[1][2]

mat[2][2]

mat[0][3]

mat[1][3]

mat[2][3]

…
…

mat[0][0]

mat[0][1]

mat[0][2]

mat[0][3]

mat[1][0]

mat[1][1]

mat[1][2]

mat[1][3]

mat[2][0]

mat[2][1]

mat[2][2]

mat[2][3]

…
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La disposizione in memoria è sequenziale, riga per riga

int mat[3][4] = { {1, 2, 3, 4}, 
{10, 20, 30, 40}, 
{100, 200, 300, 400} };

for (i=0; i<3; i++) 
for (j=0; j<4; j++) 

printf("l'elemento mat[%d][%d] 
è di %d byte, ha indirizzo %p
e valore %d\n", 
i, j, sizeof(mat[i][j]), 
&mat[i][j], mat[i][j]);

Si`, ma in memoria?

mat[0][0]

mat[1][0]

mat[2][0]

mat[0][1]

mat[1][1]

mat[2][1]

mat[0][2]

mat[1][2]

mat[2][2]

mat[0][3]

mat[1][3]

mat[2][3]

…
…

mat[0][0] = 1

mat[0][1]

mat[0][2] = 3

mat[0][3]

mat[1][0] = 10

mat[1][1] = 20

mat[1][2]

mat[1][3]

mat[2][0]

mat[2][1] = 
200

mat[2][2]
mat[2][3] = 

400

…
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Le variabili di un array bidimensionale sono individuate da due 
indici, quindi bisogna far variare il primo indice e, per ogni suo 
valore, far variare il secondo indice – riferendosi così a tutti 
gli elementi.
Si tratta di due 
cicli annidati.

int mat[3][4];
…
for (i=0; i<3; i++) 

for (j=0; j<4; j++) 
printf("mat[%d][%d]: %d\n", 

i, j,  mat[i][j]);

Iterazioni su array bidimensionali

0

0

i

j

mat[0][0]

mat[1][0]

mat[2][0]

mat[0][1]

mat[1][1]

mat[2][1]

mat[0][2]

mat[1][2]

mat[2][2]

mat[0][3]

mat[1][3]

mat[2][3]
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Le variabili di un array bidimensionale sono individuate da due 
indici, quindi bisogna far variare il primo indice e, per ogni suo 
valore, far variare il secondo indice – riferendosi così a tutti 
gli elementi.
Si tratta di due 
cicli annidati.

int mat[3][4];
…
for (i=0; i<3; i++) 

for (j=0; j<4; j++) 
printf("mat[%d][%d]: %d\n", 

i, j,  mat[i][j]);

Iterazioni su array bidimensionali

0

0 1

i

j

mat[0][0]

mat[1][0]

mat[2][0]

mat[0][1]

mat[1][1]

mat[2][1]

mat[0][2]

mat[1][2]

mat[2][2]

mat[0][3]

mat[1][3]

mat[2][3]
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Le variabili di un array bidimensionale sono individuate da due 
indici, quindi bisogna far variare il primo indice e, per ogni suo 
valore, far variare il secondo indice – riferendosi così a tutti 
gli elementi.
Si tratta di due 
cicli annidati.

int mat[3][4];
…
for (i=0; i<3; i++) 

for (j=0; j<4; j++) 
printf("mat[%d][%d]: %d\n", 

i, j,  mat[i][j]);

Iterazioni su array bidimensionali

0

0 1 2

i

j

mat[0][0]

mat[1][0]

mat[2][0]

mat[0][1]

mat[1][1]

mat[2][1]

mat[0][2]

mat[1][2]

mat[2][2]

mat[0][3]

mat[1][3]

mat[2][3]
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Le variabili di un array bidimensionale sono individuate da due 
indici, quindi bisogna far variare il primo indice e, per ogni suo 
valore, far variare il secondo indice – riferendosi così a tutti 
gli elementi.
Si tratta di due 
cicli annidati.

int mat[3][4];
…
for (i=0; i<3; i++) 

for (j=0; j<4; j++) 
printf("mat[%d][%d]: %d\n", 

i, j,  mat[i][j]);

Iterazioni su array bidimensionali

0

0 1 2  3

i

j

mat[0][0]

mat[1][0]

mat[2][0]

mat[0][1]

mat[1][1]

mat[2][1]

mat[0][2]

mat[1][2]

mat[2][2]

mat[0][3]

mat[1][3]

mat[2][3]
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Le variabili di un array bidimensionale sono individuate da due 
indici, quindi bisogna far variare il primo indice e, per ogni suo 
valore, far variare il secondo indice – riferendosi così a tutti 
gli elementi.
Si tratta di due 
cicli annidati.

int mat[3][4];
…
for (i=0; i<3; i++) 

for (j=0; j<4; j++) 
printf("mat[%d][%d]: %d\n", 

i, j,  mat[i][j]);

Iterazioni su array bidimensionali

0  1

0

i

j

mat[0][0]

mat[1][0]

mat[2][0]

mat[0][1]

mat[1][1]

mat[2][1]

mat[0][2]

mat[1][2]

mat[2][2]

mat[0][3]

mat[1][3]

mat[2][3]



49/35Tecniche della Programmazione, M.Temperini - lezione 10-array

Le variabili di un array bidimensionale sono individuate da due 
indici, quindi bisogna far variare il primo indice e, per ogni suo 
valore, far variare il secondo indice – riferendosi così a tutti 
gli elementi.
Si tratta di due 
cicli annidati.

int mat[3][4];
…
for (i=0; i<3; i++) 

for (j=0; j<4; j++) 
printf("mat[%d][%d]: %d\n", 

i, j,  mat[i][j]);

Iterazioni su array bidimensionali

0 1

i

j

mat[0][0]

mat[1][0]

mat[2][0]

mat[0][1]

mat[1][1]

mat[2][1]

mat[0][2]

mat[1][2]

mat[2][2]

mat[0][3]

mat[1][3]

mat[2][3]

0  1
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Le variabili di un array bidimensionale sono individuate da due 
indici, quindi bisogna far variare il primo indice e, per ogni suo 
valore, far variare il secondo indice – riferendosi così a tutti 
gli elementi.
Si tratta di due 
cicli annidati.

int mat[3][4];
…
for (i=0; i<3; i++) 

for (j=0; j<4; j++) 
printf("mat[%d][%d]: %d\n", 

i, j,  mat[i][j]);

Iterazioni su array bidimensionali

0 1 2

i

j

mat[0][0]

mat[1][0]

mat[2][0]

mat[0][1]

mat[1][1]

mat[2][1]

mat[0][2]

mat[1][2]

mat[2][2]

mat[0][3]

mat[1][3]

mat[2][3]

0  1
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Le variabili di un array bidimensionale sono individuate da due 
indici, quindi bisogna far variare il primo indice e, per ogni suo 
valore, far variare il secondo indice – riferendosi così a tutti 
gli elementi.
Si tratta di due 
cicli annidati.

int mat[3][4];
…
for (i=0; i<3; i++) 

for (j=0; j<4; j++) 
printf("mat[%d][%d]: %d\n", 

i, j,  mat[i][j]);

Iterazioni su array bidimensionali

0 1 2  3

i

j

mat[0][0]

mat[1][0]

mat[2][0]

mat[0][1]

mat[1][1]

mat[2][1]

mat[0][2]

mat[1][2]

mat[2][2]

mat[0][3]

mat[1][3]

mat[2][3]

0  1
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Le variabili di un array bidimensionale sono individuate da due 
indici, quindi bisogna far variare il primo indice e, per ogni suo 
valore, far variare il secondo indice – riferendosi così a tutti 
gli elementi.
Si tratta di due 
cicli annidati.

int mat[3][4];
…
for (i=0; i<3; i++) 

for (j=0; j<4; j++) 
printf("mat[%d][%d]: %d\n", 

i, j,  mat[i][j]);

Iterazioni su array bidimensionali

0 1 2  3

i

j

1

10

mat[2][0]

2

mat[1][1]

200

3

mat[1][2]

mat[2][2]

4

mat[1][3]

400

0  1
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Algoritmo per la stampa di una matrice

#define N 3
#define M 4
int mat[N][M];

Algoritmo (per la parte di codice che stampa la matrice)

0) …  N, M, mat, indice_riga, indice_colonna
1) indice_riga = 0; 
2) mentre indice_riga < N

2.1) indice_colonna = 0
2.2) mentre indice_colonna < M

2.2.1) stampa mat[indice_riga][indice_colonna]\n
2.2.2) indice_colonna += 1

2.3) indice_riga += 1
3) fine stampa

"while like"
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esercizio extra – su array 

Scrivere un programma che mostri l'output in immagine.
Inizializzare l'array in definizione.

"in previsione della EG ..."
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