
Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Tecniche della Programmazione, lez. 3

- Introduzione allo sviluppo ed esecuzione di programmi

1/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Un programma è una sequenza di istruzioni, scritte nel linguaggio di
programmazione in uso (Per noi il C).

La SINTASSI è la grammatica da seguire
per scrivere le frasi (le istruzioni)

Sintassi …

E` un lungo paragrafo,
costituito da tante frasi, una
dopo l’altra (le istruzioni).

Per scrivere bene una frase bisogna
seguire delle regole, questo vale per
qualsiasi linguaggio …

deltaQuadro = b*b – 4*a*c; Delta Quadro = bb – ; 4a*c
SI NO

Segue le regole
grammaticali

Non segue le regole
grammaticali

2/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Una frase scritta grammaticalmente bene può avere un significato, oppure
no:

La SEMANTICA è il significato dell’istruzione … e anche il significato deve
essere giusto, per avere un programma corretto

… e Semantica

Lucilla mangia la mela VS. La mela mangia Lucilla

stampaIntero(47); stampaIntero(4a7.6);
SI (probabilmente) NO

sqrt(47.1); sqrt(marco)
:) boh, dipende da cosa e` marco

primoNum = 16; primoNum= "miao";
SI (se primoNum e` un simbolo associabile ad un intero) NO (nella stessa ipotesi)

3/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Memento

Quando un programma viene eseguito,
viene eseguita la sequenza delle sue istruzioni,
una istruzione alla volta … secondo la sequenza

finché il programma finisce
oppure va in crash

Di solito noi scriviamo da sinistra a destra e
dall'alto verso il basso …
e l'esecutore delle istruzioni si adegua: quello è
l'ordine di esecuzione delle istruzioni

4/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

MEMENTO (gia` visto …) Sviluppo di un programma

programma
eseguibile

ottenuto a partire
dal programma C

INPUT OUTPUT

PROGRAMMAZIONE … =

#include<stdio.h>

int main() {

double b, h;

double area;

double prod;

scanf("%lf %lf", &b, &h);

prod = b*h;

area = prod/2;

printf("il valore dell'area di un
triangolo avente base = %g e
altezza = %g e` %g\n", b, h,
area);

return 0;

}

-ANALISI: QUALI dati? FATTI come (struttura)?

- INPUT numeri reali (double)

- OUTPUT numero reale

- dati per calcoli intermedi …

- idea: prod  b*h

area  prod/2

4

3

2

1

SINTESI … =

1) prendere da INPUT (LETTURA) i
valori da associare a b e h

2) calcolare prod (ASSEGNAZIONE)

3) calcolare area (ASSEGNAZIONE)

4) fornire in OUTPUT (SCRITTURA) il
valore di area 4

3

2

1

5/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione 6/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Lettura, cioe` ricezione di dati da INPUT

i dati si “leggono” da INPUT; in Memoria (RAM) i dati memorizzati nelle
locazioni si ottengono “accedendo” alle locazioni

7/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

sempre sulla lettura …

8/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

L’”istruzione di stampa” discussa prima consiste in realta`
in una chiamata alla funzione printf.

“Chiamare una funzione” significa “richiedere l’esecuzione della funzione” …

printf() e`una funzione non direttamente esistente nel linguaggio C,
ma disponibile in un modulo di programma (libreria).

Per cui nel programma, all’inizio, dobbiamo indicare la libreria della quale ci serviremo
(le cui funzioni chiameremo nel programma), attraverso una direttiva include

#include <stdio.h>

Istruzioni, funzioni e librerie

9/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

L’”istruzione di stampa” discussa prima consiste in realta`
in una chiamata alla funzione printf.

“Chiamare una funzione” significa “richiedere l’esecuzione della funzione” …

printf() e` una funzione non direttamente esistente nel linguaggio C. Per usarla
bisogna indicare nel programma dove la sua definizione e il relativo codice eseguibile
possono essere trovati.

Queste definizioni sono disponibili tramite la “libreria di input/output” stdio.h

Per cui nel programma, all’inizio, dobbiamo indicare la libreria della quale ci serviremo
(le cui funzioni chiameremo nel programma), attraverso una direttiva include

#include <stdio.h>

Istruzioni, funzioni e librerie

Esistono molte librerie, contenenti funzioni definite per gli scopi piu’ diversi, ed utili nella
costruzione dei programmi.
Una libreria (“library”) e` il modulo software (parte di un programma, predefinita e
disponibile nell’ambiente di programmazione, che usiamo per fare i programmi).
E` una collezione di programmi gia` fatti che possiamo usare nei nostri programmi … possiamo
anche scrivere una libreria per conto nostro, e poi usarla in un programma

10/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione 11/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione 12/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Una variabile, in un programma, è contemporaneamente

- Un IDENTIFICATORE …

- Una LOCAZIONE di memoria
contraddistinta da un INDIRIZZO!

- Un VALORE

int altezzaMarco; /* identificatore: altezzaMarco
locazione riservata in memoria, con un certo

indirizzo (000000000010111010)
valore contenuto nella locazione 186 */

000000000000111111
000000000010111010
000000000001000001

altezzaMarco

Memoria

000000000010111010

Piu` formalmente …
Concetto di VARIABILE

13/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Una variabile, in un programma, è contemporaneamente
- Un IDENTIFICATORE cioè il nome della variabile, usato nel

programma per … usarla
- Una LOCAZIONE di memoria cioè l’area della RAM, riservata per

quella variabile, in cui si memorizzano /
accedono i valori associati alla variabile (i
valori contenuti nella variabile). Questa è
contraddistinta da un INDIRIZZO!

- Un VALORE il valore contenuto nella locazione associata
alla variabile

int altezzaMarco; /* identificatore: altezzaMarco
locazione riservata in memoria, con un certo

indirizzo
valore contenuto nella locazione */

Piu’ formalmente …
Concetto di VARIABILE

000000000010111010
000000000000111111
000000000000100000
000000000001000001

altezzaMarco

Memoria

14/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Una variabile, in un programma, è contemporaneamente
- Un IDENTIFICATORE cioè il nome della variabile, usato nel programma per … usarla
- Una LOCAZIONE di memoria cioè l’area della RAM, riservata per quella variabile, in

cui si memorizzano / accedono i valori associati alla
variabile (i valori contenuti nella variabile). Questa è
contraddistinta da un INDIRIZZO!

- Un VALORE il valore contenuto nella locazione associata alla variabile

int altezzaMarco;

/* dichiarazione di una variabile denominata altezzaMarco; quando inizierà
l'esecuzione del programma, verrà riservata in memoria una locazione, capace di
contenere un intero rappresentato in forma binaria (complemento a 2); questa
locazione avrà un certo indirizzo. Quando si vuole memorizzare il valore 186 nella
variabile (assegnazione), si memorizza 186 nella locazione. Quando si vuole usare il
contenuto della variabile, ad esempio per stamparlo in OUTPUT, si accede alla
locazione e si usa il valore lì contenuto. */

Piu` formalmente …

000000000000111111
000000000000100000
000000000001000001

altezzaMarco000000000010111010

Concetto di VARIABILE

LOCAZIONEVALORE indirizzo
identificatore

15/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Una variabile, in programma, è contemporaneamente
- Un IDENTIFICATORE cioè il nome della variabile, usato nel

programma per … usarla)
- Una LOCAZIONE di memoria cioè l’area della RAM, riservata per

quella variabile, in cui si memorizzano /
accedono i valori associati alla variabile (i
valori contenuti nella variabile). Questa è
contraddistinta da un INDIRIZZO!

- Un VALORE il valore contenuto nella locazione associata
alla variabile

int altezzaMarco; /* dichiarazione di una variabile chiamata
altezzaMarco; al momento opportuno, verrà riservata in memoria una LOCAZIONE, capace
di contenere un intero rappresentato in forma binaria (complemento a 2); questa
locazione avra’ un certo INDIRIZZO. Quando si vuole memorizzare il valore 187 nella
variabile (assegnazione), si memorizza 187 nella locazione. Quando si vuole accedere
il valore contenuto, ad esempio per stamparlo in OUTPUT, si accede alla locazione. */

Piu’ formalmente …
Concetto di VARIABILE

000000000000111111
000000000000100000
000000000001000001

NB l’indirizzo di una
variabile, si scrive con
l’espressione

&altezzaMarco

se si ha una variabile altezzaMarco,
l'espressione per disporre dell'indirizzo della
locazione associata fa uso dell'operatore di
indirizzamento &

16/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Visto che una variabile rappresenta nient’altro che una locazione della RAM
… ci si accede (per vedere che valore c'è) o ci si memorizza un valore …

E che ci faccio con una VARIABILE?

17/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Visto che una variabile rappresenta nient’altro che una locazione della RAM
… ci si accede (per vedere che valore c'è) o ci si memorizza un valore …

NB

Se si memorizza qualcosa in una variabile
(cioè si ASSEGNA un VALORE ad una VARIABILE)
il valore precedentemente contenuto nella variabile … non c'è più (c'è quello
che abbiamo assegnato or ora …)

Se si accede al VALORE di una VARIABILE (ad esempio per assegnarlo ad
un’altra variabile), dopo l’accesso il valore sta ancora nella variabile … gli
accessi non sono «distruttivi»

E che ci faccio con una VARIABILE?

18/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

camel notation
minuscolo

Maiuscolo

19/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

programma C . .
INPUT OUTPUT

PROGRAMMAZIONE … =

#include<stdio.h>

int main() {

double b, h;

double area;

double prod;

scanf("%lf %lf", &b, &h);

prod = b*h;

area = prod/2;

printf("il valore dell'area di un
triangolo avente base = %g e
altezza = %g e' %g\n", b, h,
area);

return 0;

}

-ANALISI: QUALI dati? FATTI come (struttura)?

- INPUT numeri reali (double)

- OUTPUT numero reale

- dati per calcoli intermedi …

- idea: prod  b*h

area  prod/2

4

3

2

1
SINTESI … =

1) prendere da INPUT (LETTURA) i
valori da associare a b e h

2) calcolare prod (ASSEGNAZIONE)

3) calcolare area (ASSEGNAZIONE)

4) fornire in OUTPUT (SCRITTURA) il
valore di area 4

3

2

1

le variabili hanno un tipo

20/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

int un sottoinsieme dei numeri interi (tutti quelli rappresentabili
in forma binaria, in complemento a 2, in una certa quantità di
memoria (stabilita di solito dall’ambiente di programmazione
… di solito 32 bit …)

float un sottoinsieme dei numeri reali (tutti quelli rappresentabili
in forma binaria, in Floating Point, in una certa quantità di
memoria … es. non meno di 32 bit …)

double un sottoinsieme dei numeri reali (tutti quelli rappresentabili
in forma binaria, in Floating Point, in una certa quantità di
memoria … >= float … per noi 64 bit …)

char un sottoinsieme dei caratteri alfanumerici; una
locazione dedicata a valori di questo tipo e’ di solito di 1 byte

Alcuni tipi

Tipo

21/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione 22/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione 23/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

E’ l’operazione che provoca la MEMORIZZAZIONE di un VALORE nella
VARIABILE.

Sintassi
nomeVariabile = espressione;

Esempi
x=11; y = (x/5) + 27;

Semantica l’espressione viene valutata ed il valore risultante viene
memorizzato nella locazione associata alla variabile

Istruzione di Assegnazione

24/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

E’ l’operazione che provoca la MEMORIZZAZIONE di un VALORE nella
VARIABILE.

Sintassi
nomeVariabile = espressione

Esempi
x=11; y=(x/5) + 27;

radiceReale1=(-b + sqrt(b*b – 4*a*c)) / (2*a)

Semantica l’espressione viene valutata ed il valore risultante viene
memorizzato nella locazione associata alla variabile

Assegnazione

una espressione è una scrittura che può combinare operatori
ed operandi, oppure rappresentare l’accesso ad una singola
variabile; la «esecuzione» di una espressione si chiama
«valutazione» e da' luogo ad un valore (di un certo tipo).

LEFT VALUE
(indirizzo) RIGHT VALUE

(valore)

25/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

nomeVariabile = espressione;

Esempi
x=11; y = (x/5) + 27;
radiceReale1 = (-b + sqrt(b*b – 4*a*c)) / (2*a);

Approfondimento: Espressione!

una espressione è una scrittura che può combinare operatori
ed operandi, oppure rappresentare l’accesso ad una singola
variabile; la «esecuzione» di una espressione si chiama
«valutazione» e da' luogo ad un valore (di un certo tipo).

Anche queste sono espressioni

26/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Esempio: y=(x/5) + 27;

viene acceduto il valore di x; questo valore viene diviso per 5, e si
ottiene il valore della sotto-espressione (x/5); a questo valore viene
aggiunto 27 e si ottiene il risultato della valutazione dell’espressione
a destra;
Poi il risultato della valutazione viene memorizzato in y.

27/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

/* programma che esegue la somma dei valori contenuti in due variabili intere,
assegnando il risultato ad una terza variabile, che poi viene stampata */

#include <stdio.h>

int main () {
int primoNumero, secondo; /* i due interi */
int ris; /* il risultato */

primoNumero =168;
secondo = 640;

ris = primoNumero + secondo; /* calcolo */

printf ("il risultato di %d piu` %d è %d\n",
primoNumero, secondo, ris);

return 0;
}

ourProgram.c

28/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

/* programma che esegue la somma dei valori contenuti in due variabili intere,
assegnando il risultato ad una terza variabile, che poi viene stampata */

#include <stdio.h>

int main () {
int primoNumero, secondo; /* i due interi */
int ris; /* il risultato */

primoNumero =168;
secondo = 640;

ris = primoNumero + secondo; /* calcolo */

printf ("il risultato di %d piu' %d è %d\n",
primoNumero, secondo, ris);

return 0;
}

ourProgram.c

Programma
principale

29/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

/* programma che esegue la somma dei valori contenuti in due variabili intere,
assegnando il risultato ad una terza variabile, che poi viene stampata */

#include <stdio.h>

int main () {
int primoNumero, secondo; /* i due interi */
int ris; /* il risultato */

primoNumero =168;
secondo = 640;

ris = primoNumero + secondo; /* calcolo */

printf ("il risultato di %d piu' %d è %d\n",
primoNumero, secondo, ris);

return 0;
}

ourProgram.c

Corpo (body) del
programma

{ } racchiudono un
BLOCCO di istruzioni

30/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

/* programma che esegue la somma dei valori contenuti in due variabili intere,
assegnando il risultato ad una terza variabile, che poi viene stampata */

#include <stdio.h>

int main () {
int primoNumero, secondo; /* i due interi */

/* il risultato */

primoNumero =168;
secondo = 640;

int ris;
ris = primoNumero + secondo; /* calcolo */

printf ("il risultato di %d piu` %d e` %d\n",
primoNumero, secondo, ris);

return 0;
}

ourProgram.c

DICHIARAZIONI DI VARIABILI

/* COMMENTI */
Non sono istruzioni, non verranno "eseguite" … ma sono importanti!!

31/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

#include <stdio.h>

int main () {
int primoNumero, secondo; /* i due interi */

/* il risultato */

primoNumero =168;
secondo = 640;

int ris;
ris = primoNumero + secondo; /* calcolo */

printf ("il risultato di %d piu` %d e` %d\n",
primoNumero, secondo, ris);

return 0;
}

ourProgram.c DICHIARAZIONI
DI VARIABILI

VANNO MESSE
ALL'INIZIO

NO

32/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

/* programma che esegue la somma dei valori contenuti in due variabili intere,
assegnando il risultato ad una terza variabile, che poi viene stampata */

#include <stdio.h>

int main () {
int primoNumero, secondo; /* i due interi */
int ris; /* il risultato */

primoNumero =168;
secondo = 640;

ris = primoNumero + secondo; /* calcolo */

printf ("il risultato di %d piu` %d e` %d\n",
primoNumero, secondo, ris);

return 0;
}

ourProgram.c

DICHIARAZIONI DI VARIABILI

33/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

/* programma che esegue la somma dei valori contenuti in due variabili intere,
assegnando il risultato ad una terza variabile, che poi viene stampata */

#include <stdio.h>

int main () {
int primoNumero, secondo; /* i due interi */
int ris; /* il risultato */

primoNumero =168;
secondo = 640;

ris = primoNumero + secondo; /* calcolo */

printf ("il risultato di %d piu` %d e` %d\n",
primoNumero, secondo, ris);

return 0;
}

ourProgram.c

Istruzioni di assegnazione

34/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

/* programma che esegue la somma dei valori contenuti in due variabili intere,
assegnando il risultato ad una terza variabile, che poi viene stampata */

#include <stdio.h>

int main () {
int primoNumero, secondo; /* i due interi */
int ris; /* il risultato */

primoNumero =168;
secondo = 640;

ris = primoNumero + secondo; /* calcolo */

printf ("il risultato di %d piu` %d e` %d\n",
primoNumero, secondo, ris);

return 0;
}

ourProgram.c

Espressione: un operatore e due operandi

Un’espressione combina operatori ed operandi; viene VALUTATA
e da’ luogo ad un VALORE (il risultato della valutazione)

35/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

/* programma che esegue la somma dei valori contenuti in due variabili intere,
assegnando il risultato ad una terza variabile, che poi viene stampata */

#include <stdio.h>

int main () {
int primoNumero, secondo; /* i due interi */
int ris; /* il risultato */

primoNumero =168;
secondo = 640;

ris = primoNumero + secondo; /* calcolo */

printf ("il risultato di %d piu' %d e' %d\n",
primoNumero, secondo, ris);

return 0;
}

ourProgram.c

Pero` anche questa e` un'espressione (640 e` una "costante
numerica" inserita nel codice, il cui valore e` ... 640).

640 viene assegnato a secondo.

Un’espressione combina operatori ed operandi;
un operando puo` essere
- una variabile (cui si accede): come in ... ris = primoNumero + secondo;

- o un valore costante (esempio: 640, 'r', 31.23 ... come in ris = primoNumero*24;)

- o un'altra espressione ("sotto-espressione"), da valuare a sua volta (es. 640 + 3*primo)

36/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

/* programma che esegue la somma dei valori contenuti in due variabili intere,
assegnando il risultato ad una terza variabile, che poi viene stampata */

#include <stdio.h>

int main () {
int primoNumero, secondo; /* i due interi */
int ris; /* il risultato */

primoNumero =168;
secondo = 640;

ris = primoNumero + secondo; /* calcolo */

printf ("il risultato di %d piu` %d e` %d\n",
primoNumero, secondo, ris);

return 0;
}

ourProgram.c

“Istruzione” di stampa

Veramente si tratta di una CHIAMATA DI FUNZIONE (una funzione di libreria – la libreria
delle funzioni di I/O standard); e’ un MODULO, o sottoprogramma; il codice di questo

sottoprogramma non sta qui, ma nella “libreria oggetto” corrispondente a stdio.h . Quando questa
funzione viene chiamata, 1) l’esecuzione del programma principale viene sospesa; 2) viene
eseguito il codice del sottoprogramma; 3) l’esecuzione del programma principale riprende.

37/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

/* programma che esegue la somma dei valori contenuti in due variabili intere,
assegnando il risultato ad una terza variabile, che poi viene stampata */

#include <stdio.h>

int main () {
int primoNumero, secondo; /* i due interi */
int ris; /* il risultato */

primoNumero =168;
secondo = 640;

ris = primoNumero + secondo; /* calcolo */

printf ("il risultato di %d piu` %d e` %d\n",
primoNumero, secondo, ris);

return 0;
}

ourProgram.c

DIRETTIVA di inclusione, in questo file, del contenuto di
stdio.h; questo “file header” contiene le dichiarazioni
delle funzioni della libreria di I/O standard, tra le quali
printf(). (non il codice di queste funzioni, quello sta nella

libreria oggetto

38/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

/* programma che esegue la somma dei valori contenuti in due variabili intere,
assegnando il risultato ad una terza variabile, che poi viene stampata */

#include <stdio.h>

int main () {
int primoNumero, secondo; /* i due interi */
int ris; /* il risultato */

primoNumero =168;
secondo = 640;

ris = primoNumero + secondo; /* calcolo */

printf ("il risultato di %d piu` %d e` %d\n",
primoNumero, secondo, ris);

return 0;
}

ourProgram.c

STOP

Anche il programma principale e` una funzione … la funzione “main”.
Quando la sua esecuzione termina, l’struzione return passa all’esterno (a

chi ha chiesto l’esecuzione del programma; al Sistema operativo …) un
valore … di solito zero

39/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Quale algoritmo rappresenta ourProgram.c ??

/* programma che esegue la somma dei valori contenuti in due variabili intere,
assegnando il risultato ad una terza variabile, che poi viene stampata */

#include <stdio.h>

int main () {
int primoNumero, secondo; /* i due interi */
int ris; /* il risultato */

primoNumero =168;
secondo = 640;

ris = primoNumero + secondo; /* calcolo */

printf ("il risultato di %d piu` %d e` %d\n",
primoNumero, secondo, ris);

return 0;
}

40/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

0) Servono primoNumero e secondo e ris (strutture dati …)
1) Assegna primoNumero con 168
2) Assegna 640 a secondo
3) Assegna a ris il risultato di primoNumero+secondo
4) Stampa ris
5) Fine

Come sarebbe il programma corrispondente in linguaggio macchina?

Quale preferiamo scrivere?
Quello in C, esatto.

Perché?

Quale algoritmo rappresenta ourProgram.c ??

41/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

0) Servono primoNumero e secondo e ris (strutture dati …)
1) Assegna primoNumero con 168
2) Assegna 640 a secondo
3) Assegna a ris il risultato di primoNumero+secondo
4) Stampa ris
5) Fine

Come sarebbe il programma corrispondente in linguaggio macchina?

Quale preferiamo scrivere?
Quello in C, esatto.

Perché?

Perché scrivere un programma direttamente in LM è difficile, poco naturale per un
umano, costringe a gestire direttamente la memoria, … già ci basta il C

Quale algoritmo rappresenta ourProgram.c ??

42/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Pausa di riflessione, e discussione su
come effettivamente un programma in
C diventa un programma eseguibile, in
esecuzione nel computer

43/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

IL C è un linguaggio ad alto livello, termine contrapposto a «basso
livello» cioè quello della macchina.

Un programma scritto in LINGUAGGIO AD ALTO LIVELLO,
- è più simile al linguaggio naturale e al modo in cui pensiamo ai

problemi … ci permette di usare espressioni e istruzioni piu’ simili alle
notazioni (matematiche) che usiamo di solito; usiamo parole (le
PAROLE CHIAVE del linguaggio) che ci sono vicine e comprensibili (if,
while, for, repeat, until, do … non tutte del C) … o comunque più
vicine a noi di quanto non sia 0001000 !!

- Portabile (lo stesso programma funziona su qualsiasi macchina, mentre
un programma in LM funziona con le CPU che usano quel LM). Come
questo succeda si vede tra poco.

Si’, CPU diverse hanno linguaggi diversi …

Pregi di un LINGUAGGIO AD ALTO LIVELLO

44/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Dal programma in C al programma eseguito – 1/3

programma
sorgente

programma
oggetto

ourProgram.c
linguaggio ad alto livello

linguaggio macchina, con
indirizzi non assoluti (cioe’
“relativi ad un indirizzo base
non assegnato”)

segnalazione di errori

compiler

45/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Dal programma in C al programma eseguito – 1/3

programma
sorgente

programma
oggetto

ourProgram.c
linguaggio ad alto livello

linguaggio macchina, con
indirizzi non assoluti (cioe’
“relativi ad un indirizzo base
non assegnato”)

segnalazione di errori

Nel programma ci sono inclusioni di librerie (cioè di insiemi di funzioni, definite da altri ma che ci fanno
comodo e che usiamo nel programma («chiamando» quelle funzioni).
O anche riferimenti a funzioni sviluppate da noi, e che noi vogliamo usare nel programma.

Le funzioni che noi definiamo nel programma (nel file .c) e quelle definite da noi o da altri nelle librerie
incluse nel programma, sono anche chiamate «moduli» del programma.
I moduli che abbiamo scritto nel file (più avanti parleremo di questo moduli: le funzioni) hanno codice
sorgente che verrà compilato.
I moduli esterni vanno compilati a parte ed uniti poi al risultato della compilazione del nostro programma.

compiler

46/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Dal programma in C al programma eseguito – 2/3

modulo
oggetto

modulo
oggetto

modulo
oggetto

printf
oggettomodulo

oggetto

Moduli oggetto da librerie programma oggetto
Proveniente da
ourProgram.c

Programma eseguibile
(rilocabile):
ourProgram.exe

linker

Run ourProgram
47/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Dal programma in C al programma eseguito – 2/3

Per ottenere un programma eseguibile bisogna prima unire tutti i moduli oggetto: quello del nostro programma, ottenuto con la sua

compilazione (andata bene …), e quelli delle funzioni esterne, cioè quelle non scritte da noi nel file ourProgram.c.

Questa unione si chiama collegamento (linking) e viene eseguita quando tutti i moduli sono stati compilati e quindi hanno un codice oggetto

disponibile.

Per il nostro programma, la compilazione dobbiamo attivarla noi; invece per le funzioni definite nelle librerie la compilazione è automatica e

viene curata dall’ambiente di programmazione in cui lavoriamo (come il DEV).

Il risultato del linking è il programma «rilocabile», cioè in sostanza il programma completo di tutte le sue parti, in linguaggio macchina, ma

con gli indirizzi che sono tutti definiti rispetto ad un indirizzo base (non ancora noto: sarà noto solo quando effettivamente piazzeremo il

programma nella memoria – "caricamento", "loading" - quindi per ora si assume zero).

Ora il programma può essere eseguito.

L'indirizzo base viene definito quando il programma viene caricato in memoria centrele (a partire proprio da quel certo indirizzo), cioe' al

"Run"

modulo
oggetto

modulo
oggetto

modulo
oggetto

printf
oggettomodulo

oggetto

Moduli oggetto da librerie programma oggetto
Proveniente da
ourProgram.c

Programma eseguibile
(rilocabile):
ourProgram.exe

linker

Run ourProgram
48/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Dal programma in C al programma eseguito – 3/3
programma oggetto
Proveniente da
ourProgram.c

Programma eseguibile
(rilocabile):
ourProgram.exe

linker

loader

Il programma viene caricato in memoria centrale, a partire da un indirizzo (occupando
una zona libera). Ora tutti gli indirizzi usati nel programma oggetto diventano assoluti
ed il programma in linguaggio macchina viene eseguito (vedi la parte di architettura, e
in particolar modo il processore.

Run ourProgram

modulo
oggetto

modulo
oggetto

modulo
oggetto

printf
oggettomodulo

oggetto

Moduli oggetto da librerie

49/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

0) Servono primoNumero e secondo e ris (struttura dati …)
1) Assegna primoNumero con 168
2) Assegna 640 a secondo
3) Assegna a ris il risultato di primoNumero+secondo
4) Stampa ris
5) Fine

Versione con INPUT ???

ourProgram algorithm … without input …

… and with input

50/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

0) Servono primoNumero e secondo e ris (struttura dati …)
1) Assegna primoNumero con 168
2) Assegna 164 a secondo
3) Assegna a ris il risultato di primoNumero+secondo
4) Stampa ris
5) Fine

Versione con INPUT ???
0) (primoNum, secondoNum, ris … i dati che usiamo
1) INPUT primoNum, secondoNum
2) ris = primoNum + secondoNum
3) OUTPUT ris
4) Fine

 Vogliamo fare il programma ?

ourProgram algorithm … without input …

… and with input

51/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

/* programma che esegue la somma di due valori interi letti da imput. I
valori sono letti in due variabili intere. La loro somma viene assegnata
ad una terza var, che poi viene stampata */

#include <stdio.h>
int main () {
int primoNumero, secondoNumero, /* i dati da input */

ris; /* risultato della somma */

return 0;
}

ourProgram.c with input

passo 0)

52/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

/* programma che esegue la somma di due valori interi letti da imput. I
valori sono letti in due variabili intere. La loro somma viene assegnata
ad una terza var, che poi viene stampata */

#include <stdio.h>
int main () {
int primoNumero, secondoNumero, /* i dati da input */

ris; /* risultato della somma */

printf ("Oh utente, scrivi due numeri e io li sommo: ");
scanf("%d %d", &primoNumero, &secondoNumero);

return 0;
}

ourProgram.c with input

passo 1) (chiedere per avere e` intelligente …)

53/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

/* programma che esegue la somma di due valori interi letti da imput. I
valori sono letti in due variabili intere. La loro somma viene assegnata
ad una terza var, che poi viene stampata */

#include <stdio.h>
int main () {
int primoNumero, secondoNumero, /* i dati da input */

ris; /* risultato della somma */

printf ("Oh utente, scrivi due numeri e io li sommo: ");
scanf("%d %d", &primoNumero, &secondoNumero);

ris = primoNumero + secondoNumero; /* calcolo */

return 0;
}

ourProgram.c with input

passo 2)

54/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

/* programma che esegue la somma di due valori interi letti da imput. I
valori sono letti in due variabili intere. La loro somma viene assegnata
ad una terza var, che poi viene stampata */

#include <stdio.h>
int main () {
int primoNumero, secondoNumero, /* i dati da input */

ris; /* risultato della somma */

printf ("Oh utente, scrivi due numeri e io li sommo: ");
scanf("%d %d", &primoNumero, &secondoNumero);

ris = primoNumero + secondoNumero; /* calcolo */

printf (" Stimato user, %d piu` %d e` uguale a %d\n",
primoNumero, secondoNumero, ris);

return 0;
}

ourProgram.c with input

passo 3)

passo 4)
Vedi ora Approfondimenti PRIMA PARTE

55/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Tecniche della Programmazione, lez. 3

Algoritmi e diagrammi di flusso

Flusso?

Non ci piace il salto

Verso la programmazione Strutturata

56/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Abbiamo detto che e` una sequenza di PASSI, operazioni, istruzioni …
per risolvere un problema per il quale abbiamo una formalizzazione matematica

Più schematicamente ci sono delle componenti da considerare

- INFORMAZIONI relative al problema: rappresentate come DATI
(nel calcolatore, nell’algoritmo, nel programma)

- INPUT ... (cosa sono? Vedi approfondimenti)

- Procedura Computazionale passi di calcolo … (quali sono? Vedi appr.)

- OUTPUT … (? vedi ...)

Progettazione Algoritmo: attivita` creativa …
Esecuzione Algoritmo: attivita` meccanica

Algoritmo (again …)

57/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

0) primoNumero, secondo, ris …
1) Assegna primoNumero con 68
2) Assegna 64 a secondo
3) Assegna a ris il risultato di primoNumero+secondo
4) Stampa ris
5) Fine

Flusso di esecuzione: 1) 2) 3) 4) 5)

Versione con INPUT
0) (primoNum, secondoNum, ris … i dati che usiamo
1) INPUT primoNum, secondoNum
2) ris = primoNum + secondoNum
3) OUTPUT ris
4) Fine

Flusso di esecuzione: 1) 2) 3) 4)

"Esecuzione dell’algoritmo" (Flusso di esecuzione)

tutte le esecuzioni
sono uguali …

i risultati non
cambiano da istanza
ad istanza ... e
nemmeno il flusso

esecuzioni diverse, a seconda
dell'INPUT, ma comunque la

sequenza di passi e` sempre la
medesima …

58/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Anche Diagrammi a Blocchi.
Un formalismo grafico per rappresentare algoritmi
(e seguire il flusso di esecuzione)

Istruzioni di INPUT/ OUTPUT
Direzione del Flusso di esecuzione
Istruzione generica

Flusso di esecuzione: 1) 2) 3) 4)

Diagrammi di Flusso

INPUT(primoNum,
secondoNum)

ris = primoNum +
secondoNum

OUTPUT(ris)

1) INPUT primoNum, secondoNum
2) ris = primoNum + secondoNum
3) OUTPUT ris
4) Fine

4) ?  STOP?
59/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Anche Diagrammi a Blocchi. Un formalismo grafico per rappresentare
algoritmi (e seguire il flusso di esecuzione)

Flusso di esecuzione: 1) 2) 3) 4) 5)

Diagrammi di Flusso

ris = primoNum +
secondoNum

OUTPUT(ris)

1) Assegna primoNum con 68
2) Assegna 64 a secondoNum
3) Assegna a ris il risultato di

primoNum+secondoNum
4) Stampa ris
5) Fine

primoNum = 68

secondoNum = 64

60/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Anche Diagrammi a Blocchi. Un formalismo grafico per rappresentare
algoritmi (e seguire il flusso di esecuzione)

Flusso di esecuzione: 1) 2) 3) 4) 5)

Diagrammi di Flusso

ris = primoNum +
secondoNum

OUTPUT(ris)

1) Assegna primoNum con 68
2) Assegna 64 a secondoNum
3) Assegna a ris il risultato di

primoNum+secondoNum
4) Stampa ris
5) Fine

primoNum = 68

secondoNum = 64

Questi pallocchi sono un vecchio
modo per simboleggiare il punto di
entrata e di uscita dal programma

Li ometteremo in seguito

61/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Dati i coefficienti a,b,c di un’equazione di secondo grado, calcolare le
soluzioni reali, supponendo che esistano soluzioni reali.

0) i dati: a, b, c; i risultati, x1, x2 (supponiamo che esistano reali); i dati
intermedi deltaQuadro, … 2*a, 4*a*c …
1) INPUT (a, b, c)
2) 
3) x1 = meno b più radice-di-deltaQuadro, tutto diviso 2-per-a
4) x2 = (-b - 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) / 2*a
5) 

 Scrivere qualcosa al posto di 

Algoritmo per l’eq. di secondo grado

62/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Dati i coefficienti a,b,c di un’equazione di secondo grado, calcolare le
soluzioni reali, supponendo che esistano soluzioni reali.

0) i dati: a, b, c; i risultati, x1, x2 (supponiamo che esistano reali); i dati
intermedi deltaQuadro, … 2*a, 4*a*c …
1) INPUT (a, b, c)
2) deltaQuadro = b*b -4*a*c
3) x1 = formula per la prima soluzione
4) x2 = formula per la seconda soluzione
5) OUTPUT(x1,x2)

Algoritmo per l’eq. di secondo grado

63/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Dati i coefficienti a,b,c di un’equazione di secondo grado, calcolare le
soluzioni reali, supponendo che esistano soluzioni reali.

0) i dati: a, b, c; i risultati, x1, x2 (supponiamo che esistano reali); i dati
intermedi deltaQuadro, … 2*a, 4*a*c …
1) INPUT (a, b, c)
2) deltaQuadro = b*b -4*a*c
3) x1 = formula per la prima soluzione
4) x2 = formula per la seconda soluzione
5) OUTPUT(x1,x2)

Algoritmo per l’eq. di secondo grado

 Diagramma di flusso? 
64/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

0) i dati: a, b, c; i risultati, x1, x2 (supponiamo che esistano reali); i dati
intermedi deltaquadro, … 2*a, 4*a*c …
1) INPUT (a, b, c)
2) deltaQuadro = b*b -4*a*c
3) x1 = formula per la prima soluzione
4) x2 = formula per la seconda soluzione
5) OUTPUT(x1,x2)

…

Algoritmo per l’eq. di secondo grado

x2 = −𝒃𝒃− 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝑸𝑸𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖
𝟐𝟐∗𝒂𝒂

OUTPUT(x1, x2)

deltaQuadro= b*b-4*a*c

x1 = −𝒃𝒃+ 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝑸𝑸𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖
𝟐𝟐∗𝒂𝒂

INPUT(a,b,c)

65/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

0) i dati: a, b, c; i risultati, x1, x2 (supponiamo che esistano reali); i dati
intermedi deltaquadro, … 2*a, 4*a*c …
1) INPUT (a, b, c)
2) deltaQuadro = b*b -4*a*c
3) x1 = formula per la prima soluzione
4) x2 = formula per la seconda soluzione
5) OUTPUT(x1,x2)

…

Algoritmo per l’eq. di secondo grado

x2 = −𝒃𝒃− 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝑸𝑸𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖
𝟐𝟐∗𝒂𝒂

OUTPUT(x1, x2)

deltaQuadro= b*b-4*a*c

x1 = −𝒃𝒃+ 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝑸𝑸𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖
𝟐𝟐∗𝒂𝒂

INPUT(a,b,c)

66/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

0) i dati: a, b, c; i risultati, x1, x2 (supponiamo che esistano reali); i dati
intermedi deltaquadro, … 2*a, 4*a*c …
1) INPUT (a, b, c)
2) deltaQuadro = b*b -4*a*c
3) x1 = formula per la prima soluzione
4) x2 = formula per la seconda soluzione
5) OUTPUT(x1,x2)

…

Algoritmo per l’eq. di secondo grado

x2 = −𝒃𝒃− 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝑸𝑸𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖
𝟐𝟐∗𝒂𝒂

OUTPUT(x1, x2)

deltaQuadro= b*b-4*a*c

x1 = −𝒃𝒃+ 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝑸𝑸𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖
𝟐𝟐∗𝒂𝒂

INPUT(a,b,c)

67/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

0) i dati: a, b, c; i risultati, x1, x2 (supponiamo che esistano reali); i dati
intermedi deltaquadro, … 2*a, 4*a*c …
1) INPUT (a, b, c)
2) deltaQuadro = b*b -4*a*c
3) x1 = formula per la prima soluzione
4) x2 = formula per la seconda soluzione
5) OUTPUT(x1,x2)

…

Algoritmo per l’eq. di secondo grado

x2 = −𝒃𝒃− 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝑸𝑸𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖
𝟐𝟐∗𝒂𝒂

OUTPUT(x1, x2)

deltaQuadro= b*b-4*a*c

x1 = −𝒃𝒃+ 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝑸𝑸𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖
𝟐𝟐∗𝒂𝒂

INPUT(a,b,c)

68/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

0) i dati: a, b, c; i risultati, x1, x2 (supponiamo che esistano reali); i dati
intermedi deltaquadro, … 2*a, 4*a*c …
1) INPUT (a, b, c)
2) deltaQuadro = b*b -4*a*c
3) x1 = formula per la prima soluzione
4) x2 = formula per la seconda soluzione
5) OUTPUT(x1,x2)

 Flusso di esecuzione per a=1, b=4, c=1 ? 

Algoritmo per l’eq. di secondo grado

x2 = −𝒃𝒃− 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝑸𝑸𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖
𝟐𝟐∗𝒂𝒂

OUTPUT(x1, x2)

deltaQuadro= b*b-4*a*c

x1 = −𝒃𝒃+ 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝑸𝑸𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖
𝟐𝟐∗𝒂𝒂

INPUT(a,b,c)

69/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

0) i dati: a, b, c; i risultati, x1, x2 (supponiamo che esistano reali); i dati
intermedi deltaquadro, … 2*a, 4*a*c …
1) INPUT (a, b, c)
2) deltaQuadro = b*b -4*a*c
3) x1 = formula per la prima soluzione
4) x2 = formula per la seconda soluzione
5) OUTPUT(x1,x2)

Flusso di esecuzione per a=1, b=4, c=1 :
1) 2) 3) 4) 5)

Algoritmo per l’eq. di secondo grado

x2 = −𝒃𝒃− 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝑸𝑸𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖
𝟐𝟐∗𝒂𝒂

OUTPUT(x1, x2)

deltaQuadro= b*b-4*a*c

x1 = −𝒃𝒃+ 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝑸𝑸𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖
𝟐𝟐∗𝒂𝒂

INPUT(a,b,c)

70/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

0) i dati: a, b, c; i risultati, x1, x2 (supponiamo che esistano reali); i dati
intermedi deltaquadro, … 2*a, 4*a*c …
1) INPUT (a, b, c)
2) deltaQuadro = b*b -4*a*c
3) x1 = formula per la prima soluzione
4) x2 = formula per la seconda soluzione
5) OUTPUT(x1,x2)

Flusso di esecuzione per a=1, b=4, c=1 :
1) 2) 3) 4) 5)

OBS.
(per qualunque istanza il flusso e` sempre quello ... anche se ovviamente input e output possono cambiare)

Algoritmo per l’eq. di secondo grado

x2 = −𝒃𝒃− 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝑸𝑸𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖
𝟐𝟐∗𝒂𝒂

OUTPUT(x1, x2)

deltaQuadro= b*b-4*a*c

x1 = −𝒃𝒃+ 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝑸𝑸𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖𝒖
𝟐𝟐∗𝒂𝒂

INPUT(a,b,c)

71/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Dati due numeri interi, n, m, maggiori di zero, calcolare il Massimo Comun
Divisore.

BTW, MCD(9,81)=9, MCD(37,7)=1, MCD(6,4)=2;

MCD(6,4) ?

cosa sappiamo di certo su questo numero?

Algoritmo per il MCD

72/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Dati due numeri interi, n, m, maggiori di zero, calcolare il Massimo Comun
Divisore.

BTW, MCD(9,81)=9, MCD(37,7)=1, MCD(6,4)=2;

MCD(6,4)=?

Sicuramente è un divisore di 4 (non può essere più grande di 4; o è 4 o è un
numero più piccolo, al limite 1)

Algoritmo per il MCD

73/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Dati due numeri interi, n, m, maggiori di zero, calcolare il Massimo Comun
Divisore. BTW, MCD(9,81)=9, MCD(37,7)=1, MCD(6,4)=2;

MCD(6,4)=?

- 4 divide sia 6 che 4? No
- 3? No
- 2? Si`!!

Algoritmo per il MCD

74/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Dati due numeri interi, n, m, maggiori di zero, calcolare il Massimo Comun
Divisore. BTW, MCD(9,81)=9, MCD(37,7)=1, MCD(6,4)=2;

MCD(6,4)=?
Sicuramente è un divisore di 4 (non può essere più grande di 4; o è 4 o è un
numero più piccolo, al limite 1)
- 4 divide sia 6 che 4? No
- 3? No
- 2? Si`!!

0) i dati: n, m (input) e ris (in cui calcoliamo il MCD)
1) INPUT (n, m)

Algoritmo per il MCD

75/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Dati due numeri interi, n, m, maggiori di zero, calcolare il Massimo Comun
Divisore. BTW, MCD(9,81)=9, MCD(37,7)=1, MCD(6,4)=2;

MCD(6,4)=?
Sicuramente è un divisore di 4 (non può essere più grande di 4; o è 4 o è un
numero più piccolo, al limite 1)
- 4 divide sia 6 che 4? No
- 3? No
- 2? Si`!!

0) i dati: n, m (input) e ris (con cui calcoliamo il MCD)
1) INPUT (n, m) (inizializzazione di n ed m, mediante operazione di input)

2) ris =  (inizializzazione di ris mediante assegnazione diretta)

Algoritmo per il MCD

76/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Dati due numeri interi, n, m, maggiori di zero, calcolare il Massimo Comun
Divisore. BTW, MCD(9,81)=9, MCD(37,7)=1, MCD(6,4)=2;

MCD(6,4)=?
Sicuramente è un divisore di 4 (non può essere più grande di 4; o è 4 o è un
numero più piccolo, al limite 1)
- 4 divide sia 6 che 4? No
- 3? No
- 2? Si`!!

0) i dati: n, m (input) e ris (con cui calcoliamo il MCD)
1) INPUT (n, m)
2) ris = 

3) SE ris «DIVIDE n» E «DIVIDE m» EUREKA!
…

Algoritmo per il MCD

77/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Dati due numeri interi, n, m, maggiori di zero, calcolare il Massimo Comun
Divisore. BTW, MCD(9,81)=9, MCD(37,7)=1, MCD(6,4)=2;

MCD(6,4)=?
Sicuramente e` un divisore di 4 (non puo` essere piu` grande di 4; o e` 4 o
e` un numero piu` piccolo, al limite 1)
- 4 divide sia 6 che 4? No
- 3? No
- 2? Si`!!

0) i dati: n, m (input) e ris (con cui calcoliamo il MCD)
1) INPUT (n, m)
2) ris = 
3) SE ris «DIVIDE n» E «DIVIDE m» EUREKA!

1) eureka e poi?
2) E sennò?? Diciamo che "sennò proseguiamo ma con un altro valore per ris"

Algoritmo per il MCD

78/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Dati due numeri interi, n, m, maggiori di zero, calcolare il Massimo Comun
Divisore. BTW, MCD(9,81)=9, MCD(37,7)=1, MCD(6,4)=2;

MCD(6,4)=?
Sicuramente è un divisore di 4 (non può essere più grande di 4; o è 4 o è un
numero più piccolo, al limite 1)
- 4 divide sia 6 che 4? No
- 3? No
- 2? Si`!!

0) i dati: n, m (input) e ris (con cui calcoliamo il MCD)
1) INPUT (n, m)
2) ris = 
3) SE ris «DIVIDE n» E «DIVIDE m» EUREKA!

eureka e poi?
E sennò?? Diciamo che "sennò proseguiamo ma con un altro valore per ris"

4) ris = ris -1

Algoritmo per il MCD

79/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Dati due numeri interi, n, m, maggiori di zero, calcolare il Massimo Comun
Divisore. BTW, MCD(9,81)=9, MCD(37,7)=1, MCD(6,4)=2;

MCD(6,4)=?
Sicuramente e` un divisore di 4 (non puo` essere piu` grande di 4; o e` 4 o
e` un numero piu` piccolo, al limite 1)
- 4 divide sia 6 che 4? No
- 3? No
- 2? Si`!!

0) i dati: n, m (input) e ris (con cui calcoliamo il MCD)
1) INPUT (n, m)
2) ris = 
3) SE ris «DIVIDE n» E «DIVIDE m» EUREKA!

eureka e poi?
E sennò?? Diciamo che "sennò proseguiamo ma con un altro valore per ris"

4) ris = ris -1
... e poi??

Algoritmo per il MCD

80/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Dati due numeri interi, n, m, maggiori di zero, calcolare il Massimo Comun Divisore.
BTW, MCD(9,81)=9, MCD(37,7)=1, MCD(6,4)=2;

MCD(6,4)=?
Sicuramente e` un divisore di 4 (non puo` essere piu` grande di 4; o e` 4 o e` un
numero piu` piccolo, al limite 1)
- 4 divide sia 6 che 4? No
- 3? No
- 2? Si`!!

0) i dati: n, m (input) e ris (con cui calcoliamo il MCD)
1) INPUT (n, m)
2) ris = 
3) SE ris «DIVIDE n» E «DIVIDE m» EUREKA!

eureka e poi?
E sennò?? Diciamo che "sennò proseguiamo ma con un altro valore per ris"

4) ris = ris -1
E poi torna al passo 3

(+/- a questo punto del flusso abbiamo fatto tutti i calcoli e possiamo chiudere mandando in output il MCD)

Algoritmo per il MCD

81/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Dati due numeri interi, n, m, maggiori di zero, calcolare il Massimo Comun Divisore.
BTW, MCD(9,81)=9, MCD(37,7)=1, MCD(6,4)=2;

MCD(6,4)=?
Sicuramente e` un divisore di 4 (non puo` essere piu` grande di 4; o e` 4 o e` un
numero piu` piccolo, al limite 1)
- 4 divide sia 6 che 4? No
- 3? No
- 2? Si`!!

0) i dati: n, m (input) e ris (con cui calcoliamo il MCD)
1) INPUT (n, m)
2) ris =      
3) SE ris «DIVIDE n» E «DIVIDE m» EUREKA!

eureka e poi?
E sennò?? Diciamo che "sennò proseguiamo ma con un altro valore per ris"

4) ris = ris -1
E poi torna al passo 3

5) OUTPUT(ris)

Algoritmo per il MCD

82/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Dati due numeri interi, n, m, maggiori di zero, calcolare il Massimo Comun Divisore.
BTW, MCD(9,81)=9, MCD(37,7)=1, MCD(6,4)=2;

MCD(6,4)=?
Sicuramente e` un divisore di 4 (non puo` essere piu` grande di 4; o e` 4 o e` un
numero piu` piccolo, al limite 1)
- 4 divide sia 6 che 4? No
- 3? No
- 2? Si`!!

0) i dati: n, m (input) e ris (con cui calcoliamo il MCD)
1) INPUT (n, m)
2) ris = minimo tra n ed m
3) SE ris «DIVIDE n» E «DIVIDE m» EUREKA!

eureka e poi?
E sennò?? Diciamo che "sennò proseguiamo ma con un altro valore per ris"

4) ris = ris -1
E torna al passo 3

5) OUTPUT(ris)

Algoritmo per il MCD

83/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Dati due numeri interi, n, m, maggiori di zero, calcolare il Massimo Comun Divisore.
BTW, MCD(9,81)=9, MCD(37,7)=1, MCD(6,4)=2;

MCD(6,4)=?
Sicuramente e` un divisore di 4 (non puo` essere piu` grande di 4; o e` 4 o e` un
numero piu` piccolo, al limite 1)
- 4 divide sia 6 che 4? No
- 3? No
- 2? Si`!!

0) i dati: n, m (input) e ris (con cui calcoliamo il MCD)
1) INPUT (n, m)
2) ris = minimo{n,m}
3) SE ris «DIVIDE n» E «DIVIDE m» EUREKA!

eureka e poi?
E sennò?? Diciamo che "sennò proseguiamo ma con un altro valore per ris"

4) ris = ris -1
E torna al passo 3

5) OUTPUT(ris)

Algoritmo per il MCD

Eureka che?? Vuoi dire
"ris è il MCD dei due
numeri". Ok, ma poi
non dovremmo finire?

Eeeek, Come finisco?

Come ci arrivo al passo
5)?!

E Torna? Torna?!?!

Che vuol dire Torna?

… calma

84/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Dati due numeri interi, n, m, maggiori di zero, calcolare il Massimo Comun Divisore.
BTW, MCD(9,81)=9, MCD(37,7)=1, MCD(6,4)=2;

MCD(6,4)=?
Sicuramente è un divisore di 4 (non puo` essere piu` grande di 4; o e` 4 o e` un numero piu`
piccolo, al limite 1)
- 4 divide sia 6 che 4? No
- 3? No
- 2? Si`!!

0) i dati: n, m (input) e ris (con cui calcoliamo il MCD)
1) INPUT (n, m)
2) ris = minimo{n,m}

3) SE ris «DIVIDE n» E «DIVIDE m»
Vai al passo 5) con l'idea che lì finisce
Sennò prosegui naturalmente con il passo successivo

4) ris = ris -1
E torna al passo 3

5) OUTPUT(ris)

Algoritmo per il MCD

Vai? Torna? Ma il flusso
non è sequenziale? Dopo
la 3 c'è la 4 o la 5??

85/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Il flusso di esecuzione può dipendere dal
verificarsi di condizioni durante i calcoli …

Flusso di esecuzione per n=14, m=28:


Flusso di esecuzione per n=6, m=4:



Algoritmo per il MCD (il flusso di esecuzione)

0) i dati: n, m (input) e ris
1) INPUT (n, m)
2) ris = minimo{n,m}
3) SE ris «DIVIDE n» E «DIVIDE m»

Vai al passo 5) per finire
4) ris = ris -1

E torna al passo 3
5) OUTPUT(ris)

1) 0)

3)
5) 2)

4)

e tracciando
il contenuto di

n

m

ris

usando questi pezzi

86/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Il flusso di esecuzione puo` dipendere dal verificarsi di condizioni durante i
calcoli …

Flusso di esecuzione per n=14, m=28:
1) 2) 3) 5) e stampa 14

Algoritmo per il MCD (il flusso di esecuzione)

0) i dati: n, m (input) e ris
1) INPUT (n, m)
2) ris = minimo{n,m}
3) SE ris «DIVIDE n» E «DIVIDE m»

Vai al passo 5) per finire
4) ris = ris -1

E torna al passo 3
5) OUTPUT(ris)

n

m

ris

14

28

14

87/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Il flusso di esecuzione può dipendere dal verificarsi di condizioni durante i
calcoli …

Flusso di esecuzione per n=6, m=4:
1) 2) 3) 4) 3) 4) 3) 5)

e stampa 2 perché ris è diventato 2

Algoritmo per il MCD (il flusso di esecuzione)

0) i dati: n, m (input) e ris
1) INPUT (n, m)
2) ris = minimo{n,m}
3) SE ris «DIVIDE n» E «DIVIDE m»

Vai al passo 5) per finire
4) ris = ris -1

E torna al passo 3
5) OUTPUT(ris)

n

m

ris

6

4

4 3 2

88/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Il flusso di esecuzione può dipendere dal verificarsi di condizioni durante i
calcoli …

Flusso di esecuzione per n=14, m=28:
1) 2) 3) 5)

Flusso di esecuzione per n=6, m=4:
1) 2) 3) 4) 3) 4) 3) 5)

Algoritmo per il MCD (il flusso di esecuzione)

0) i dati: n, m (input) e ris
1) INPUT (n, m)
2) ris = minimo{n,m}
3) SE ris «DIVIDE n» E «DIVIDE m»

Vai al passo 5) per finire
4) ris = ris -1

E torna al passo 3
5) OUTPUT(x1,x2)

NB
Algoritmo = sequenza di passi
progettata per risolvere un
problema

Flusso di esecuzione = sequenza
dei passi effettivamente eseguiti
durante l’esecuzione
dell’algoritmo su un’istanza del
problema

1)

2)

3)

4)

5)
89/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Il flusso di esecuzione può dipendere dal verificarsi di condizioni durante i
calcoli …

Flusso di esecuzione per n=14, m=28:
1) 2) 3) 5)

Flusso di esecuzione per n=6, m=4:
1) 2) 3) 4) 3) 4) 3) 5)

Algoritmo per il MCD (il flusso di esecuzione)

0) i dati: n, m (input) e ris
1) INPUT (n, m)
2) ris = minimo{n,m}
3) SE ris «DIVIDE n» E «DIVIDE m»

Vai al passo 5) per finire
4) ris = ris -1

E torna al passo 3
5) OUTPUT(x1,x2)

NB
Algoritmo = sequenza di passi
progettata per risolvere un
problema

Flusso di esecuzione = sequenza
dei passi effettivamente eseguiti
durante l’esecuzione
dell’algoritmo su un’istanza del
problema

1)

2)

3)

4)

5)

ris
4

90/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Il flusso di esecuzione può dipendere dal verificarsi di condizioni durante i
calcoli …

Flusso di esecuzione per n=14, m=28:
1) 2) 3) 5)

Flusso di esecuzione per n=6, m=4:
1) 2) 3) 4) 3) 4) 3) 5)

Algoritmo per il MCD (il flusso di esecuzione)

0) i dati: n, m (input) e ris
1) INPUT (n, m)
2) ris = minimo{n,m}
3) SE ris «DIVIDE n» E «DIVIDE m»

Vai al passo 5) per finire
4) ris = ris -1

E torna al passo 3
5) OUTPUT(x1,x2)

NB
Algoritmo = sequenza di passi
progettata per risolvere un
problema

Flusso di esecuzione = sequenza
dei passi effettivamente eseguiti
durante l’esecuzione
dell’algoritmo su un’istanza del
problema

1)

2)

3)

4)

5)

ris
4

ris
3

91/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Il flusso di esecuzione può dipendere dal verificarsi di condizioni durante i
calcoli …

Flusso di esecuzione per n=14, m=28:
1) 2) 3) 5)

Flusso di esecuzione per n=6, m=4:
1) 2) 3) 4) 3) 4) 3) 5)

Algoritmo per il MCD (il flusso di esecuzione)

0) i dati: n, m (input) e ris
1) INPUT (n, m)
2) ris = minimo{n,m}
3) SE ris «DIVIDE n» E «DIVIDE m»

Vai al passo 5) per finire
4) ris = ris -1

E torna al passo 3
5) OUTPUT(x1,x2)

NB
Algoritmo = sequenza di passi
progettata per risolvere un
problema

Flusso di esecuzione = sequenza
dei passi effettivamente eseguiti
durante l’esecuzione
dell’algoritmo su un’istanza del
problema

1)

2)

3)

4)

5)

ris
4

ris
3

ris
2

92/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

il risultato del controllo cui viene sottoposta l’esecuzione di un algoritmo (e
poi ovviamente
del programma corrispondente!!) durante l’esecuzione stessa

Il controllo consiste nel determinare la sequenza di passi (istruzioni)
eseguiti/e

1) Di norma: un passo dopo l’altro, nell'ordine dei passi
(la prossima istruzione da eseguire è quella immediatamente
successiva a quella in esecuzione)

2) Metodo Vintage: si usa un'istruzione di SALTO
(la prossima istruzione da eseguire è indicata dall'istruzione di salto).

3) Programmazione Strutturata
(si usano specifiche "istruzioni di controllo")

Ok, il flusso di esecuzione e` …

ALGORITMO = SEQUENZA DI PASSI CONTROLLATI 1)

2)

3)

4)

5)

"go to"

Vedi ora
Approfondimenti
SECONDA PARTE

93/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Tecniche della Programmazione, lez. 3

- Approfondimenti PRIMA PARTE

94/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

/* programma che esegue la somma dei valori contenuti in due variabili intere,
assegnando il risultato ad una terza variabile, che poi viene stampata */

#include <stdio.h>

int main () {
int primoNumero=168, secondo=640, ris; /* gli interi …*/

ris = primoNumero + secondo; /* calcolo */

printf ("il risultato di %d piu` %d e` %d\n",
primoNumero, secondo, ris);

return 0;
}

ourProgram.c - (DICHIARAZIONE CON INIZIALIZZAZIONE)

95/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Una costante e` un IDENTIFICATORE
che viene associate ad un VALORE
prima della compilazione del programma, e che successivamente manterra` quel
valore per tutta la durata dell’esecuzione del programma.

conveniente se quel valore appare tante volte nel programma …

e poi magari serve che sia diverso in una versione lievemente diversa del programma.

#define PI 3.14159

Costanti

96/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Una costante e` un IDENTIFICATORE
che viene associate ad un VALORE
prima della compilazione del programma, e che successivamente manterra` quel
valore per tutta la durata dell’esecuzione del programma.

Ogni volta che, nel programma, viene usato l’identificatore di quella costante, e` il
valore corrispondente che viene usato.

L’uso di una costante e` conveniente quando un certo valore deve essere scritto
esplicitamente in un programma numerose volte, e magari da questo programma si
potrebbe ottenere un altro programma solo variando il valore della costante.

#define PI 3.14159

Vedi il programma cerchi.c … nella nostra geometria PI ha un certo valore (π) e lo usiamo per calcolare
l’area di tre circonferenze, usando PI ripetutatmente. Il medesimo programma potrebbe essere usato in
una geometria diversa, in cui PI e’ diverso, semplicemente cambiando in una sola riga del programma il
suo valore… invece che cambiarlo in tutte le istruzioni in cui e' usato.

Costanti

Esercizio …
/* programma che chiede e legge da input i
raggi di tre circonferenze e produce per
ciascuna circonferenza la relativa area */

97/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Una costante e’ un
IDENTIFICATORE
che viene associate ad un VALORE
prima della compilazione del programma, e che successivamente manterra` quel
valore per tutta la durata dell’esecuzione del programma.

#define PI 3.14159

- Le costanti vanno definite all’inizio del file con il programma, tipicamente prima
della main()

- Gli identificatori sono per convenzione scritti con TUTTE MAIUSCOLE
- #define e` un esempio di direttiva per il compilatore (o MACROISTRUZIONE, o

direttamente MACRO)

Costanti e MACRO

Le direttive, come #define e #include, vengono gestite dal
“precompilatore”; la pre-compilazione e` una fase precedente alla
compilazione, in cui in sostanza si prepara il file.c per essere compilato.

e questo e` purtroppo tutto quello che possiamo dire a riguardo qui 
approfondimenti sul manuale di C sono possibili ;)

98/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

La funzione printf() permette anche di stampare valori, all'interno della stringa
di output.
Da adesso la stringa si chiama stringa di formato
Per riuscirci, la stringa deve contenere l'indicazione di
1) dove la stampa di un valore deve avvenire lungo la stringa di caratteri;
2) qual è il formato di conversione da usare per stampare quel valore (in

pratica di che tipo ci aspettiamo che sia il valore)
3) qual è il valore …

La stampa avviene nel punto in cui appare il formato di conversione.
Il formato di conversione inizia con %
Il valore da stampare appare dopo la stringa di formato, separato da una virgola.
Se ci sono più valori da stampare, devono esserci anche più formati di
conversione e ogni valore corrisponde ad uno di essi, in ordine di apparizione.

99/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

(ACCESSO)

100/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Alcuni caratteri, espressi con «sequenze di escape»,
realizzate usando backslash ‘\’, hanno significati speciali

\n andata a capo
\t tabulazione (un po’ di caratteri bianchi …)
\\ stampa \
\’ stampa ‘
\’’ stampa doppio apice
\b back one character

Caratteri speciali

101/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

E’ l’operazione che provoca la MEMORIZZAZIONE di un VALORE nella
VARIABILE.

Sintassi
nomeVariabile = espressione

Assegnazione

una espressione e’ una scrittura che può combinare operatori
ed operandi, oppure rappresentare l’accesso ad una singola
variabile; la «esecuzione» di una espressione si chiama
«valutazione» e da’ luogo ad un valore (di un certo tipo).

LEFT VALUE
(indirizzo) RIGHT VALUE

(valore)

Chicca ...

Operatore di assegnazione
(
anche l'istruzione di assegnazione e` una espressione, che viene valutata.

La sua valutazione corrisponde all'esecuzione dell'assegnazione del
left_value al right_value, e il valore risultante dalla valutazione e` il

valore che e` stato usato per l'assegnazione
).

Vai ora alla parte Esercizi per Casa
102/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Tecniche della Programmazione, lez. 3

- Esercizi per casa

103/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

esercizi

Nella directory dei complementi didattici per la lezione 03, ci
sono risorse per usare il DevC++.

C'e' un "Primer" per iniziare ad usare il DEVC++.
Seguitelo. Quando lo avrete terminato sarete un po' piu'
pratici della cosa.
E potrete scrivere altri programmi.

Ricordatevi di salvare sempre i vostri file (se sono programmi
in C) con estensione .c (non .cpp).

Dopo il primer potete dare un'occhiata all'ulteriore file pdf
disponibile nella directory dei complementi didattici per la
lezione 03

Poi lasciate questa directory, per ora e fate gli esercizi
suggeriti nelle prossime slide (le cui "soluzioni" sono sempre
nella directory dei complementi didattici per questa lezione)

104/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

esercizi sui rettangoli e sui cerchi
scrivere rettangolo.c, senza consultare il file rettangolo.c nella
directory dei complementi didattici, e nemmeno la slide in cui lo abbiamo
discusso.

La specifica del problema è la seguente:
/* questo programma, ricevendo in INPUT i lati significativi

di un rettangolo, ne calcola e stampa in OUTPUT l'area
*/

Provare il programma eseguendolo per almeno 5 rettangoli.
In rettangolo.c usare un'unica operazione di INPUT, per leggere i lati.

scrivere rettangolo2.c, identico al precedente, a parte che esegue due
distinte operazioni di input, una per il primo lato e una per il secondo.

scrivere un
/* programma che chiede e legge da input i raggi di tre circonferenze

e produce per ciascuna circonferenza la relativa area */

Usare una costante PI per il π

POI confrontare la propria soluzione con quella nella directory dei
complementi didattici. E correggere quest'ultima che stampa un po' male
le cose …

105/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Ripetizione
Quale algoritmo rappresenta ourProgram.c ??

il programma ourProgram.c è nella slide successiva
… non c'è bisogno di risalire indietro …

scrivere l'algoritmo completo che corrisponde al programma.

Poi, sì, si può risalire alla slide che abbiamo discusso a lezione e
confrontare quel che si è scritto

106/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

/* programma che esegue la somma dei valori contenuti in due variabili intere,
assegnando il risultato ad una terza variabile, che poi viene stampata */

#include <stdio.h>

int main () {
int primoNumero, secondo; /* i due interi */
int ris; /* il risultato */

primoNumero =168;
secondo = 640;

ris = primoNumero + secondo; /* calcolo */

printf ("il risultato di %d piu' %d e' %d\n",
primoNumero, secondo, ris);

return 0;
}

ourProgram.c

107/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

/* programma che esegue la somma dei valori contenuti in due variabili intere,
assegnando il risultato ad una terza variabile, che poi viene stampata */

#include <stdio.h>

int main () {
int

return 0;
}

ourProgram.c
(riscriverlo, usando la inizializzazione in
definizione)

completare …

facendo uso dell'inizializzazione
in definizione

l'algoritmo è sempre il medesimo!
Cambia solo la tecnica con cui lo
programmiamo …

108/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Tecniche della Programmazione, lez. 3

- Approfondimenti SECONDA PARTE

109/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Abbiamo detto che e` una sequenza di PASSI, operazioni, istruzioni …
per risolvere un problema per il quale abbiamo una formalizzazione matematica

Più schematicamente ci sono delle componenti da considerare

- INFORMAZIONI relative al problema: rappresentate come DATI
(nel calcolatore, nell’algoritmo, nel programma)

- INPUT i dati, che distinguono un’istanza da un’altra del problema,
e che sono da usare nel calcolare la soluzione

- Procedura Computazionale passi di calcolo …

- OUTPUT …

Progettazione Algoritmo: attivita` creativa …
Esecuzione Algoritmo: attivita` meccanica

Algoritmo (again …)

110/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Abbiamo detto che e` una sequenza di PASSI, operazioni, istruzioni …
per risolvere un problema per il quale abbiamo una formalizzazione matematica

Più schematicamente ci sono delle componenti da considerare

- INFORMAZIONI relative al problema : rappresentate come DATI
(nel calcolatore, nell’algoritmo, nel programma)

- INPUT i dati, che distinguono un’istanza da un’altra del problema,
e che sono da usare nel calcolare la soluzione

- Procedura Computazionale questa e` la sequenza di passi …
1) operazioni su dati di input
2) operazioni su dati intermedi (ottenuti con calcoli su dati di input e altri dati

intermedi)
3) Produzione di dati di OUTPUT

- OUTPUT

Algoritmo (again …)

111/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Abbiamo detto che e` una sequenza di PASSI, operazioni, istruzioni …
per risolvere un problema per il quale abbiamo una formalizzazione matematica

Più schematicamente ci sono delle componenti da considerare

- INFORMAZIONI relative al problema : rappresentate come DATI
(nel calcolatore, nell’algoritmo, nel programma)

- INPUT i dati, che distinguono un’istanza da un’altra del problema,
e che sono da usare nel calcolare la soluzione

- Procedura Computazionale questa e` la sequenza di passi …
1) operazioni su dati di input
2) operazioni su dati intermedi (ottenuti con calcoli su dati di input e altri dati

intermedi)
3) Produzione di dati di OUTPUT

- OUTPUT i dati emessi a valle della procedura computazionale,
interpretabili dall’utente come informazioni sulla soluzione
dell’istanza del problema

Algoritmo (again …)

112/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Ecco due programmi per il problema
Calcolare la somma di numeri interi forniti in input dall'utente.

L'immissione di 0 termina l'input.
I numeri negativi inseriti in input vengono ignorati.

Nel primo programma usiamo goto.
Nel secondo programmazione strutturata, con le istruzioni di controllo.

Dopo aver visto e compreso (anche fatto girare) i programmi,
- confrontare il codice dei due programmi, cercando di giudicare quale e` piu`

leggibile.
- scrivere i relativi algoritmi e confrontarli.

GO TO and Structured Programming
"go to"

vintage

113/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Calcolare la somma di numeri interi forniti in input dall'utente.
L'immissione di 0 termina l'input.

I numeri negativi inseriti in input vengono ignorati.
Nel primo programma usiamo goto.
#include <stdio.h>

int main() {
int somma = 0, num;

inizio:
printf("Inserisci un numero (0 per terminare): ");
scanf("%d", &num);
if (num == 0) goto fine; /* Termina l'input se 0 */
if (num < 0) goto ignora; /* Ignora i numeri negativi */
somma += num; /* Somma i numeri positivi */
goto inizio;

ignora:
printf("Numero negativo ignorato.\n");
goto inizio;

fine:
printf("Somma finale: %d\n", somma);
return 0;

}

Con GO TO
vintage

non la usiamo

114/93

Tecniche della Programmazione, M.Temperini, lezione 03 – At Last Programmazione

Calcolare la somma di numeri interi forniti in input dall'utente.
L'immissione di 0 termina l'input.

I numeri negativi inseriti in input vengono ignorati.
Nel secondo programma, usiamo programmazione strutturata, con le istruzioni di controllo.

#include <stdio.h>

int main() {
int somma = 0, num;

while (1) {
printf("Inserisci un numero (0 per terminare): ");
scanf("%d", &num);

if (num == 0) break; /* Termina l'input se 0 */
if (num < 0) { /* Ignora i numeri negativi */

printf("Numero negativo ignorato.\n");
continue;

}

somma += num; // Somma i numeri positivi
}
printf("Somma finale: %d\n", somma);
return 0;

}

Con Istruzioni di controllo della
programmazione strutturata

115/93

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Slide Number 115

