Tecniche della Programmazione, lez. 3

‘- Introduzione allo sviluppo ed esecuzione di programmi ‘

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 1/93

Sintassi ...

Un programma & una sequenza di istruzioni, scritte nel linguaggio di
programmazione in uso (Per noi il C).

E" un lungo paragrafo,
costituito da tante frasi, una
dopo l'altra (le istruzioni).

Per scrivere bene una frase bisogna
seqguire delle regole, questo vale per
qualsiasi linguaggio ...

La SINTASSI ¢ la grammatica da sequire
per scrivere le frasi (le istruzioni)

deltaQuadro = b*b - 4*a*c; Delta Quadro = bb - ; 4a*c
SI NO

Segue le regole Non segue le regole
grammaticali grammaticali

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 2/93

... e Semantica

Una frase scritta grammaticalmente bene puo avere un significato, oppure
no:

Lucilla mangia la mela VS. La mela mangia Lucilla

La SEMANTICA ¢ il significato dell'istruzione ... e anche il significato deve
essere giusto, per avere un programma corretto

primoNum = 16; primoNum= "miao";
SI (se primoNum e’ un simbolo associabile ad un intero) NO (nella stessa ipotesi)
stampaIntero(47); stampaIntero(4a7.6);
SI (probabilmente) NO
sqrt(47.1); sqrt(marco)

) boh, dipende da cosa e’ marco

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 3/93

Memento

Quando un programma viene esequito,
viene eseguita la sequenza delle sue istruzioni,
una istruzione alla volta ... secondo la sequenza

finché il programma finisce
oppure va in crash

Di solito noi scriviamo da sinistra a destra e
dall'alto verso il basso ...

e |'esecutore delle istruzioni si adegua: quello e
|"'ordine di esecuzione delle istruzioni

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 4/93

MEMENTO (gia visto ...)

-ANALISI: QUALI dati? FATTI come (struttura)?
- INPUT
- OUTPUT

numeri reali (double)
numero reale
-dati per calcoli intermedi
-idea: prod €« b*h

area < prod/2

SINTESI ... =

1) prendere da INPUT (LETTURA) i

valori da associare a b e h

2) calcolare prod (ASSEGNAZIONE)
3) calcolare area (ASSEGNAZIONE
4) fornire in OUTPUT (SCRITTURA) il

valore di area

B ' C\Users\marco\Desktop\MARCO\MARCO\c...

altezza = 5 e' 308

Process exited after 6.851 seconds with return value ©
ress any key to continue .

Sviluppo di un programma

PROGRAMMAZIONE ... =
#include<stdio-h>'<:>
int main() {
double b, h;
double area;
double prod;
scanft("%lf %I, &b,
prod = b*h;

area = prod/2;

printf("'il valore dell"area di un
triangolo avente base = %g e
w altezza = %g e %g\n", b, h,

area); °

n O;

programma
eseguibile
ottenuto a partire
dal programma C

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 5/93

— OUTPUT

ISTROZIONE DI STAMPA
E POSSIBILE SCRIWERE UN'ISTRUZIONE Bb) sTAHPA !

=) LA SEMANTICA DI UN'ISTRUZONE DI STAHPA € CHE VIENE STAMPATO
"auatcosA’ (UNA FRASE, UN VALORE ...) SuLLO SCHERMO DELL LTENTE

[&un DENTRO CI VA aAavelw
CHE VLol STAMPARE

=y LA SINTASSI E puntf (), FRA DOPPI APICI,

printf("STATE IMPARANDO UN SACCO DE ROBBA!"); QUELLD CME SCRWE IL PROGLAAMMATORE

!frfe Signals Help

AUELLD CHE VEDE L' UTENTE CHE
ESEGLE L. PROGRAMMA

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 6/93

Lettura, cioe ricezione di dati da INPUT

i dati si “leggono” da INPUT; in Memoria (RAM) i dati memorizzati nelle
locazioni si ottengono “accedendo” alle locazioni

LA FUNZIONE SCAW{ PERMETTE DI LEGLERE VALOR! IMMESSI DRLL'UTENTE.
swrnssi: scang (M% Forraro”, & varingILE)

® % FORMATO INDICA . FORHATO DE\ VALOR\ DA LEGGERE
(Ab €S. % d PER LEGGERE UN INTERO) COHE PER printf

° &VﬁRIABILE INDICA L' 1nDIR1ZZ0 DELLA MEMORIAR AL QUALE SI TROVA LA VARIABILE
SEMANTICA ;| 1L PROGRAMMA 5! PoME (M ATTESA CHE L'UTENTE INTRODUCA UN
VALORE CON FORMATO d/ GUANDO L UTENTE INTRODUCE UN Vi ‘I'ALE VALORE
VIENE | IRIZZATD NELLA VARIABILE 1L Cut mumzo E &\mmaml_e

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 7/93

sempre sulla lettura ...

ANALOGLAHENTE AD UNA (STROZIONE D) ASSEGNAZIONE | UNA LETTURA HA COHE EFFETTO
QUELLO D' MEMORIZEZEARE UN VALORE IN UNA VARIABILE,

PER COMUNICARE ALL'UTENTE CHE DEVE IMWETTERE DE! VALORL, UNA ISTRUZIONE B)
LETTURA € IN GENERE PRECEDVUTA BA UMRA (STRUZIONE DI STAHPA,
/* questo programma, ricevendo in INPUT i lati significativi di un rettangolo,

ne calcola e stampa in OUTPUT L'area */
#include <stdio.h>

int main () {
int primolLato, secondolato, /* 1 lati da ricevere via INPUT */
 area; /¥ risultato ... ¥/

/* lettura dei dati */
printf (" Oh utente, forniscimi gentilmente ..., che cosi’ ci lavoro:\n ");
scanf("%d %d", &primolLato, &secondolLato);

/* calcolo dell 'area */
area = primolLato*secondolato; /* calcolo */

printf (" ... di lati %d e %d ha area %d\n", primolLato, secondolLato, area);

printf ("\nFINE");
return @;

¥

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 8/93

Istruzioni, funzioni e librerie

L"istruzione di stampa” discussa prima consiste in realta’ [
in una chiamata alla funzione printf.

"Chiamare una funzione" significa "richiedere I'esecuzione della funzione” ...

printf() e’ una funzione non direttamente esistente nel linguaggio C,
ma disponibile in un modulo di programma (libreria).

Per cui nel programma, all'inizio, dobbiamo indicare la libreria della quale ci serviremo
(le cui funzioni chiameremo nel programma), attraverso una direttiva include

#include <stdio.h>

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione

9/93

Istruzioni, funzioni e librerie

L"istruzione di stampa” discussa prima consiste in realta’ §
in una chiamata alla funzione printf.

"Chiamare una funzione" significa "richiedere I'esecuzione della funzione” ...

printf() e’ una funzione non direttamente esistente nel linguaggio C. Per usarla
bisogna indicare nel programma dove la sua definizione e il relativo codice eseguibile
possono essere trovati.

Queste definizioni sono disponibili framite la “libreria di input/output” stdio.h

Esistono molte librerie, contenenti funzioni definite per gli scopi piu’ diversi, ed utili nella
costruzione dei programmi.

Una libreria ("library") ' il modulo software (parte di un programma, predefinita e
disponibile nell'ambiente di programmazione, che usiamo per fare i programmi).

E" una collezione di programmi gia® fatti che possiamo usare nei nostri programmi ... possiamo
anche scrivere una libreria per conto nostro, e poi usarla in un programma

Per cui nel programma, all'inizio, dobbiamo indicare la libreria della quale ci serviremo
(le cui funzioni chiameremo nel programma), attraverso una direttiva include

#include <stdio.h>

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 10/93

SPAZI € RITORN! R CAPO

-

LO SPAZO E UN CARATTERE COME TUTTI GLI ALTRI E COME TALE VA TRATTATO'

printf("STATE");
printf("IMPARANDO");
printf("UN");
printf("SACC0");
printf("DE");
printf("ROBBA!");

LE ISTAVZIONI pvum,tf SUCCESSIVE. ALLA PRIMA SCRIVONO R PARTIRE DALLA POSIZIONE
NELL' OUTPUT (MMEDIATAHENTE SuccESsiva A QUELLA DELL' ULTIMO CARATTERE SCRITTO
DALL' ISTRUZIONE P'tnq.t{- mecenenre

printf("STATE IMPARANDO \nUN SACCO DE ROBBA!");

PER ANDARE A CAPO, SI UTILIZZA (L
- \n

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 11/93

VARIABILE

.
IN MATEWATICA , UNA VARIABILE E UN CRRATTERE ALFRGETICO (HE RAPPRESENTA
UN NUMERD ARBITRARIO, SCONOSCIVTO, 0 NON COMPLETAMENTE SPECIFICATD,

\

IN INFORNATICA , UNA VARIABILE E UNAR PORZIONE DI MEMORIA DESTINATA
A CONTENERE DEI DATI (HE POTRANND ESSERE RCEDUTI © MODIFICATI DURANTE
L'ESECUZIONE DI UN PROGRAMMA.

IN MAMERA PIV SEMPLICE :

IN INFORMATICA, UNR VARIAGILE E UN CONTENITORE DI VALOR!

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 12/93

Piu’ Imente ...
iu” formalmente Concetto di VARIABILE

Una variabile, in un programma, € contemporaneamente

- Un IDENTIFICATORE

- Una LOCAZIONE di memoria
contraddistinta da un INDIRIZZO!

- Un VALORE
int altezzaMarco; /* identificatore: altezzaMarco
locazione riservata In memoria, con un certo
indirizzo (000000000010111010)
valore contenuto nella locazione 186 */
Memoria
000000000000111111
000000000010111010 000000000010111010 altezzaMarco
000000000001000001

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 13/93

Piu' formalmente ..
Concetto di VARIABILE

Una variabile, in un programma, € contemporaneamente
- Un IDENTIFICATORE cioe il nome della variabile, usato nel

programma per ... usarla
- Una LOCAZIONE di memoria

cioe l'area della RAM, riservata per
ella variabile, in cui si memorizzano /
ono i valori associati alla variabile (i
ntenuti nella variabile). Questa e

int tezzaMarco;

locazione riservata i emoria, con un certo
indirizzo
valore contenuto nelda ione */
emoria
/ 00000000000011111
00000000001@111010 000000000000100000 altezzaMarco

000000000001000001

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione

14/93

Piu’ Imente ...
iu” formalmente Concetto di VARIABILE

Una variabile, in un programma, & contemporaneamente
- UnIDENTIFICATORE cioe il nome della variabile, usato nel programma per ... usarla

- Una LOCAZIONE di memoria cioe I'area della RAM, riservata per quella variabile, in
cui si memorizzano / accedono i valori associati alla
variabile (i valori contenuti nella variabile). Questa &
contraddistinta da un INDIRIZZO!

- Un VALORE il valore contenuto nella locazione associata alla variabile

int altezzaMarco;

/* dichiarazione di una variabile denominata altezzaMarco; quando Iniziera
I"esecuzione del programma, verra riservata in memoria una locazione, capace di
contenere un intero rappresentato in forma binaria (complemento a 2); questa
locazione avra un certo indirizzo. Quando si vuole memorizzare 1l valore 186 nella
variabile (assegnazione), si memorizza 186 nella locazione. Quando si vuole usare il
contenuto della variabile, ad esempio per stamparlo In OUTPUT, si accede alla
locazione e si usa 1l valore i contenuto. */

000000000000111111
000000000010111010 000000000000100000, ~ altezzaMarco
| / o~ 000000000001000001 \

/
VALORE LOCAZIONE

identificatore
indirizzo

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 15/93

Piu' formalmente ...
Concetto di VARIABILE

Una variabile, in programma, € contemporaneamente
- Un IDENTIFICATORE cioe il nome della variabile, usato nel
programma per ... usarla)

- Una LOCAZIONE di memoria cioe l'area della RAM, riservata per
quella variabile, in cui si memorizzano /
accedono i valori associati alla variabile (i
valori contenuti nella variabile). Questa e
contraddistinta da un INDIRIZZO!

- Un VALORE il valore contenuto nella locazione associata
alla variabile

int altezzaMaxsas £ diobioroziono di oo s iobilo obionoso
Stteszalarco- o Se st ha una variabile altezzaMarco,

di contenere un I"espressione per disporre dell*indirizzo della
ocazione avra’ locazione associata fa uso dell"operatore di plla

pace

variabile (assel . SIReE to & 2dere
i1l valore conte inarrizzamento e. */
NB I”indirizzo di una
OOOO 1111 variabile, si scrive con

0000000000010000 I”espressione
et 200000000001000001 }fezzal\/larco 16/93

E che ci faccio con una VARIABILE?

Visto che una variabile rappresenta nient'altro che una locazione della RAM
.. Ci si accede (per vedere che valore c'é) o ci si memorizza un valore ...

n
I
Y y =x3 YV Ag | =% 5 Audf
}. o
e A * i1 |
q .
x x

17/93

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione

E che ci faccio con una VARIABILE?

Visto che una variabile rappresenta nient'altro che una locazione della RAM
.. Ci si accede (per vedere che valore c'€) o ci si memorizza un valore ...

NB

Se si memorizza qualcosa in una variabile
(cioe si ASSEGNA un VALORE ad una VARIABILE)

il valore precedentemente contenuto nella variabile ... non c'é piu (c¢'e quello
che abbiamo assegnato or ora ...)

s| = 5 A

X *

Se si accede al VALORE di una VARTABILE (ad esempio per assegnarlo ad
un'altra variabile), dopo I'accesso il valore sta ancora nella variabile ... gli

accessi hon sono «distruttivi»
by Y =X§ y

x

18/93

NOME o IDENTIFICATORE
LE VARIABIL! HANNO UN NOME CHE PERMETTE DI IDENTIFICARLE.

- OaN| VARIABILE DOEVE AVERE UN NOME DIVERSO

= IL. NOME DOVREGBE EfSERE ESPLICATIVO DELLO SCOPO DELLA VARIABILE
ES: discriminante E uN NOME MIGLIORE DI 2aX23Dd PER UNA VARIABILE
-
CHE E DESTINATA A MEMORIZZARE IL DISCRIMINANTE D! un'EQUAZIONE DI 2° GRADD

~
- UN NOME E UNA SEQVENZAR DI CARATTER\ RALFANUMERICI , IL Cvi PRIMO

CARATTERE DEVE ESSERE ALFARETICO (OPPURE UN UNDERSCORE —) E
IN GENERE E PREFERIBILNENTE ALFABETICO MINUSCOLO . OaNI PAROLA CWE

COSTITVISCE I. NOME, DOPO LR PRIMA, DOVREBBE INIZIARE CON UNA MRILSCOLA
ES: radiceRealel, primoNumeroDellaSequenza, minimoCorrente, sequenza?Numeri

Maiuscolo

camel notation /‘\/\/

minuscolo
19/93

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione

le variabili hanno un tipo

-ANALISI: QUALI dati? FATTI come (struttura)?
- INPUT numeri reali (double)
- OUTPUT numero reale

-dati per calcoli intermedi
-idea: prod € b*h
area € prod/2

SINTESI ... =

1) prendere da INPUT (LETTURA) i

valori da associare a b e h

2) calcolare prod (ASSEGNAZIONE
3) calcolare area (ASSEGNAZIONE

)

4) fornire in OUTPUT (SCRITTURA) il

valore di area

PROGRAMMAZIONE ... =
#include<stdio.h>
int main() {
double b, h;
double area;
double prod;

scant("%lT %If", &b, &h); Q
b*h;

prod/2; e

prod =

area =

printf(""i1l valore dell"area di un

triangolo avente base =

%g e

INPUT ——

programma C

altezza = g e" %g\n'", b, h,
area);

return O;

+
— OUTPUT

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione

20/93

Tipo

LE VARIABILI HANNO UN TIPO CHE RAPPRESENTA L'INSIEME DE! VALOR!I CHE

LA VARIABILE PUO ASSUMERE E L'INSIEHE DI OPERAFON! PERMESSE SU QUES

VALOR) ,
Alcuni tipi

int

float

double

char

un sottoinsieme dei numeri interi (futti quelli rappresentabili
in forma binaria, in complemento a 2, in una certa quantita di

memoria (stabilita di solito dallambiente di programmazione
.. di solito 32 bit ...)

un sottoinsieme dei numeri reali (tutti quelli rappresentabili
in forma binaria, in Floating Point, in una certa quantita di
memoria ... es. non meno di 32 bit ...)

un sottoinsieme dei numeri reali (tutti quelli rappresentabili
in forma binaria, in Floating Point, in una certa quantita di
memoria ... >= float ... per noi 64 bit ...)

un sottoinsieme dei caratteri alfanumerici: una

locazione dedicata a valori di questo tipo e’ di solito di 1 byte
21/93

D |Ci‘“ nan'thNE. ;_M“ STE=EE “ : |

PER POTER ESSERE UTILIZZATE, LE VARIABILI VANNO
DICHIARATE (OPERAZIONE CHE CORRISPONDE R DIRE
“UTILIZZERO UNA VARIABILE X Bl TiPo ant ¥ OPPURE

“UTILZZERO UNR VARIABILE humeroReale b1 TIPO {-Coa.t“),

SINTRSS! : tipo mome;
EseMPl : Anb x; floal wadice; int g, numero, resto;
SF_Mmmcn LA OICHIARAZIONE SERVE A DIRE AL CALCOLRTORE :

" UTILIZZERO UNA VRRIABILE home DI TIPo tpo , QUINDI PREPARA UN
CONTENITORE (un'RREA DI MEMORIA) PER yALOR! D1 TIPO Lipo CON NOME home ”

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 22/93

DICMIARAZIONE

LA 2iciarazioNE DI UNA VARIABILE COMPORTA LA 'ALiochzionc”’ IN MEMORIA
CENTRALE DI UNO SPARIO, DESTINATo A MEMORIZZARE | VALOR!I ASSUNTI DALLA
VARIABILE DURANTE L' ESECUZIONE DEL PROGRAHMA .

LIVELLD LODGICO LIVELLD FISICO

INDIRQIZZO0 CONTENJUTO
=l &x

LR

IL TIPO DI UNA VARIABILE DETERMINA AUALI VALOR! LA VARIABILE FUD CONTENERE,
AUALL DPEAATIONT SI POSSONO EFFETTUARE SullA VARIABILE E JduanTo SPAZI0 VIENE
ALLOCRTO IN HEMORIA PER LA VARIAGILE STESSA.

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione

23/93

Istruzione di Assegnazione

E' 'operazione che provoca la MEMORIZZAZTIONE di un VALORE nella
VARIABILE.

Sintassi
nomeVariabile = espressione;

Esempi
x=11; y = (X/5) + 27,
Semantica I'espressione viene valutata ed il valore risultante viene
memorizzato nella locazione associata alla variabile

11 INDIQVZZ0 CONTENUTO

0000 000D

ZradlhNazlone

24/93

Assegnhazione
E' l'operazione che provoca la MEMORIZZAZTIONE di un VALORE nella

VARIABILE.

Sintassi

LEFT VALUE
(indirizzo) RIGHT VALUE
— / (valore)
nomeVariabile = espressione

Esempi

una espressione e una scrittura che puo combinare operatori
ed operandi, oppure rappresentare I'accesso ad una singola
variabile; la «esecuzione» di una espressione si chiama
«valutazione» e da’ luogo ad un valore (di un certo tipo).

x=11; y=(x/5) + 27;
radiceRealel=(-b + sgrt(b*b — 4*a*c)) / (2*a)

Semantica

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione

I'espressione viene valutata ed il valore risultante viene
memorizzato nella locazione associata alla variabile

LWWELLD LDGICO LWELLD FisSico

=

Approfondimento: Espressione!

nomeVariabile = espressione;

una espressione € una scrittura che puo combinare operatori
ed operandi, oppure rappresentare I'accesso ad una singola
variabile; la «esecuzione» di una espressione si chiama
«valutazione» e da’ luogo ad un valore (di un certo tipo).

Esempi
x=11: y = (X/5) + 27,
radiceRealel = (-b + sgrt(b*b — 4*a*c)) / (2*a);
| *
| o e e . I

|

Anche queste sono espressioni

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 26/93

ACCESSO

OPERAZIONE CHE PERMETTE D! ACCEDERE AL VALORE Tr’/—

MEMORIZZATO ALL' INTERNO DI UNA VARWABILE.

SINTASS! ¢ mome OVVERO L'ACLESSO AD UN VALORE MEMORIZZATO DR UNA
VARIABILE SI FA SCRI\VENDD .. NOME DELLA VARIABILE

REGOLA : SE home COMPARE A SINISTRA DI UN OPERATORE DI ASSE4GNAZIONE
LA VAR\ABILE VIENE USATA PER NEMORIZZARE UN VALORE. ALTRIMENTI, LA
VAR\AGILE VIENE VSATA PER ACCEDERE AL VALORE CHE MEMORIZZA.

SEMANTICA : UTILIZZA IL VALORE MEMORIZEATO IN home RL POSTO DI home
NELLA PORZIONE DI COMCE IN cul LR VARIABILE COMPARE.

Esempio: y=(x/5) + 27,

viene acceduto il valore di x; questo valore viene diviso per 5, e si
ottiene il valore della sotto-espressione (x/5); a questo valore viene
aggiunto 27 e si ottiene il risultato della valutazione dell’espressione

a destra:

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 27/93

ourProgram.c

/* programma che esegue la somma dei valori contenuti in due variabili intere,
assegnando i1l risultato ad una terza variabile, che pol viene stampata */

#include <stdio.h>

int main () {
int primoNumero, secondo; /* 1 due Interi */
int ris; /* 1l risultato */

primoNumero =168;
secondo = 640;

ris = primoNumero + secondo; /* calcolo */

printf ("1l risultato di %d piu” %d e %d\n",

primoNumero, secondo, ris);

return O;

}

28/93

ourProgram.c

/* programma che esegue la somma dei valori contenuti in due variabili intere,
assegnando i1l risultato ad una viene stampata */

#include <stdio.h> Pr‘°_9f‘9mm0
principale

int main QO { W I
int primoNumero, secondo; /* 1 due Interi *
int ris; /* 1l risultato */

primoNumero =168;
secondo = 640;

ris = primoNumero + secondo; /* calcolo */

printf (il risultato di %d piu® %d e %d\n",
primoNumero, secondo, ris);

return O;

}
\

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione

29/93

ourProgram.c

/* programma che esegue la somma dei valorl contenutl in due variabili iIntere,

assegnando i1l risultato ad ur
#include <stdio.h>

int main OQ[{

Corpo (body) del
programma

Dol viene stampata */

InNt ris;

primoNumero =168;
secondo = 640;

return O;

}

int primoNumero, secondo; /* 1

due 1Interi1 */

/* 1l risultato */

ris = primoNumero + secondo;

printf (il risultato di %d piu-”

/> calcolo */

%d e %d\n",

primoNumero, secondo, ris);

{ } racchiudono un

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione

BLOCCO di istruzioni —

30/93

ourProgram.c

/* programma che esegue la somma dei valori contenuti in due variabili intere,
assegnando i1l risultato ad una terza variabile, che pol viene stampata */

#include <stdio.h>
DICHIARAZIONI DI VARIABILI

int main () {
iInt primoNumero, secondo, /* 1 due Interi */
/* 1l risultato */

primoNumero =168;
secondo = 640;

int ris;
ris = primoNumero + secondo; /* calcolo */

printf ('il risultato di %d piu %d e %d\n",
primoNumero, secondo, ris);

return O;
} /* COMMENTT */

Non sono istruzioni, non verranno "esequite" ... ma sono importantill

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 31/93

ourProgram.c DICHIARAZIONI VANNO MESSE
DI VARIABILI ALL'INIZIO

#include <stdio.h>
int main O {

int primoNumero, secondo;

primoNumero =168;
secondo = 640;

int ris; |[NO
ris = primoNumero + secondo; /* calcolo */

printf (il risultato di %d piu %d e %d\n",
primoNumero, secondo, ris);

return O;

}

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 32/93

ourProgram.c

/* programma che esegue la somma dei valori contenuti in due variabili intere,
assegnando i1l risultato ad una terza variabile, che pol viene stampata */

#include <stdio.h>

DICHIARAZIONI DI VARTABILI

int main () {
iInt primoNumero, secondo, /* 1 due Interi */
int ris; /* 1l risultato */

primoNumero =168;
secondo = 640;

ris = primoNumero + secondo; /* calcolo */
printf ("1l risultato di %d piu %d e %d\n",
primoNumero, secondo, ris);

return O;

}

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione

33/93

ourProgram.c

/* programma che esegue la somma dei valori contenuti in due variabili intere,
assegnando i1l risultato ad una terza variabile, che pol viene stampata */

#include <stdio.h>

int main () {

Istruzioni di assegnazione

primoNumero =168;
secondo = 640;

ris = primoNumero + secondo; /* calcolo */

printf (il risultato di %d piu %d e %d\n",
primoNumero, secondo, ris);

return O;

}

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 34/93

ourProgram.c

/* programma che esegue la somma dei valori contenuti in due variabili intere,
assegnando i1l risultato ad una terza variabile, che pol viene stampata */

#include <stdio.h>

int main () {
int primoNumero, secondo; /* 1 due Interi */
int ris; /* 1l risultato */

primoNumero =168;
secondo = 640;

Espressione: un operatore e due operandi

ris = |primoNumero + secondo>\ /* calcolo */

printf (il risultato di %d piu %d e %d\n",
primoNumero, secondo, ris);

return O;

}

Un'espressione combina operatori ed operandi; viene VALUTATA
e da’ luogo ad un VALORE (il risultato della valutazione)

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione

35/93

ourProgram.c

/* programma che esegue la somma dei valori contenuti in due variabili intere,
assegnando i1l risultato ad una terza variabile, che pol viene stampata */

#include <stdio.h>

int main () {
int primoNumero, secondo; /* 1 due Interi */
int ris; /* 1l risultato */

pr imoNumero =168; Pero™ anche questa e’ unl' espér'essi?ne (64|0 e’ una "cos‘;am‘e
_ - numerica" inserita nel codice, il cui valore e’ ... 640).
secondo = 640; \ 640 viene assegnato a secondo.

ris = primoNumero + secondo; /* calcolo */

Un'espressione combina operatori ed operandi;

un operando puo’ essere
- una variabile (cui si accede): come in ... ris = primoNumero + secondo;

- o un valore costante (esempio: 640, 'r', 31.23 ... come in ris = primoNumero*24;)

- o un'altra espressione ("sotto-espressione"), da valuare a sua volta (es. 640 + 3*primo)

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 36/93

ourProgram.c

/* programma che esegue la somma dei valori contenuti in due variabili intere,
assegnando i1l risultato ad una terza variabile, che pol viene stampata */

#include <stdio.h>

int main () {
int primoNumero, secondo; /* 1 due Interi */
int ris; /* 1l risultato */

primoNumero =168;
secondo = 640;

ris = pr “Istruzione" di stampa /

printf ("1l risultato di %d piu %d e %d\n",
primoNumero, secondo, ris);
return 0O ; Veramente si tratta di una CHIAMATA DI FUNZIONE (una funzione di libreria - la libreria

delle funzioni di I/0 standard); e’ un MODULO, o sottoprogramma; il codice di questo

} sottoprogramma non sta qui, ma nella "libreria oggetto” corrispondente a stdio.h . Quando questa

funzione viene chiamata, 1) I'esecuzione del programma principale viene sospesa; 2) viene
eseguito il codice del sottoprogramma; 3) I'esecuzione del programma principale riprende.

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione

37/93

ourProgram.c

/* programma che esegue la
assegnando i1l risultato ad

#include <stdio.h>

somma dei valori contenuti In due variabili iIntere,
una terza variabile, che poi viene stampata */
DIRETTIVA diinclusione, in questo file, del contenuto di
stdio.h; questo “file header” contiene le dichiarazioni

= - delle funzioni della libreria di I/O standard, tra le quali
' m_: main _ O A1 . printf(). (non il codice di queste funzioni, quello sta nella
! nt pr ImoNumero, < libreria oggetto
int ris;

/77 11T FISUTtato *7/
primoNumero =168;
secondo = 640;

ris = primoNumero + secondo; /* calcolo */
printf ("1l risultato di %d piu %d e %d\n",
primoNumero, secondo, ris);

return O;

}

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione

38/93

ourProgram.c

/* programma che esegue la somma dei valori contenuti in due variabili intere,
assegnando i1l risultato ad una terza variabile, che pol viene stampata */

#include <stdio.h>

int main () {

STOP

return O;

Anche il programma principale e* una funzione ... la funzione "main"“.

Quando la sua esecuzione termina, I'struzione return passa all'esterno (a
chi ha chiesto 'esecuzione del programma; al Sistema operativo ...) un

valore ... di solito zero

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione

39/93

Quale algoritmo rappresenta ourProgram.c ??

/* programma che esegue la somma dei valori contenuti in due variabili intere,
assegnando i1l risultato ad una terza variabile, che pol viene stampata */

#i1nclude <stdio.h>

int main) {
int primoNumero, secondo; /* 1 due interi */
iInt ris; /* 1l risultato */

primoNumero =168;
secondo = 640;

ris = primoNumero + secondo; /* calcolo */

printf (""'il risultato di %d piu %d e %d\n',

primoNumero, secondo, ris);

return O;

}

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione

40/93

Quale algoritmo rappresenta ourProgram.c ??

0) Servono primoNumero e secondo e ris (strutture dati ...)
1) Assegna primoNumero con 168

2) Assegna 640 a secondo

3) Assegna a ris il risultato di primoNumero+secondo

4) Stampa ris

5) Fine

Come sarebbe il programma corrispondente in linguaggio macchina?

Quale preferiamo scrivere?
Quello in C, esatto.

Perché?

41/93

Quale algoritmo rappresenta ourProgram.c ??

0) Servono primoNumero e secondo e ris (strutture dati ...)
1) Assegna primoNumero con 168

2) Assegna 640 a secondo

3) Assegna a ris il risultato di primoNumero+secondo

4) Stampa ris

5) Fine

Come sarebbe il programma corrispondente in linguaggio macchina?

Quale preferiamo scrivere?
Quello in C, esatto.

Perché?

Perché scrivere un programma direttamente in LM ¢ difficile, poco naturale per un
umano, costringe a gestire direttamente la memoria, ... gia ci basta il C

42/93

Pausa di riflessione, e discussione su
come effettivamente un programma in
C diventa un programma eseguibile, in
esecuzione nel computer

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 43/93

Pregi di un LINGUAGGIO AD ALTO LIVELLO

IL C e un linguaggio ad alto livello, termine contrapposto a «basso
livello» cioe quello della macchina.

Un programma scritto in LINGUAGGIO AD ALTO LIVELLO,

- & piu simile al linguaggio naturale e al modo in cui pensiamo ai
problemi ... ci permette di usare espressioni e istruzioni piu’ simili alle
notazioni (matematiche) che usiamo di solito; usiamo parole (le
PAROLE CHIAVE del linguaggio) che ci sono vicine e comprensibili (if,
while, for, repeat, until, do .. non tutte del C) .. o comunque piu
vicine a noi di quanto non sia 0001000

- Portabile (lo stesso programma funziona su qualsiasi macchina, mentre
un programma in LM funziona con le CPU che usano quel LM). Come
questo succeda si vede tra poco.

Si', CPU diverse hanno linguaggi diversi ...
44/93

Dal programma in C al programma eseguito - 1/3

programma - programma
[sorgente I > compi ler [oggetto

ourProgram.c Iinguaggio macching, con

linguaggio ad alto livello o _ Indirizzi non assoluti (cioe’
segnalazione di errori “relativi ad un indirizzo base

non assegnato™)

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 45/93

Dal programma in C al programma eseguito - 1/3

programma : programma
sorgente compi ler oggetto

ourProgram.c linguaggio macchina, con

linguaggio ad alto livello indirizzi non assoluti (cioe’
segnalazione di errori “relativi ad un indirizzo base

non assegnato™)

Nel programma ci sono inclusioni di librerie (cioé di insiemi di funzioni, definite da altri ma che ci fanno
comodo e che usiamo nel programma («chiamando» quelle funzioni).

O anche riferimenti a funzioni sviluppate da noi, e che noi vogliamo usare nel programma.

Le funzioni che noi definiamo nel programma (nel file .c) e quelle definite da noi o da altri nelle librerie
incluse nel programma, sono anche chiamate «moduli» del programma.

| moduli che abbiamo scritto nel file (piu avanti parleremo di questo moduli: le funzioni) hanno codice
sorgente che verra compilato.

I moduli esterni vanno compilati a parte ed uniti poi al risultato della compilazione del nostro programma.

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 46/93

Dal programma in C al programma eseguito - 2/3

(Moduli oggetto da Iibrer& programma oggetto

Proveniente da
ourProgram.c
modulo) \09getto
modulo modulo] Programma eseguibile
N j linker (rilocabile):

ourProgram.exe

Run ourProgram/V\r>

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione

47/93

Dal programma in C al programma eseguito - 2/3

(Moduli oggetto da Iibrer& programma oggetto

Proveniente da
ourProgram.c

] Programma eseguibile
linker (rilocabile):

ourProgram.exe

Per ottenere un programma eseguibile bisogna prima unire tutti i moduli oggetto: quello del nostro programma, ottenuto con la sua
compilazione (andata bene ...), e quelli delle funzioni esterne, cioé quelle non scritte da noi nel file ourProgram.c.

Questa unione si chiama collegamento (linking) e viene eseguita quando tutti i moduli sono stati compilati e quindi hanno un codice oggetto
disponibile.

Per il nostro programma, la compilazione dobbiamo attivarla noi; invece per le funzioni definite nelle librerie la compilazione e automatica e
viene curata dall’ambiente di programmazione in cui lavoriamo (come il DEV).

Il risultato del linking & il programma «rilocabile», cioé in sostanza il programma completo di tutte le sue parti, in linguaggio macchina, ma
con gli indirizzi che sono tutti definiti rispetto ad un indirizzo base (non ancora noto: sara noto solo quando effettivamente piazzeremo il
programma nella memoria — "caricamento”, "loading” - quindi per ora si assume zero).

Ora il programma puo essere eseguito.

L'indirizzo base viene definito quando il programma viene caricato in memoria centrele (a partire proprio da quel certo indirizzo), cioe' al

"Run” Run ou rProgram/V\oé

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione

48/93

Dal programma in C al programma eseguito - 3/3

(Moduli oggetto da Iibrer&

programma oggetto
Proveniente da
ourProgram.c

printf
oggetto oggetto
modulo modulo
i)

Run ourProgram |\ loader

Programma eseguibile
(rilocabile):
ourProgram.exe

Il programma viene caricato in memoria centrale, a partire da un indirizzo (occupando
una zona libera). Ora tutti gli indirizzi usati nel programma oggetto diventano assoluti
ed il programma in linguaggio macchina viene eseguito (vedi la parte di architettura, e

in particolar modo il processore.

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione

49/93

ourProgram algorithm ... without input ...

0) Servono primoNumero e secondo e ris (struttura dati ...)
1) Assegna primoNumero con 168

2) Assegna 640 a secondo

3) Assegna a ris il risultato di primoNumero+secondo

4) Stampa ris

5) Fine

.. and with input

Versione con INPUT ?2??

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 50/93

ourProgram algorithm ... without input ...

0) Servono primoNumero e secondo e ris (struttura dati ...)
1) Assegna primoNumero con 168

2) Assegna 164 a secondo

3) Assegna a ris il risultato di primoNumero+secondo

4) Stampa ris

5) Fine

.. and with input

Versione con INPUT ?2??

0) (primoNum, secondoNum, ris ... i dati che usiamo
1) INPUT primoNum, secondoNum

2) ris = primoNum + secondoNum

3) OUTPUT ris

4) Fine

= Vogliamo fare il programmga ?

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazic 51/93

ourProgram.c with input

/* programma che esegue la somma di due valori interi letti da imput. |
valori sono letti 1In due variabili intere. La loro somma viene assegnata
ad una terza var, che pol viene stampata */

#include <stdio.h> passo O)
int main) {
int primoNumero, secondoNumero, /* 1 dati da input */
ris; /* risultato della somma */
return O;

}

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione

52/93

ourProgram.c with input

/* programma che esegue la somma di due valori interi letti da imput. |
valori sono letti 1In due variabili intere. La loro somma viene assegnata
ad una terza var, che pol viene stampata */

#include <stdiro.h> passo 1) (chiedere per avere e’ intelligente ..)

int main) {
iInt primoNumero, secondoNumero, /* 1 dati da i1nput */
ris; /* risultato della somma */

printf ("'Oh utente, scrivi due numeri e 1o 1 sommo: ");
scant("'%d %d'", &primoNumero, &secondoNumero);

return O;

}

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione

53/93

ourProgram.c with input

/* programma che esegue la somma di due valori interi letti da imput. |

valori sono letti 1In due variabili intere. La loro somma viene assegnata
ad una terza var, che poil viene stampata */

#include <stdio.h> passo 2)
int main) {
iInt primoNumero, secondoNumero, /* 1 dati da i1nput */
ris; /* risultato della somma */

printf ("'Oh utente, scrivi due numeri e 10 It sommo: ");
scanf("%d %d', &primoNumero, &secondoNumero);

ris = primoNumero + secondoNumero; /* calcolo */

return O;

}

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione

54/93

ourProgram.c with input

/* programma che esegue la somma di due valori

interi letti da imput.

valori sono letti 1In due variabili intere. La loro somma viene assegnata
ad una terza var, che poil viene stampata */

#include <stdio.h>

passo 3)

int main) {
iInt primoNumero, secondoNumero,

printf ('Oh utente, scrivi due numeri e 10 1 sommo: ');
scanf('%d %d", &primoNumero, &secondoNumero);

printf (' Stimato user, %d piu- %d e uguale a %d\n",

/* 1 dati da 1nput */
ris; /* risultato della somma */

ris = primoNumero + secondoNumero;

/* calcolo */

primoNumero, secondoNumero, ris);

return 0; passo 4)

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione

Vedi ora Approfondimenti PRIMA PARTE

55/93

Tecniche della Programmazione, lez. 3

Algoritmi e diagrammi di flusso

Flusso?

Non ci piace Il salto

Verso la programmazione Strutturata

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione

56/93

Algoritmo (again ...)

Abbiamo detto che e’ una sequenza di PASSI, operazioni, istruzioni ...
per risolvere un problema per il quale abbiamo una formalizzazione matematica

Pit schematicamente ci sono delle componenti da considerare

INFORMAZIONI relative al problema: rappresentate come DATI
(nel calcolatore, nell'algoritmo, nel programma)

- INPUT «+. (cosa sono? Vedi approfondimenti)
- Procedura Computazionale passi di calcolo ... uali sono> vedi appr.)
- OUTPUT vee (Pvedi.l)

Progettazione Algoritmo: attivita® creativa ...
Esecuzione Algoritmo: attivita® meccanica

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 57/93

"Esecuzione dell'algoritmo” (Flusso di esecuzione)

0) primoNumero, secondo, ris ... tutte le esecuzioni
1) Assegna primoNumero con 68 sono uguali ...
2) Assegna 64 a secondo | risultati non

3) Assegna a ris il risultato di primoNumero+secondo [HEUEEEIEEIS

. ad istanza ... e
4) S.Tampa ris nemmeno il flusso
5) Fine

Flusso di esecuzione: 1) 2) 3) 4) 5)

Versione con INPUT

0) (primoNum, secondoNum, ris ... i dati che usiamo
1) INPUT primoNum, secondoNum e
2) ris = pr'imoNum + secondoNum esecuzioni diverse, a seconda
3) OUTPUT ris dell'INPUT, ma comunque la
4) Fine

sequenza di passi e’ sempre la
medesima ...

Flusso di esecuzione: 1) 2) 3) 4)

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 58/93

Diagrammi di Flusso

Anche Diagrammi a Blocchi.
Un formalismo grafico per rappresentare algoritmi
(e sequire il flusso di esecuzione)

INPUT(primoNum,
Tstruzioni di INPUT/ OUTPUT / secondoNum) /
Direzione del Flusso di esecuzione \l

Istruzione generica ris = primoNum +
secondoNum

1) INPUT primoNum, secondoNum
2) ris = primoNum + secondoNum

3) OUTPUT ris .
4) Fine / OUTPUT (ris) /

Flusso di esecuzione: 1) => 2) —>3)—> 4)

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 59/93

Diagrammi di Flusso

Anche Diagrammi a Blocchi. Un formalismo grafico per rappresentare
algoritmi (e sequire il flusso di esecuzione)

1) Assegna primoNum con 68
2) Assegna 64 a secondoNum
3) Assegnaaris il risultato di

primoNum = 68

primoNum+secondoNum
4) Stamparis \1'
5) Fine

secondoNum = 64

v

ris = primoNum +
Flusso di esecuzione: 1) =>» 2) —>3) —>4) —5) secondoNum

v
/ OU'I_'PUT(r'is) /

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 60/93

Diagrammi di Flusso

Anche Diagrammi a Blocchi. Un formalismo grafico per rappresentare
algoritmi (e sequire il flusso di esecuzione)

7 e
1) Assegna primoNum con 68 /./
2) Assegna 64 a secondoNum - . _
3) Assegnaaris il risultato di (/ primoNum = 68
primoNum+secondoNum "
4) Stamparis N \1,
5) Fine S
"~ secondoNum = 64
\“
\
L e
.| ris = primoNum +
Flusso di esecuzione: 1) =>» 2)—>3) —=>4) —>5) | secondoNum
i v
"/.
Questi pallocchi sono un vecchio i / OUTPUT(ris) /
modo per simboleggiare il punto di =T :

entrata e di uscita dal programma

f—
f—
C—
f—
C—
C—
C—
f—

Li ometteremo in seguito

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 61/93

Algoritmo per l'eq. di secondo grado

Dati i coefficienti a,b,c di un'equazione di secondo grado, calcolare le
soluzioni reali, supponendo che esistano soluzioni reali.

0) i dati: a, b, ¢; i risultati, x1, x2 (supponiamo che esistano reali); i dati
intermedi deltaQuadro, ... 2*a, 4*a*c ...

1) INPUT (a, b, ¢)

2) ©

3) x1=meno b pit radice-di-deltaQuadro, tutto diviso 2-per-a

4) x2 = (-b - \/deltaQuadro) / 2*a

5) ©

© Scrivere qualcosa al posto di ©

62/93

Algoritmo per l'eq. di secondo grado

Dati i coefficienti a,b,c di un'equazione di secondo grado, calcolare le
soluzioni reali, supponendo che esistano soluzioni reali.

0) i dati: a, b, ¢; i risultati, x1, x2 (supponiamo che esistano reali); i dati
intermedi deltaQuadro, ... 2*a, 4*a*c ...

1) INPUT (a, b, ¢)

2) deltaQuadro = b*b -4*a*c

3) x1=formula per la prima soluzione

4) x2 = formula per la seconda soluzione
5) OUTPUT(x1,x2)

63/93

Algoritmo per l'eq. di secondo grado

Dati i coefficienti a,b,c di un'equazione di secondo grado, calcolare le
soluzioni reali, supponendo che esistano soluzioni reali.

0) i dati: a, b, ¢; i risultati, x1, x2 (supponiamo che esistano reali); i dati
intermedi deltaQuadro, ... 2*a, 4*a*c ...

1) INPUT (a, b, ¢)

2) deltaQuadro = b*b -4*a*c

3) x1=formula per la prima soluzione

4) x2 = formula per la seconda soluzione

5) OUTPUT(x1,x2)

© Diagramma di flusso? ©

64/93

Algoritmo per l'eq. di secondo grado

0) i dati: @, b, ¢; i risultati, x1, x2 (supponiamo che esistano reali); i dati
intermedi deltaquadro, ... 2*a, 4*a*c ...
1) INPUT (q, b, c) T
2) deltaQuadro = b*b -4*a*c \1,

3) x1=formula per la prima soluzione

4) x2 = formula per la seconda soluzione
5) OUTPUT(x1,x2)

©...

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 65/93

Algoritmo per l'eq. di secondo grado

0) i dati: q, b, ¢; i risultati, x1, x2 (supponiamo che esistano reali); i dati
intermedi deltaquadro, ... 2*a, 4*a*c ...

1) INPUT (q, b, c) T
v

2) deltaQuadro = b*b -4*a*c

3) x1=formula per la prima soluzione —
4) x2 = formula per la seconda soluzione deltaQuadro= b*b-4*a*c
5) OUTPUT(x1,x2) I

©...

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 66/93

Algoritmo per l'eq. di secondo grado

0) i dati: q, b, ¢; i risultati, x1, x2 (supponiamo che esistano reali); i dati
intermedi deltaquadro, ... 2*a, 4*a*c ...

1) INPUT (q, b, c) T
v

2) deltaQuadro = b*b -4*a*c

3) x1=formula per la prima soluzione —
4) x2 = formula per la seconda soluzione deltaQuadro= b*b-4*a*c
5) OUTPUT(x1,x2) \1,
_ —b+./deltaQuadro
x1 = a

v

©...

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 67/93

Algoritmo per l'eq. di secondo grado

0) i dati: q, b, ¢; i risultati, x1, x2 (supponiamo che esistano reali); i dati
intermedi deltaquadro, ... 2*a, 4*a*c ...

1) INPUT (q, b, c) T
v

2) deltaQuadro = b*b -4*a*c

3) x1=formula per la prima soluzione —
4) x2 = formula per la seconda soluzione deltaQuadro= b*b-4*a*c
5) OUTPUT(x1,x2) \1,
_ —b+./deltaQuadro
x1 = a

v

X2 = —b — \/deltaQuadro

2*xa

©...

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 68/93

Algoritmo per l'eq. di secondo grado

0) i dati: q, b, ¢; i risultati, x1, x2 (supponiamo che esistano reali); i dati
intermedi deltaquadro, ... 2*a, 4*a*c ...

1) INPUT (q, b, c) T
v

2) deltaQuadro = b*b -4*a*c

3) x1=formula per la prima soluzione —
4) x2 = formula per la seconda soluzione deltaQuadro= b*b-4*a*c
5) OUTPUT(x1,x2) \1,
_ —b+./deltaQuadro
x1 = a

v

X2 = —b — \/deltaQuadro

2*xa

v
/ OUTPUT(x1, x2) /

© Flusso di esecuzione per a=1, b=4,¢=1? ©

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 69/93

Algoritmo per l'eq. di secondo grado

0) i dati: q, b, ¢; i risultati, x1, x2 (supponiamo che esistano reali); i dati
intermedi deltaquadro, ... 2*a, 4*a*c ...

1) INPUT (q, b, c) T
v

2) deltaQuadro = b*b -4*a*c

3) x1=formula per la prima soluzione —
4) x2 = formula per la seconda soluzione deltaQuadro= b*b-4*a*c
5) OUTPUT(x1,x2) \1,
_ —b+./deltaQuadro
x1 = a

v

.) _ —b—,/deltaQuadro
Flusso di esecuzione per a=1, b=4, c=1: x2 = 2va

1)—>2)—>3) —>4) —>5) v
/ OUTPUT(x1, x2) /

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 70/93

Algoritmo per l'eq. di secondo grado

0) i dati: q, b, ¢; i risultati, x1, x2 (supponiamo che esistano reali); i dati
intermedi deltaquadro, ... 2*a, 4*a*c ...

1) INPUT (q, b, c) T
v

2) deltaQuadro = b*b -4*a*c
3) x1=formula per la prima soluzione

4) x2 = formula per la seconda soluzione deltaQuadro= b*b-4*a*c
5) OUTPUT(x1,x2) \1’
_ —b+./deltaQuadro
x1 = \1’ a
_ —b—,/deltaQuadro
Flusso di esecuzione per a=1, b=4, c=1: x2 = 2va
1)=>2)=—>3) —>4) —>5)

v
/ OUTPUT(x1, x2) /
OBS.

(per qualunque istanza il flusso e’ sempre quello ... anche se ovviamente input e output possono cambiare)

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 71/93

Algoritmo per il MCD

Dati due numeri interi, n, m, maggiori di zero, calcolare il Massimo Comun
Divisore.

BTW, MCD(9,81)=9, MCD(37,7)=1, MCD(6 4)=2;
MCD(6,4) ?

cosa sappiamo di certo su questo numero?

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 72193

Algoritmo per il MCD

Dati due numeri interi, n, m, maggiori di zero, calcolare il Massimo Comun
Divisore.

BTW, MCD(9,81)=9, MCD(37,7)=1, MCD(6 4)=2;
MCD(6,4)=?

Sicuramente & un divisore di 4 (non puo essere pit grande di4; 0 e 4 o0 & un
numero piu piccolo, al limite 1)

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 73/93

Algoritmo per il MCD

Dati due numeri interi, n, m, maggiori di zero, calcolare il Massimo Comun
Divisore. BTW, MCD(9,81)=9, MCD(37,7)=1, MCD(6 ,4)=2;

MCD(6,4)=?
- 4 divide sia 6 che 4? No

- 3? No
- 2?2 Sill

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 74/93

Algoritmo per il MCD

Dati due numeri interi, n, m, maggiori di zero, calcolare il Massimo Comun
Divisore. BTW, MCD(9,81)=9, MCD(37,7)=1, MCD(6,4)=2;

MCD(6 4)=?

Sicuramente & un divisore di 4 (non puo essere pit grande di4; 0 e 4 o0 é un
numero piu piccolo, al limite 1)

- 4 divide sia 6 che 4? No

- 3? No

- 2?2 Sill

0) i dati: n, m (input) e ris (in cui calcoliamo il MCD)
1) INPUT (n, m)

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 75/93

Algoritmo per il MCD

Dati due numeri interi, n, m, maggiori di zero, calcolare il Massimo Comun
Divisore. BTW, MCD(9,81)=9, MCD(37,7)=1, MCD(6,4)=2;

MCD(6,4)=?

Sicuramente e un divisore di 4 (non puo essere pit grande di 4; 0 ¢ 4 o & un
numero piu piccolo, al limite 1)

- 4 divide sia 6 che 4? No

- 3? No

- 2?2 5Sill

0) i dati: n, m (input) e ris (con cui calcoliamo il MCD)

1) INPUT (n, m) (inizializzazione di n ed m, mediante operazione di input)
2) ris = @ (inizializzazione di ris mediante assegnazione diretta)

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 76/93

Algoritmo per il MCD

0) i dati: n, m (input) e ris (con cui calcoliamo il MCD)
1) INPUT (n, m)
2) ris=©

3) SE ris «<DIVIDE n» E «<DIVIDE m» EUREKA!

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 77/93

Algoritmo per il MCD

0) i dati: n, m (input) e ris (con cui calcoliamo il MCD)
1) INPUT (n, m)

2) ris=©
3) SE ris «DIVIDE n» E «<DIVIDE m» EUREKA!
1) eureka e poi?
2) E senno?? Diciamo che "senno proseguiamo ma con un altro valore per ris"

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 78/93

Algoritmo per il MCD

0) i dati: n, m (input) e ris (con cui calcoliamo il MCD)
1) INPUT (n, m)

2) ris=©

3) SE ris «<DIVIDE n» E «<DIVIDE m» EUREKA!

eureka e poi?

E senno?? Diciamo che "senno proseguiamo ma con un altro valore per ris"
4) ris = ris -1

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 79/93

Algoritmo per il MCD

0) i dati: n, m (input) e ris (con cui calcoliamo il MCD)
1) INPUT (n, m)

2) ris=©

3) SE ris «<DIVIDE n» E «<DIVIDE m» EUREKA!

eureka e poi?
E senno?? Diciamo che "senno proseguiamo ma con un altro valore per ris"

4) ris = ris -1
.. € poi??

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 80/93

Algoritmo per il MCD

0) i dati: n, m (input) e ris (con cui calcoliamo il MCD)
1) INPUT (n, m)

2) ris=©

3) SE ris «<DIVIDE n» E «<DIVIDE m» EUREKA!

eureka e poi?
E senno?? Diciamo che "senno proseguiamo ma con un altro valore per ris"

4) ris = ris -1
E poi torna al passo 3

(+/- a questo punto del flusso abbiamo fatto tutti i calcoli e possiamo chiudere mandando in output il MCD)

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 81/93

Algoritmo per il MCD

0) i dati: n, m (input) e ris (con cui calcoliamo il MCD)
1) INPUT (n, m)

2) rs=Q 000000
3) SE ris «<DIVIDE n» E «<DIVIDE m» EUREKA!

eureka e poi?
E senno?? Diciamo che "senno proseguiamo ma con un altro valore per ris"

4) ris = ris -1
E poi torna al passo 3
5) OUTPUT(ris)

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 82/93

Algoritmo per il MCD

0) i dati: n, m (input) e ris (con cui calcoliamo il MCD)
1) INPUT (n, m)

2) ris=mINIMO tra n ed m
3) SE ris «<DIVIDE n» E «<DIVIDE m» EUREKA!

eureka e poi?
E senno?? Diciamo che "senno proseguiamo ma con un altro valore per ris"

4) ris = ris -1
E torna al passo 3
5) OUTPUT(ris)

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 83/93

Algoritmo per il MCD

0) i dati: n, m (input) e ris (con cui calcoliamo il MCD)
1) INPUT (n, m)

2) ris = minimo{n,m}

3) SE ris «DIVIDE n» E «DIVIDE m» EUREKAI

eureka e poi?
E senno?? Diciamo che "senno proseguiamo ma con un altro valore per ri

4) ris = ris -1
E torna al passo 3
5) OUTPUT(ris)

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione

Eureka che?? Vuoi dire
"ris & il MCD dei due
numeri*. Ok, ma poi
non dovremmo finire?

Eeeek, Come finisco?

Come ci arrivo al passo
5)?!

E Torna? Torna?!?!
Che vuol dire Torna?

... calma

84/93

Algoritmo per il MCD

0) i dati: n, m (input) e ris (con cui calcoliamo il MCD)
1) INPUT (n, m)

2) ris = minimo{n,m}

Vai? Torna? Ma il flusso
non é sequenziale? Dopo
la3celadolab??

3) SE ris «<DIVIDE n» E «<DIVIDE m»

<Vai al passo 5) con |'idea che |i finisce >

Senno prosegui naturalmente con il passo successivo
4) ris = ris -1

E forna al passo 3>

5) OUTPUT(ris)

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 85/93

Algoritmo per il MCD (il flusso di esecuzione)

Il flusso di esecuzione puo dipendere dal
verificarsi di condizioni durante i calcoli ...

1) 0)

Flusso di esecuzione per n=14, m=28:

9
© 5) 2)
Flusso di esecuzione per n=6, m=4: 3) 4)
@ usando questi pezzi

e traccirando 0) i dati: n, m (input) e ris

1l contenuto di 1) INPUT (n, m)
2) ris = minimo{n,m}
. 3) SE ris «<DIVIDE n» E «DIVIDE m»
Vai al passo 5) per finire
11 4) ris = ris -1

E torna al passo 3
res 5) OUTPUT(ris)

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 86/93

Algoritmo per il MCD (il flusso di esecuzione)

Il flusso di esecuzione puo dipendere dal verificarsi di condizioni durante i
calcoli ...

Flusso di esecuzione per n=14, m=28:
1)=> 2)—>3) —>5) e stampa 14

0) i dati: n, m (input) e ris
1) INPUT (n, m)
2) ris = minimo{n,m}

np_ 14 3) SE ris «DIVIDE n» E «DIVIDE m»
. — Vai al passo 5) per finire

4) ris = ris -1
Fis 14 E torna al passo 3

5) OUTPUT(ris)

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 87/93

Algoritmo per il MCD (il flusso di esecuzione)
Il flusso di esecuzione puo dipendere dal verificarsi di condizioni durante i

calcoli ...

Flusso di esecuzione per n=6, m=4:

1)=>2)-—>3) =>4) —>3) —> 4) —>3) —>bH)

N 6
m 4
ris 472

e stampa 2 perché ris e diventato 2

0) i dati: n, m (input) e ris

1) INPUT (n, m)

2) ris = minimo{n,m}

3) SE ris «<DIVIDE n» E «DIVIDE m»
Vai al passo 5) per finire

4) ris = ris -1
E torna al passo 3

5) OUTPUT(ris)

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 88/93

Algoritmo per il MCD (il flusso di esecuzione)

Il flusso di esecuzione puo dipendere dal verificarsi di condizioni durante i

calcoli ... 0) i dati: n, m (input) e ris

1) INPUT (n, m)

Flusso di esecuzione per n=14, m=28: gg 22 ;min{i)mI?/{In[,)né} BIVIE
rs « n» £ « m»
1)=>2)—>3)—>5) Vai al passo 5) per finire
4) ris=ris-1
Flusso di esecuzione per n=6, m=4: E torna al passo 3

5) OUTPUT(x1,x2)
1)=>2)—>3) =>4) —>3) => 4) =>3) =>b5)

1) NB

! Algoritmo = sequenza di passi
progettata per risolvere un

2) problema

\

3) Flusso di esecuzione = sequenza
\ dei passi effettivamente eseqguiti
4) durante |'esecuzione
dell'algoritmo su un'istanza del

5) problema

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 0993

Algoritmo per il MCD (il flusso di esecuzione)

Il flusso di esecuzione puo dipendere dal verificarsi di condizioni durante i

calcoli ... 0) i dati: n, m (input) e ris

1) INPUT (n, m)

Flusso di esecuzione per n=14, m=28: gg 22 ;min{i)mI?/{In[,)né} BIVIE
rs « n» £ « m»
1)=>2)—>3)—>5) Vai al passo 5) per finire
4) ris=ris-1
Flusso di esecuzione per n=6, m=4: E torna al passo 3

5) OUTPUT(x1,x2)
1)=>2)—>3) =>4) —>3) => 4) =>3) =>b5)

NB
. 1) . L
ris Algoritmo = sequenza di passi
[4 v v progettata per risolvere un
2) problema

\

3) Flusso di esecuzione = sequenza
\ dei passi effettivamente eseqguiti
4) durante |'esecuzione
dell'algoritmo su un'istanza del

5) problema

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione PIVISK|

Algoritmo per il MCD (il flusso di esecuzione)

Il flusso di esecuzione puo dipendere dal verificarsi di condizioni durante i

calcoli ... 0) i dati: n, m (input) e ris

1) INPUT (n, m)

Flusso di esecuzione per n=14, m=28: gg 22 ;min{i)mI?/{In[,)né} BIVIE
rs « n» £ « m»
1)=>2)—>3)—>5) Vai al passo 5) per finire
4) ris=ris-1
Flusso di esecuzione per n=6, m=4: E torna al passo 3

5) OUTPUT(x1,x2)
1)=>2)—>3) =>4) —>3) => 4) =>3) =>b5)

. 1) NB

INST ¥ It Algoritmo = sequenza di passi
2) progettata per risolvere un

nig 7 y problema

3
3) Flusso di esecuzione = sequenza
\ dei passi effettivamente eseqguiti
4) durante |'esecuzione
dell'algoritmo su un'istanza del

5) problema

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 91195

Algoritmo per il MCD (il flusso di esecuzione)

Il flusso di esecuzione puo dipendere dal verificarsi di condizioni durante i

calcoli ... 0) i dati: n, m (input) e ris

1) INPUT (n, m)

Flusso di esecuzione per n=14, m=28: gg 22 ;min{i)mI?/{In[,)né} BIVIE
rs « n» £ « m»
1)=>2)—>3)—>5) Vai al passo 5) per finire
4) ris=ris-1
Flusso di esecuzione per n=6, m=4: E torna al passo 3

5) OUTPUT(x1,x2)
1)=>2)—>3) =>4) —>3) => 4) =>3) =>b5)

. 1) NB
INST ¥ It Algoritmo = sequenza di passi
2) progettata per risolvere un
nig 7 y problema
3
3) Flusso di esecuzione = sequenza
\ dei passi effettivamente eseqguiti
ris 4) durante |'esecuzione
2 dell'algoritmo su un'istanza del
5) problema

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 92195

Ok, il flusso di esecuzione e’
il risultato del controllo cui viene sottoposta I'esecuzione di un algoritmo

ALGORITMO - SEQUENZA DI PASST CONTROLLATI D

\
Il controllo consiste nel determinare la sequenza di passi (istruzioni)z)
eseguiti/e ¥

3)
1) Di norma: un passo dopo l'altro, nell'ordine dei passi ‘LD
(la prossima istruzione da eseguire e quella immediatamente 4)

successiva a quella in esecuzione)
5)

2) Metodo Vintage: si usa un'istruzione di SALTO
(la prossima istruzione da eseguire e indicata dall'istruzione di salto).

3) Programmazione Strutturata o.Z Vedi ora

(si usano specifiche "istruzioni di controllo") Approfondimenti
SECONDA PARTE

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 93/93

Tecniche della Programmazione, lez. 3

- Approfondimenti PRIMA PARTE |

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 94/93

ourProgram.c - (DICHIARAZIONE CON INIZIALIZZAZIONE)

/* programma che esegue la somma dei valori contenuti in due variabili intere,
assegnando i1l risultato ad una terza variabile, che pol viene stampata */

#i1nclude <stdio.h>

int main) {
int primoNumero=168, secondo=640, ris; /* gli interi .*/

ris = primoNumero + secondo; /* calcolo */
printf ("il risultato di %d piu %d e %d\n",
primoNumero, secondo, ris);

return O;

}

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione

95/93

Paginainizis.com

Costanti COSTANTE
L Orso -

: Per l'onomanzia Costante corrisponde alOrse. |
, Sono delle persone che appaiono forti, ma che;
" hanno in realtad un %ran bisogno di affetto e
sicurezze; sono molto legati alla famiglia e 2
qurodigano per i propri cari.

T

Una costante e un IDENTIFICATORE
che viene associate ad un VALORE

mym,
1l
m2
G =6,67-10" N-—
kg?

prima della compilazione del programma, e che successivamente manterra’ quel

valore per tutta la durata dell'esecuzione del programma.

conveniente se quel valore appare tante volte nel programma ...

e poi magari serve che sia diverso in una versione lievemente diversa del programma.

#define PI 3.14159

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione

96/93

Costanti COSTANTE

| Orso
Per l'onomanzia Costante corrisponde alOrse. |
. Sono delle persone che appaiono forti, ma chegs

" hanno in realtad un %ran bisogno di affetto e 3§
sicurezze; sono molto legati alla famigliae 88
shpmdlgano per i propri cari.

m2
G =6,67-10" N-—
kg?

Una costante e’ un IDENTIFICATORE
che viene associate ad un VALORE
prima della compilazione del programma, e che successivamente manterra’ quel
valore per tutta la durata dell'esecuzione del programma.

Ogpni volta che, nel programma, viene usato l'identificatore di quella costante, e’ il
valore corrispondente che viene usato.

L'uso di una costante e’ conveniente quando un certo valore deve essere scritto
esplicitamente in un programma numerose volte, e magari da questo programma si
potrebbe ottenere un altro programma solo variando il valore della costante.

#define PI 3.14159 Esercizio .. | | _
/* programma che chiede e legge da input i

raggi di tre circonferenze e produce per

ciascuna circonferenza la relativa area */
Vedi il programma cerchi.c ... nella nostra geometria PI ha un certo valore (r) e 1o usiamo per calcolare
I'area di tre circonferenze, usando PI ripetutatmente. Il medesimo programma potrebbe essere usato in
una geometria diversa, in cui PI e’ diverso, semplicemente cambiando in una sola riga del programma il
suo valore... invece che cambiarlo in tutte le istruzioni in cui e' usato.

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 07/93

. b e
Costanti e MACRO ez b 8. O e

bx 4O h->o0

Una costante e’ un
IDENTIFICATORE
che viene associate ad un VALORE

prima della compilazione del programma, e che successivamente manterra’ quel
valore per tutta la durata dell'esecuzione del programma.

#define PI 3.14159

- Le costanti vanno definite all'inizio del file con il programma, tipicamente prima
della main()

- Gli identificatori sono per convenzione scritti con TUTTE MATUSCOLE

- #define e’ un esempio di direttiva per il compilatore (0 MACROISTRUZIONE, o
direttamente MACRO)

Le direttive, come #define e #include, vengono gestite dal
“precompilatore”; la pre-compilazione e’ una fase precedente alla
compilazione, in cui in sostanza si prepara il file.c per essere compilato.

e questo e’ purtroppo tutto quello che possiamo dire a riguardo qui ®
approfondimenti sul manuale di C sono possibili ;)

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 08/93

STAMPA

LA FuNZIONE Punt{ PERMETTIE D\ STAMPARE UNA
OWERO UNA STRWG&A CHE DEVE ESSERE SPECLIFICATA FRA DOPPI APicl ..

"

[—

B 5

La funzione printf() permette anche di stampare valori, all'interno della stringa

di output.

Da adesso la stringa si chiama stringa di formato

Per riuscirci, la stringa deve contenere |'indicazione di

1) dove la stampa di un valore deve avvenire lungo la stringa di caratteri;

2) qual e il formato di conversione da usare per stampare quel valore (in
pratica di che tipo ci aspettiamo che sia il valore)

3) qual ¢ il valore ...

printf("STATE IMPARANDO UN SACCO DE ROBBA!");

La stampa avviene nel punto in cui appare il formato di conversione.

Il formato di conversione inizia con %

Il valore da stampare appare dopo la stringa di formato, separato da una virgola.
Se ci sono pit valori da stampare, devono esserci anche piu formati di
conversione e ogni valore corrisponde ad uno di essi, in ordine di apparizione.

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 09/93

ESEWMPI DI STAHPE

int main() {
int x = 53
printf("La variabile x vale %d", x);

- = ‘ —
B \Prova - S T R T R S L‘ I-'-"h-

File Signals Help

La variabile x vale 5

bHit ENTER to continue...

LA STRINGA € CIASCUN SoNo
€ IL FORHMATO DI STAHPA SEPARATI DA VIRGOLE . PER OTTENERE
PER VALOR! DI TIPO Ant Iw MEMORIZZATO NELLA VARIABILE
X S| SCRWE SEMPLICEHENTE X
(ACCESSO)
int main() {
el l NON
printf(“Un rettangolo con base %d ed altezza %d ha area %d", X, ¥, X'y); po e ECCERE
NECESSARIATMENTE
B o _=_,r__..- e [VARIABIL\, HA

! File 'Qigr.'a.r-: _Hr_:-
Un rettangolo con base 5 ed allezza 10 ha are:
»Hil ENTER Lo conlinue...

BEL
TIPO DEL FORHATO

100/93

Caratteri speciali

Alcuni caratteri, espressi con «sequenze di escape»,
realizzate usando backslash “\”, hanno significati speciall

\n andata a capo

\t tabulazione (un po” di caratteri branchi .)
\\ stampa \

\~ stampa

\”’ stampa doppio apice

\b back one character

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 101/93

Asseghazione

LEFT VALUE

(indirizzo)

— —

RIGHT VALUE
(valore)

nomeVariabile = espressione

Chicca ...

Operatore di assegnazione
(

anche |'istruzione di assegnazione e’ una espressione, che viene valutata.
La sua valutazione corrisponde all'esecuzione dell'assegnazione del
left_value al right_value, e il valore risultante dalla valutazione e’ il
valore che e’ stato usato per |'assegnazione

Vai ora alla parte Esercizi per Casa

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione

102/93

Tecniche della Programmazione, lez. 3

‘- Esercizi per casa ‘

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 103/93

esercizi

Nella directory deir complementi didattici per la lezione 03, ci
sono risorse per usare 1l DevC++.

C"e"™ un "Primer' per iniziare ad usare i1l DEVC++.
Seqguitelo. Quando lo avrete terminato sarete un po" piu-
pratici della cosa.

E potrete scrivere altri programmi.

Ricordatevi di salvare sempre 1 vostri file (se sono programmi
in C) con estensione .c (non .cpp).-

Dopo 1l primer potete dare un®occhiata all“ulteriore Tile pdf
disponibile nella directory deir complementi didattici per la
lezione O3

Pol lasciate questa directory, per ora e fate gli esercizi

suggeriti nelle prossime slide (le cul "soluzioni' sono sempre
nella directory der complementi didattici per questa lezione)

104/93

esercizi sui rettangoli e sui cerchi

scrivere rettangolo.c, senza consultare i1l file rettangolo.c nella

directory dei complementi didattici, e nemmeno la slide in cur lo abbiamo
discusso.

La specifica del problema e la seguente:
/* questo programma, ricevendo in INPUT 1 lati significativi
di un rettangolo, ne calcola e stampa iIn OUTPUT I"area
*/
Provare 1l programma eseguendolo per almeno 5 rettangoli.
In rettangolo.c usare un®unica operazione di INPUT, per leggere 1 lati.

scrivere rettangolo2.c, i1dentico al precedente, a parte che esegue due
distinte operazioni di input, una per 1l primo lato e una per 1l secondo.

scrivere un
/* programma che chiede e legge da input 1 raggi di tre circonferenze
e produce per ciascuna circonferenza la relativa area */

Usare una costante Pl per il &

POl confrontare la propria soluzione con quella nella directory dei
complementi didattici. E correggere quest"ultima che stampa un po®" male
le cose

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 105/93

Ripetizione
Quale algoritmo rappresenta ourProgram.c ??

i1l programma ourProgram.c € nella slide successiva
. hon c"é bisogno di risalire Indietro ..

scrivere I"algoritmo completo che corrisponde al programma.

Poi, si, si puo risalire alla slide che abbiamo discusso a lezione e
confrontare quel che si e scritto

106/93

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione

ourProgram.c

/* programma che esegue la somma dei valori contenuti in due variabili intere,
assegnando i1l risultato ad una terza variabile, che pol viene stampata */

#include <stdio.h>

int main () {
int primoNumero, secondo; /* 1 due Interi */
int ris; /* 1l risultato */

primoNumero =168;
secondo = 640;

ris = primoNumero + secondo; /* calcolo */

printf ("'il risultato di %d piu® %d e" %d\n',

primoNumero, secondo, ris);

return O;

}

107/93

ourProgram.c
(riscriverlo, usando la inizializzazione in

definizione)

/* programma che esegue la somma dei valori contenuti in due variabili intere,
assegnando i1l risultato ad una terza variabile, che pol viene stampata */

#include <stdio.h>

int main () {

int

completare ..

facendo uso dell"inizializzazione
in definizione

I"algoritmo € sempre il medesimo!
Cambia solo la tecnica con cui lo
programmiamo ..

return O;

}

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 108/93

Tecniche della Programmazione, lez. 3

|- Approfondimenti SECONDA PARTE |

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 109/93

Algoritmo (again ...)

Abbiamo detto che e’ una sequenza di PASSI, operazioni, istruzioni ...
per risolvere un problema per il quale abbiamo una formalizzazione matematica

Pit schematicamente ci sono delle componenti da considerare

INFORMAZIONI relative al problema: rappresentate come DATI
(nel calcolatore, nell'algoritmo, nel programma)

- INPUT i dati, che distinguono un'istanza da un'altra del problema,
e che sono da usare nel calcolare la soluzione

- Procedura Computazionale passi di calcolo ...

- OUTPUT

Progettazione Algoritmo: attivita® creativa ...
Esecuzione Algoritmo: attivita® meccanica

110/93

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione

Algoritmo (again ...) e.

Abbiamo detto che e’ una sequenza di PASSI, operazioni, istruzioni ...
per risolvere un problema per il quale abbiamo una formalizzazione matematica
Pit schematicamente ci sono delle componenti da considerare

INFORMAZIONI relative al problema : rappresentate come DATI
(nel calcolatore, nell'algoritmo, nel programma)

INPUT i dati, che distinguono un'istanza da un'altra del problema,
e che sono da usare nel calcolare la soluzione

Procedura Computazionale questa e’ la sequenza di passi ...
1) operazioni su dati di input
2) operazioni su dati infermedi (ottenuti con calcoli su dati di input e altri dati
infermedi)
3) Produzione di dati di OUTPUT

OUTPUT

111/93

Algoritmo (again ...) e.

Abbiamo detto che e’ una sequenza di PASSI, operazioni, istruzioni ...
per risolvere un problema per il quale abbiamo una formalizzazione matematica
Pit schematicamente ci sono delle componenti da considerare

INFORMAZIONI relative al problema : rappresentate come DATI
(nel calcolatore, nell'algoritmo, nel programma)

INPUT i dati, che distinguono un'istanza da un'altra del problema,
e che sono da usare nel calcolare la soluzione

Procedura Computazionale questa e’ la sequenza di passi ...
1) operazioni su dati di input
2) operazioni su dati infermedi (ottenuti con calcoli su dati di input e altri dati
infermedi)
3) Produzione di dati di OUTPUT

OUTPUT i dati emessi a valle della procedura computazionale,
interpretabili dall'utente come informazioni sulla soluzione
dellistanza del problema

112/93

GO TO and Structured Programming Jintage

Ecco due programmi per il problema
Calcolare la somma di numeri interi forniti in input dall'utente.
L'immissione di O tfermina I'input.
I numeri negativi inseriti in input vengono ignorati.
Nel primo programma usiamo goto.
Nel secondo programmazione strutturata, con le istruzioni di controllo.

Dopo aver visto e compreso (anche fatto girare) i programmi,

- confrontare il codice dei due programmi, cercando di giudicare quale e’ piu’
leggibile.

- scrivere i relativi algoritmi e confrontarli.

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione 113/93

vintage

Con GO TO

=l | non la usiamo

Calcolare la somma di humeri interi forniti in input dall'utente.
L 'immissione di O termina |'input.
I numeri negativi inseriti in input vengono ignorati.
Nel primo programma usiamo goto.

#include <stdio.h>

int main() {
int somma = 0, num;

inizio:
printf("Inserisci un numero (0 per terminare): ");
scanf('%d", &num);

iIT (num == 0) goto fine; /* Termina 1"input se 0 */
iIT (num < 0) goto ignora; /* lIgnora 1 numeri negativi */
somma += num; /* Somma 1 numeri positivi */

goto Inizio;

ignora:
printf("'Numero negativo ignorato.\n");
goto Inizio;

fine:
printf(*'Somma finale: %d\n", somma);
return O;

3

114/93

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione

Con Istruzioni di controllo della .,
programmazione strutturata |

Y
Calcolare la somma di humeri interi forniti in input dall'utente.
L'immissione di O tfermina I'input.
I numeri negativi inseriti in input vengono ignorati.

#include <stdio.h>

int main() {
int somma = 0, num;

while (1) {
printf("Inserisci un numero (0O per terminare): ");
scanf(""%d", &num);

iIT (num == 0) break; /* Termina 1"input se 0 */
iIfT (num < 0) { /* lIgnora 1 numeri negativi */
printf(*'Numero negativo ignorato.\n");
continue;
+
somma += num; // Somma 1 numeri positivi
+
printf(*'Somma finale: %d\n", somma);
return O;

}

Nel secondo programma, usiamo programmazione strutturata, con le istruzioni di controllo.

Tecniche della Programmazione, M. Temperini, lezione 03 — At Last Programmazione

115/93

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Slide Number 115

