Laurea in Ingegneria dell’Informazione

Esercitazioni Guidate di Tecniche della Programmazione

Note introduttive:
1) Nel titolo di ogni sezione di questo documento é specificato tra parentesi il nome del (o dei) file in cui
e proposta una soluzione (se disponibile nella directory “programmi” di questa EG).
2) | programmi che scriveremo dovranno essere in accordo con la definizione standard ANSI C del
linguaggio C.
a. Se usate un sistema diverso dal DEV, provvedete a che la compilazione avvenga con il
compilatore standard C.
b. Ricordate che un programma C & in un file con estensione “.c”
c. Seusate il DEVC++, per configurare bene la compilazione bisogna
i. andare nel menu “Tools”, selezionare “Compiler Options”, scegliere “Settings” e poi
“C Compiler”; poi selezionare almeno “Support all ANSI Standard C Programs™)
ii. (se I’interfaccia e in italiano ...) andare nel menu” “Strumenti”, selezionare “Opzioni
di compilazione”, “Compilatore”, “Generazione di Codice ...”, “Compilatore C” e
poi far apparire “Yes” almeno accanto a “Supporto programmi ANSI standard C.

NB Spesso ci sono svariati esercizi proposti nelle slide delle lezioni; questi esercizi potrebbero essere affrontati
durante la EG, anche se non vi compaiono. A meno che non li abbiate gia fatti Se li avete fatti potete
sempre farmeli vedere. Se non li avete fatti provate a farli ...

10. Esercitazione 10 — liste concatenate rappresentate mediante record
e puntatori

10.1. liste rappresentate mediante strutture e puntatori (listel.c, liste2.c)

Scrivere un programma che

- costruisce una lista di k interi (con Kk letto da input)

- lastampa

- chiede un nuovo intero e lo inserisce in testa alla lista
- stampa di nuovo la lista

Per la costruzione della lista usare la funzione di costruzione costruisciLista() che,
ricevendo un parametro intero n, costruisca una lista di n elementi mediante inserimenti in testa.

Per la stampa degli elementi della lista si usa la funzione stampaLista()che, ricevendo il
puntatore al primo elemento di una lista, stampa la lista.

Suggerimento segue ...

Tecniche della Programmazione (M.Temperini) — Laurea Ing. dell’Informazione — esercitazioni guidate

Suggerimento 1 di 2:

Ecco i prototipi delle funzioni richieste (+1):

void insTestalLista(TipoLista * plis, TipoElemLista elem);

/* inserisce elem nella lista; plis e ITindirizzo della
variabile puntatore che punta all"inizio della lista */

TipoLista costruiscilLista (int n);
/* costruisce una lista di n elementi e ne restituisce il
puntatore all"inizio (usa insTestalLista() */

void stampalLista(TipoLista lis);
/* stampa tutti i dati contenuti nella lista */

Tecniche della Programmazione (M.Temperini) — Laurea Ing. dell’Informazione — esercitazioni guidate

Suggerimento 2 di 2:

questi potrebbero essere i tipi utilizzati:
NB

tutte queste strutture dati devono essere definite "top level", in modo che siano visibili a tutte le
funzioni definite poi (lamain() e le altre funzioni). Infatti se definissimo queste strutture dati
direttamente nella main(), esse non sarebbeo poi utilizzabili da stampaLista() o
costruiscilLista() o quantaltro

typedef int
TipoElemLista; /* si tratta di liste di interi quindi il tipo

delle informazioni nei nodi della lista € Iint */

struct StructLista { /* il tipo per i singoli nodi della lista */
TipoElemLista info;
struct StructLista *next;

}s

typedef struct StructLista *
TipoLista; /* il tipo delle variabili che rappresentano
liste all"interno del programma */

typedef TipolLista
PuntNodoLista; /* un tipo ausiliario: sara il tipo delle
variabili puntatore a nodi di liste, ad esempio
usate per le scansioni di lista */

Tecniche della Programmazione (M.Temperini) — Laurea Ing. dell’Informazione — esercitazioni guidate

10.2. Funzioni adatte al tipo delle informazioni contenute in lista (liste2.c)

Per rendere il programma meno dipendente dal tipo di elementi contenuti nei nodi della lista, non

sarebbe male corredare i programma di due funzioni
stampaElemLista()

e leggiElemLista()
adatte per leggere e stampare singoli elementi della lista.

Segue un suggerimento

Suggerimento:

ecco i prototipi delle funzioni richieste:
void stampaElemLista(TipoElemLista Vv);
/* stampa 1"oggetto v di tipo TipoElemLista */

void leggiElemLista(TipoElemLista *pelem);
/* legge un oggetto di tipo TipoElemLista; e lo memorizza
nella locazione puntata da pelem */

In questo programma l'uso delle funzioni suggerite sopra puo sembrare ridondante: si tratta di
semplici usi di printf() e scanf() su variabili intere;

ma in programmi in cui l'informazione associata ai nodi della lista é di tipo piu complesso queste
funzioni permetteranno una migliore strutturazione del programma.
4

Tecniche della Programmazione (M.Temperini) — Laurea Ing. dell’Informazione — esercitazioni guidate

10.3. Liste di caratteri (liste3.c)
Analogamente al caso precedente, scrivere un programma che

- costruisce una lista di k CARATTERI (con k letto da input)
- lastampa

Segue un suggerimento

Suggerimento:
Si puo sfruttare il programma precedente, avendo I’accortezza di adattare le funzioni di lettura e
stampa di elementi da inserire in lista (e solo quelle ...)

Se consultate la soluzione trovate un easter egg

Tecniche della Programmazione (M.Temperini) — Laurea Ing. dell’Informazione — esercitazioni guidate

10.4. Liste di caratteri senza sapere prima quanti sono (liste4.c)

Scrivere un programma che legga una sequenza di caratteri inserita da tastiera e terminata da un
“\n~ (invio) e costruisca e stampi la lista corrispondente.

Diversamente dall’esercizio precedente, qui non sappiamo prima della costruzione quanti saranno
I dati da inserire in lista.

Suggerimento piu sotto ...

Suggerimento:
Dobbiamo realizzare un ciclo di inserimenti in testa che termina quando il carattere letto da input e
“\n”.

Altro suggerimento piu avanti ...

Tecniche della Programmazione (M.Temperini) — Laurea Ing. dell’Informazione — esercitazioni guidate

Suggerimento 2:
uno schema possibile, facendo a meno della funzione costruisciLista() e realizzando il
ciclo di lettura dati ed inserimento direttamente nella funzione main():
- lettura primo dato
- mentre il dato letto non e “\n~
0 inserimento del dato lettpo precedentemente (con insTestaLista())
o lettura del prossimo dato (con leggiElemLista())

Altro suggerimento poco piu avanti ...

Tecniche della Programmazione (M.Temperini) — Laurea Ing. dell’Informazione — esercitazioni guidate

Suggerimento 3:
ecco uno stralcio del programma nel file liste4.c:
mostriamo solo il ciclo che esegue I’inserimento dell’ultimo dato letto (diverso da “\n’ e la lettura
del prossimo.

Le variabili citate sono definite nella main(), con significato evocato dai rispettivi
identificatori)

while (datiTerminati==0) {
insTestaLista(&list, el);
leggiElemLista(&el); /* lettura elemento successivo */

datiTerminati=(el=="\n"); /* assegnhazione variabile per la
condizione di ripetizione */

Tecniche della Programmazione (M.Temperini) — Laurea Ing. dell’Informazione — esercitazioni guidate

10.5. Inserimento in coda (liste5.c)

Scrivere un programma che legga una sequenza di caratteri inserita da tastiera e terminata da un
“\n~ (invio) e costruisca e stampi la lista corrispondente.

Ma stavolta e richiesto che I’ordine degli elementi in lista corrisponda esattamente a quello di
inserimento: il primo elemento in lista deve essere quello inserito in input per primo e cosi via ...

Si consiglia di costruire il ciclo di inserimenti in coda direttamente nella main().

ecco i prototipi delle funzioni definite nel file liste5.c:
int ugualiElem(TipoElemLista, TipoElemLista);
/* aggiunta, per confrontare elemnti della lista */

void stampalLista(TipoLista lis);
void stampaElemLista(TipoElemLista v);
void leggiElemLista(TipoElemLista *pelem);

Tecniche della Programmazione (M.Temperini) — Laurea Ing. dell’Informazione — esercitazioni guidate

	10. Esercitazione 10 – liste concatenate rappresentate mediante record e puntatori
	10.1. liste rappresentate mediante strutture e puntatori (liste1.c, liste2.c)
	10.2. Funzioni adatte al tipo delle informazioni contenute in lista (liste2.c)
	10.3. Liste di caratteri (liste3.c)
	10.4. Liste di caratteri senza sapere prima quanti sono (liste4.c)
	10.5. Inserimento in coda (liste5.c)

