File di testo

| file (archivi) sono sequenze di dati su dispositivi di memorizzazione di massa, ossia dispositivi che
consentono di immagazzinare grandi quantita di dati in modo permanente. | tipici dispositivi hardware
di memorizzazione di file sono i dischi (fissi e mobili). In queste pagine si vedra in che modo si
possono utilizzare i file di testo, ossia i file in cui i dati sono memorizzati come sequearatidiri.

Memoria primaria e secondaria

Memoria primaria e secondaria

La struttura di un calcolatore, ad alto livello, si pud rappresentare come il diagramsoéaui

CPU

bus

memoria disco /0

Il bus & un meccanismo di comunicazione fra i vari elementi componenti. Quello di sopra € un modello
molto semplificato della struttura hardware di un calcolatore. Le varie parti che compongono il
calcolatoresono:

cpu
la parte che effettua calcoli ed elaborazioni

memoria
dispositivo di memorizzazione veloce, non permanente, di piccola dimensione (memoria
primaria)

disco
memoria, pil lento, permanente, di grande dimensione (memoria secondaria)

I/0
dispositivi di ingresso e uscita: tastiera, mouse, schermo, ecc.

Le variabili di un programma sono memorizzate nella memoria (primaria) del calcolatore. Questo
significa che si pud accedere ad esse in lettura e scrittura molto velocemente. Gli svantaggi sono: la
memoria primaria é (relativamente) piccola, per cui non si possono memorizzare grandi quantita di
dati; la memoria primaria € inoltre non permanente, per cui i valori delle variabili non sono
permanenti.

Per questo motivo, se vogliamo memorizzare dati in modo che non vengano cancellati allo
spegnimento del calcolatore, oppure dobbiamo usare una grande quantita di dati, occorre memorizzarli
nella memoria secondaria, ossiadigchi.

Apertura e chiusura di un file

Apertura e chiusura di unfile

| dati memorizzati su disco sono divisi in file. Ogni file € un insieme di dati, ed & caratterizzato da un
nome. Un nome di file &€ semplicemente stranga.

Un programma C puo leggere i dati memorizzati in un file. Serve naturalmente sapere il nome del file
che si vuole leggere. La prima cosa da fare, quando si vuole leggere un file, & quello di dire il nome del
file da leggere. Questo viene fatto con la funzibopen. Questa funzione ha due parametri: il primo

e il nome del file che si vuole leggere (i nomi di file sono stringhe, ossia vettori di caratteri). Il secondo
argomento € una stringa che indica il modo in cui si vuole acceddere al file (vedi piu avanti); per
leggere il file, questa stringa deve valérée', ossia deve essere la stringa composta dal solo carattere

r, piu il terminatore di stringa. Il prototipo della funzidnepen é questo:

FI LE *fopen(char *none, char *nodo);

La chiamata alla funziorfeopen viene dettaapertura del file. Il valore che viene ritornato da questa
funzione e di tipd-I LE *, e viene detto descrittore di file. Il descrittore di file & un valore che viene
usato dalle successive funzioni di accesso al file, per indicare di quale filpailatado.

Per dire che abbiamo finito di leggere il file, e non ci occorre piu, usiamo la fudzibes e, che
chiude il file. Questa funzione prende come argomento il descrittore del file che si vuole chiudere,
ossia valore che e stato ritornato dalgpen.

Il programmaaprichiudi.capre un file, e lo chiude immediatamente dopo. Non é evidentemente di
molta utilita: serve solo a far vedere come si apre e chiufieun
/*
Apre un file e poi |0 chiude
x|

#i ncl ude<stdlib. h>
#i ncl ude<st di 0. h>

int main() {

FI LE *fd;

/* apre il file */
fd=fopen("test.txt", "r");

/[* chiude il file */
fclose(fd);
return O;

}

Questo ¢ il primo uso di un descrittore di file: dal momento che pud aprire piu file (questo avviene se
serve leggere dati da piu di un file), guando uno di questi non serve piu, occorre chiuderlo dicendo
perd quale dei file va chiuso. Questo concetto verra chiaritavaitti.

Nota: le variabili di tipoFl LE * sono puntatori. Tuttavia, non € necessario creare una zona di
memoria comral | oc: questo viene fatto dalla funziohepen.

Verifica in apertura

Verifica in apertura

Cosa succede se si apre un file che non esiste su disco? Questo pud succedere per esempio se si shaglia
a digitare il nome del file: non & detto che sul disco ci sia un file con il nome che é stato passato a
f open.

Esistono poi altri errori che possono verificarsi quando si cerca di accedere a un file. Per il momento,
non ci interessano. Quello che conta € il modo in cui il programma puo verificare se c¢’é stato un errore
in apertura oppureo.

La regola é semplicemente che, se si € verificato un errore in apertura del file, il valore che viene
ritornato daf open é la costant&lULL. Quindi, se dopo aver aperto il file vogliamo verificare se ci
sono stati errori, dobbiamo confrontare il valore ritornatb @iaen conNULL.

Il seguente programmaeerifica.capre un file, e poi verifica se ci sono stati errori. In caso di errore, il
valore del descrittore di file ULL. In questo caso, si stampa un messaggio di errore e si termina
I'esecuzione dgbrogramma.

/*
Apre il file, e verifica
*/

#i ncl ude<stdlib. h>
#i ncl ude<st di 0. h>

int main() {
FI LE *fd;

[* apre il file */
fd=fopen("test.txt", "r");

/* verifica errori in apertura */
if(fd==NULL) {
printf("Si e verificato un errore in apertura del file\n");
exit(1l);
}

/* chiude il file */
fclose(fd);

return O;

}

Questo programma stampa un messaggio se si € verificato un errore durante I'apertura del file, ossia se
non siamo riusciti ad aprire il file. Perd non dice quale specifico errore si € verificato. Per fare questo,
usiamo la funzioneer r or , che stampa un messaggio che indica quale specifico errore si &

verificato. Questa funzione prende una stringa, che viene stampata prima del messaggio di errore. Il
programmaperror.ce simile al precedente, ma il messaggio di errore viene stampgb@icoor .

/*
Apre il file, e verifica
*/

#i ncl ude#i ncl ude
int main() {
FI LE *fd;

[* apre il file */
fd=fopen("test.txt", "r");

/* verifica errori in apertura */
if(fd==NULL) {
perror("Errore in apertura del file");
exit(1l);
}
/* chiude il file */
fclose(fd);

return O;

}

Lettura di un file

Lettura di un file

La funzionef open serve a dire che vogliamo leggere dati da un file, ma non fa nessuna lettura. Per
leggere da file si usa la funziohecanf . Questa funzione & molto simile alla funzione di input da
tastierascanf , ma legge da file. Il suo primo argomento € un descrittore di file, e indica da quale file
vogliamoleggere.

Per esempio, per leggere un intero da tastiera usiamo una istruzitipe:del
scanf ("%", &x);

dovex € una variabile intera. Per leggere da file, usiamo una istruzione simile, in cui al posto di
scanf mettiamof scanf, che ha un argomento iniziale aggiuntivo, che é il descrittore del file da cui
vogliamo leggere:

fscanf(fd, "%", &x);

Il descrittore di filef d deve essere di tigel LE *, e deve essere il valore che é stato ritornato dalla
funzionef open. Quindi, per leggere un intero da figcorre:

1. aprire il file: questo ritorna un descrittore di file che va memorizzato in una variabile
2. usaref scanf per leggere un intero dal file identificato dal descrittore di file
3. chiudere il file

Il seguente programmniatero.csegue questo metodo per leggere un numero intero da un file che si
chiama'i ntero. txt".

/*
Legge un intero da file.
*/

#i ncl ude<stdlib. h>
#i ncl ude<st di o. h>

int main() {
FI LE *fd;
int x;

/* apre il file, legge il numero, chiude */

fd=fopen("intero.txt", "r");

fscanf(fd, "%", &x);

fclose(fd);

/* stanmpa il nunero */
printf("lIl nunero letto da file e %\ n", Xx);
return O;

}

Questo programma non fa nessuna verifica che il file sia stato aperto correttamente. Per effettuare
queta verifica, basta controllare che il descrittore di file ritornafoogieen sia diverso d&ULL. Il
programmanterover.cfa questaverifica.

Una considerazione finale: una volta letto un valore da file, questo valore rimane ovviamente
memoarizzato nella variabile anche dopo che il file & stato chiuso. Nell’esempio di sopra, una volta letto
il numerox si pud anche chiudere il file, e il valore nella variakilémane inalterato (fino a che non

viene esplicitamentaassegnato).

Scrittura su file

Scrittura sufile

Per scrivere su un file, occorre specificare che il file va aperto per scrivere. In altre parole, dobbiamo
dire che vogliamo scrivere sul file gia nel momento in cui il file viene aperto: non é possibile aprire il
file in lettura e poi “cambiare idea” e scrivere Silé.

Per aprire un file in scrittura, si usa sempre la funziaygen, passando come primo argomento il
nome del file da aprire, e come secondo argomento la striigaPer esempio, per dire che vogliamo
scrivere sul filescri vi . t xt , usiamo lastruzione:

fd=fopen("scrivi.txt", "w');

Come nel caso della lettura, occorre memorizzare il valore di ritorno della funzione (il descrittore di
file), perché é quello che serve per identificare il file nelle successivo operazioni (scrithivalea).

La funzione che si usa per scrivere su un fii@ei nt f . Il suo primo argomento ¢ il descrittore del
file su cui si vuole scrivere. | successivi argomenti sono gli stessipdélliat f . L'unica differenza e
che la funzioné pri nt f scrive sul file invece che sullo schermo. Quindi, dato che per scrivere un
numero intero su schermo si usastauzione:

printf("%\n", Xx);
allora per scrivere un intero su un file il cui descrittofeldacciamo:
fprintf(fd, "%\ n", x);

Il seguente programnsxrivi.capre il file di nomescri vi . t xt, ci scrive un intero, e Ichiude.

/*
Scrive un intero su file
*/
#i ncl ude<stdlib. h>
#i ncl ude<st di 0. h>

int main() {

FI LE *fd;
int x=-32;

/* apre il file in scrittura */
fd=fopen("scrivi.txt", "w');

if(fd==NULL) {
perror("Errore in apertura del file");
exit(1l);

}

/* scrive il numero */
fprintf(fd, "%\ n", x);

/* chiude il file */
fclose(fd);

return O;

}

La funzionef open si comporta in modo diverso a seconda se il file che si sta aprendo in scrittura
esiste oppureo.

il file non esiste
e chiaro che non si deve generare nessun errore (altrimenti non si potrebbero mai creare nuovi
file); il file viene creato di dimensione zero (la dimensione aumenta quando si fanno le successive
operazioni di scrittura);

il file esiste gia
in questo caso il contenuto del file viene azzerato; in altre parole, &€ come se il file venisse
cancellato e ricreato vuoto.

In entrambi i casi, se si apre un file in scrittura e poi lo si chiude subito dopo, quello che si ottiene & un
file di dimensionezero.

Scrittura in coda a un file

Scrittura in coda a unfile

Fino ad ora, si sono visti solo due modi di accedere a un file: in lettura e in scrittura. Esiste un terzo
modo, che in effetti & un secondo metodo di apertusarittura.

Come si € visto, facendopen(..., "w'), se il file esiste il suo contenuto viene azzerato, e si
comincia a scrivere dall'inizio. E possibile fare in modo che la scrittura avvenga di seguito al file,
piuttosto che all'inizio. La modalitappend permette appunto di aprire un file in maniera che sia
possibile scrivere in coda al contentuto attualditiel

fd = fopen("....", "a");
Si tratta quindi semplicemente di passare la strirmfacome secondo argomento alla funzione
f open. L'effetto di questa istruzione € che risulta ora possibile scrivere sul file usando la funzione

fprintf.

Per chiarire meglio la differenza fra la modalité la modalitaa, vediamo cosa succede se un file,
che gia esiste, viene aperto in scrittura nei due casi, e poi subitchiapo.

w il file viene azzerato, ossia il suo contenuto viene cancellato; alla fine della chiamata alla funzione
f open, la sua dimensione ¢ 0;

a ilfile viene aperto in scrittura in fondo, ossia tutte le cose che verranno scritte andranno ad
aggiungersi a quelle che gia stanno sul file; quindi, la operazione di apertura non modifica il
contenuto del file; se il file viene chiuso subito dopo, non subisce maodifiche.

La differenza fra le due modalita di apertura € quindi che, nel primo caso, I'intero contenuto del file
viene cancellato, e le operazioni di scrittura vanno a scrivere sul file dall'inizio; al contrario, il secondo
modo (append) lascia inalterato il contenuto del file, e le operazioni di scrittura aggiungono dati in
fondo alfile.

Il programmaappend.@pre un file in append, e scrive un numero in coda al file. L’effetto & quello di
aggiungere il numero in fondo al file. Si noti che la istruzione che si usa per scrivere sul file € sempre
la istruzionef pri nt f . La differenza fra questo programma e quello che scrive su file cancellando il
contenuto precedensgerivi.c non e nella istruzione di scrittura, ma solo nel modo in cui il file viene
aperto. In altre parole, per scrivere si usa comunque l'istrugipnent f , esattamente nello stessp
modo; la differenza fra scrittura dall'inizio del file e scrittura in coda sta solo nel modo in cui il file
vieneaperto.
/*

Scrive un intero in coda a un file
*]

#i ncl ude<stdlib. h>
#i ncl ude<st di o. h>

int main() {

FILE *fd
int x=-32;

/* apre il file in scrittura */
fd=fopen("scrivi.txt", "a");

if(fd==NULL) {
perror("Errore in apertura del file");
exit(1l);

}

/* scrive il numero */
fprintf(fd, "%\ n", x);

/* chiude il file */
fclose(fd);

return O;

Anche nel caso in cui il file viene aperto in append mode, la istrutziopen puo ritornare un errore.
Per rilevare possibili errori, va messa una istruzione condizionale per controllare se I'operazione di
apertura ha avutsuccesso.

Come nel caso della apertura in scrittura, il file viene creato (vuoto) se non esiste. Quindi, se hon esiste
un file il cui nome e quello passato come primo argomento alla funzagmen, allora non c’é
nessuna differenza fra I'apertura in scrittura e I'apertura con scrittocalan

Lettura e scrittura in sequenza

Lettura e scrittura in sequenza

Le operazioni di lettura e scrittufacanf ef pri ntf hanno un comportamento simile alle funzioni
scanf epri ntf con la differenza che la lettura e scrittura avviene da file invece che da
tastiera/schermo.

Questa regola permette di capire il comportamento delle funzeoanf ef pri nt f in situazioni

pit complesse. Cosa succede per esempio se si fanno due opérazemi (fd, "%d", &x)

'una dopo l'altra? Basta pensare cosa succederebbe se al posisdelid ci fosse unacanf .

L’effetto sarebbe quello di leggere due interi, I'uno dopo l'altro, da tastiera. Dal momento che stiamo
invece usando lascanf , facciamo la stessa cosa ma leggendo da file. Quindi, si leggono due interi,
I'uno dopo I'altro, dal file il cui descrittore fed.

E come se le operazioi di lettura avvenissero da tastiera invece che da file, e sulla tastiera venisse
digitato il contenuto del file. Quindi, dopo che si € letto qualcosa, la successiva operazione di lettura
legge quello che segue sul file. In altre parole, due operdza@dnf in sequenza non leggono la
stessa cosa: la seconda legge quello che resta sul file dopo avergdettala

Il programmaeggidue.cé un programma in cui ¢'é una sequenza di due operazioni di lettfile da
/*

Legge due interi da file
*/

#i ncl ude<stdlib. h>
#i ncl ude<st di 0. h>

int main() {

int x, vy;
FI LE *fd;

/* apre il file */
fd = fopen("dueinteri.txt", "r");

if(fd==NULL) {
perror("Errore in apertura del file")
exit(1l);

}

/* legge il prinmo intero */
fscanf (fd, "%", &x);

/* legge il secondo intero */
fscanf (fd, "%", &y);

/* chiude il file */
fclose(fd);

/* stanpa i due interi */
printf("Ho letto % e %\ n", X, y);

return O;

}

La prima cosa che avviene eseguendo questo programma e che il file viene aperto in lettura. Dopo il
controllo se I'apertura ha avuto successo, viene letto un intero con la istrugioaef (f d,

"0g", &x).La successiva operazione & ancora una istruzione di lettura tdaddaf (f d,

"o0d", &y).Da notare che questa seconda operazione non legge lo stesso intero della prima. Al
contrario, viene letto il secondo intero che si trova su file (se c’€). Per provare questo programma,
occorre creare un file di testo di nooheei nt eri . t Xt , in cui vanno scritti due numariteri.

Per quello che riguarda la scrittura su file, questa avviene sempre in modo consecutivo. Dopo che si é
scritto qualcosa usandir i nt f, le successive operazioni di scrittura scrivono di seguito. In altre
parole, se si usa due volte di sequitbphati nt f , la due cose scritte su file appaiono I'una di seguito
all'altra. Il programma seguengerividue.cscrive un intero su file con l'istruziorigor i nt f (f d,

"% ", Xx).Lasuccessivaistruzione di stampa suffpei ntf(fd, "%l ", y) scrive un

secondo intero di seguito al primo. L'effetto complessivo é che sul file vengono scritti i due numeri di
seguito.

/*
Scrive due interi da file
*/

#i ncl ude<stdlib. h>
#i ncl ude<st di o. h>

int main() {
int x, vy;
FI LE *fd;

x=-10;
y=21;

/* apre il file */
fd = fopen("dueinteri.txt", "w');
if(fd==NULL) {
perror("Errore in apertura del file");
exit(1l);
}

/* scrive il prino intero */
fprintf(fd, "% ", x);

/* scrive il secondo intero */
fprintf(fd, "% ", y);

/* chiude il file */

fclose(fd);

return O;

}

Si noti che, per essere sicuri di avere uno spazio di separazione fra i due interi, occorre metterlo
esplicitamente. E per questo che la stringa di formato della prima istruzione di sta®pd’ écon

uno spazio in fondo, invece chéd" . In questo secondo caso, i due interi sarebbero stati scritti su file
consecutivamente, ossia senza spazi in mezzo. Questo avrebbe prodotto un file con edr@@dyto
senza spazi fra i due numeri. Un file con questo contenuto viene di solito interpretato come un file che
contiene un solo numero intero di valore -1021. Questo e anche quello che si ottiene leggendo un
intero da file usando la funziofiescanf . Si puo quindi dire che non mettere spazi fra due interi

quando di scrivono su file € w@mrore.

Lettura di un array da file

Lettura di un array da file

Usando le funzioni di apertura, lettura e scrittura da file, e avendo visto come si scrive/legge in
sequenza, possiamo ora vedere operazioni pit complesse. Supponiamo quindi di avere un file di nome
array.txt che viene usato per memorizzareaunray.

Piu precisamente, il file contiene una sequenza di numeri interi. Il primo numero rappresenta la
dimensione dell’array, ossia il numero di elementi che contiene. Questi elementi sono memorizzati su
file di seguito, insequenza.

Vogliamo un programma che legga un file di questo genere, e memorizzi i dati che contiene in un
vettore. Facciamo l'ipotesi che ci siano al massimo 100 elementi. Questo permette di usare un vettore
dichiarato staticamente per contentere i dati scritfilesu

Dopo l'operazione di apertura del file, con controllo errori, quello che serve é leggere il primo numero
intero scritto su file, che é il numero di elementi successivi del file. Per memorizzare questo numero,
dichiariamo una variabile intera Facciamo quindi una operazione di lettura di intertlela

fscanf (fd, "%", &n);

A questo punto sappiamo che sul file ci sono aliriteri, che vanno letti da file e messi in ordine in
un vettore. Dichiariamo una variabilet t come vettore di 100 interi. Per leggere gli elementi del
vettore da file, facciamo un ciclo, in cui leggiamo un elemento aitegazione.

for(i=0; i<=n-1; i++)
fscanf(fd, "%l", &vett[i]);

[l problema é risolto. Il vettore contiene ora gli elementi memorizzati sul file, e la vanaibitiica

guanti interi sono stati effettivamente letti, ossia quanti elementi del vettore contengono effettivamente
dei valori che sono stati letti da file (gli eltri elementi del vettori non sono stati inizializzati o letti,

quindi non contengono valasignificativi).

Il programma completo leggiarray.¢ che contiene anche un controllo aggiuntive se
effettivamente minore di 100. Dopo aver letto il vettore, stampa i suoi elemactiesumo.

10

/*
Legge un array da file.
*
/
#i ncl ude<stdl i b. h>
#i ncl ude<st di 0. h>

int main() {

int n;
int vett[100];
FI LE *fd;
int i;
[* apre il file */
fd=fopen("array.txt", "r");

/* verifica errori in apertura */
if(fd==NULL) {
perror("Errore in apertura del file");
exit(1l);
}

/* legge il numero di elenmenti del vettore */
fscanf(fd, "%", &n);

/* legge |"array */
i f (n>=100)
printf("Troppi elementi da | eggere\n");
el se
for(i=0; i<=n-1; i++)
fscanf(fd, "%l", &vett[il]);

/* stanpa | "array */
for(i=0; i<=n-1; i++)
printf("%l\n", vett[i]);

/* chiude il file */
fclose(fd);

return O;

}

Scrivere la media in fondo a un file

Scrivere la media in fondo a unfile

Questo esercizio consiste nel leggere di un certo numero di interi da file, calcolare la loro media, e
scrivere la media in coda file.

L’esercizio si risolve facilmente combinando il programma di lettura di un array da file con il
programma di scrittura di un intero in coda a un file. Quello che occorre, infatti, € leggere un certo
numero di elementi da file (supponiamo che il primo intero rappresenti il numero di interi successivi
su file), come nel caso del programmadedtiura di un array déile, e poi di scrivere un intero in coda a
un file, come nel caso del programmasdiittura in coda a ufile.

11

Il programma che risolve questo problemedia.¢ legge un vettore da file, e chiude il file. A questo
punto il vettore contiene gli elementi del file. Possiamo quindi calcolare la loro media. Per scrivere
questo valore in fondo al file, lo apriamo di nuovo in append mode, e scriviamo il valore della media.
Dato che il file & stato aperto in append mode, le operazioni di scrittura aggiungono in fondo al file,
lasciando inalterato il contenupoecedente.

/*

Scrive la nedia degli interi di un file
in fondo al file stesso
*/

#i ncl ude<stdlib. h>
#i ncl ude<st di 0. h>

int main() {

int n;
int vett[100];
FI LE *fd;
int i;
int s, m
/* apre il file */
fd=fopen("array.txt", "r");

if(fd==NULL) {
perror("Errore in apertura del file");
exit(l);

}

/* legge il nunero di elenenti del vettore */
fscanf(fd, "%", &n);

/* legge |"array */
i f (n>=100)
printf("Troppi elenmenti da | eggere\n");
el se
for(i=0; i<=n-1; i++)
fscanf(fd, "%", &vett[i]);

/* chiude il file */
fclose(fd);
/* calcola la nedia */
s=0;
for(i=0; i<=n-1; i++)
s+=vett[i];
nmFs/ n;
/* riapre il file in append */
fd=fopen("array.txt", "a");

if(fd==NULL) {
perror("Errore in apertura del file");
exit(l);

}

/* scrive la nmedia (in fondo al file) */

12

fprintf(fd, "%\n", m;

/* chiude il file */
fclose(fd);

return O;

}

In questo programma si vede che e possibile aprire e chiudere lo stesso file piu volte all'interno dello
stesso programma. Si puo anche usare la stessa variabile per memorizzare il descrittore di file. Infatti,
se il file viene chiuso, il valore contenuto nella variabile non serve piu a niente, dato che il file & stato
chiuso.

Rilevazione end-of-file

Rilevazioneend-of-file

Il programma di lettura di array da file non contiene nessun meccanismo di rilevazione di errori su file.
Per esempio, non si accorge se il file e piu corto del dovuto, ossia contiene meno elementi di quelli
specificati come primo intero. Inoltre, non contiene nessun controllo sul fatto che il file potrebbe
contenere dei caratteri, che quindi non sono interpretabili come interi. A seconda di come e specificato
il formato del file da cui leggere, queste situazioni possono venire considerate 0 meno degli errori da
parte di chi ha scritto il file. Per il momento, assumiamo che entrambe le situazioni vanno interpretate
comeerrori.

I modo in cui le funzioni di accesso a file comunicano un eventuale errore € attraverso il valore di
ritorno. Per esempio, errori in apertura del file si rilevano mettendo il valore di ritorno della funzione
f open in una variabile, e controllando il valore di questa variabile. Per le operazioni di lettura da file
si usa lo stesso metodoscanf é in effetti una funzione che ritorna un valore intero, che indica se ci
sono stati 0 meno degli errori in scrittura. Per controllare se ci sono stati errori, dobbiamo quindi
memorizzare il valore di ritorno della funziohecanf in una variabile, e poi controllare se il valore

di questa variabile indica se ci sono séaori.

Per il momento, diciamo che la funziohgcanf ritorna il valoreECF nel caso in cui si & tentato di
leggere qualcosa da un file, ma il file & gia finito. In altre parole, se si € letto tutto il contenuto di un
file, e si usd scanf per leggere ancora, questa funzione ritorna il vat¥ e QuestdEOF € una

macro di cui non ci interessavihlore.

Si noti cheECF ¢ il valore di ritorno della funziond scanf , e non il valore che viene memorizzato
nelle variabili da leggere. In altre parole, se si vuole leggere un intero da file, controllando che non si
sia arrivati alla fine del file, occorre controllare se il valore di ritornfosdianf valeEQF, con un
frammento di codice come quello cbegue:

res=fscanf(fd, "%d", &x);

if(res==EOF) {
printf("Non riesco a leggere un intero: il file e finito\n");
exit(1l);

}

Le variabilir es ex sono entrambe dichiarate come intere. Mexitcentiene il valore che si € letto
da file (in caso la cosa sia avvenuta con successo) la varialsilgiene usata per memorizzare il
valore di ritorno df scanf , per cui viene usata per controllare che non ci siano stati ertetitira.

13

Il seguente programnerayeof.degge un vettore da file. Ci si ferma solo nel caso in cui si sia arrivati

a leggere cento elementi, oppure quando si cerca di leggere un intero ma il file € terminato. Si noti che,
in questo caso, il numero iniziale che indica quanti interi ci sono su file non e necessario. Infatti, il
numero di elementi letti viene determinato leggendo via via gli interi da file, incrementando ogni volta

il numero di elementi letti fino a che non si arriva alla finefitie!

In questo caso, se si incontra la fine del file, non si deve stampare un messaggio di errore. Infatti, la
fine del file indica semplicemente che non c’é altro da leggere, ossia che siamo arrivati all’'ultimo
elemento del vettore. In questo caso, la fine del file viene usata per indicare quanti elementi da leggere
ci sono. Al contrario, nel caso in cui si fosse per esempio specificato che il file deve contenere
esattamente cento elementi, allora trod&CE prima del centesimo elemento sarebbe stato un errore.
Si puo dire che incontrare la fine di un file durante una operazione di lettura puo essere o0 non essere un
errore, a seconda di come é stato specificato il formatidelel
/*

Legge un array da file, con rilevazione di end-of-file.
*/

#i ncl ude<stdlib. h>
#i ncl ude<st di 0. h>

int main() {

int n;
int vett[100];
FI LE *fd;
int res;
int i;
/* apre il file */
f d=f open("arrayeof.txt", "r");

/* verifica errori in apertura */
if(fd==NULL) {
perror("Errore in apertura del file");
exit(1);
}

/* legge | array */
for(n=0; n<=100-1; n++) {
res=fscanf(fd, "%", &ett[n]);
if(res==EOF)
br eak;

/* stanpa |"array */
for(i=0; i<=n-1; i++)
printf("%\n", vett[i]);

/* chiude il file */
fclose(fd);

return O;

}

Rilevazione errori

14

Rilevazioneerrori

Oltre alla fine del file, esistono altri errori possibili quando si cerca di leggere da file. Alcuni errori
sono dovuti per esempio a problemi di livello hardware, altri a livello di sistema operativo, ecc. Di
guesto tipo di errori non anteressiamo.

Un errore di cui invece parliamo ¢ il fallimento di conversione. Quando si cerca di leggere da file un
intero, la funziond scanf deve convertire una stringa in intero. Infatti, un file di testo € una
sequenza di caratteri, ossia una stringa. Se vogliamo un intero, dobbiamo convertire i caratteri che si
trovano su file in urntero.

Questa conversione non & sempre possibile. Si pensi per esempio alla situazione in cui su file sono
memorizzati i caratteabe nds. Questa sequenza non corrisponde a nessun intero. Se si cerca di
leggere un intero, deve essere possibile capire che la conversione da stringa daititaro

Errori di questo genere si riflettono sul valore di ritorno della funZiceanf . Questa funzione, in

generale, puo leggere piu di un oggetto per volta. Per esempio, pud leggere, con una chiamata sola, un
intero, una stringa, e un reale. Il valore di ritorno della funzione € il numero di oggetti che sono é stato
possibile convertire. Il valorEOF viene ritornato solo nel caso in cui si & incontrata la fine del file

prima ancora di riuscire a convertire anche un su&ro.

la funzionef scanf ritorna il numero di oggetti che é stato possibile leggere (convertire da
stringa al tipo dell'oggetto), oppuEECF se il file e finito prima di poter leggere il prineggetto.

Esempio:
fscanf(fd, "% %", &, &y); haiseguenti possibili valori dtorno:

2 sono stati letti (convertiti con successo) due interi, memorizzati nell varadyli

1 un solo intero é stato letto con successo, ed & stato memorizzato nella variabie stato
possibile leggere il secondo intero: questo pud essere dovuto al fallimento di conversione (quello
che sta scritto su file non si pud convertire in intero), oppure al fatto che é stata incontrata la fine
del file;

0 non é stato possibile leggere nessuno dei due numeri interi: questo & dovuto alla presenza di
caratteri non interpretabili come interi su file;

EOF
nessun intero é stato letto da file, perché si é incontrata la fine del file prima ancora di riuscire a
leggere il primo intero.

Si noti che, se il risultato € 1, allora non & possibile capire se il problema é stato un errore di
conversione oppure la fine del file. Per il momento, questo fatto non ci interessa, visto che leggiamo
sempre un unico elemento per volta. Nel caso in dustzaanf viene usata per leggere da file il

valore di una sola variabile, allora i possibili valori di ritoszmo:

fscanf (fd, "%", &x);

1 unintero e stato letto e memorizzatxin

0 non é stato possibile leggere l'intero, perché quello che sta scritto su file non e interpretabile
come un intero;

EOF
si é incontrata la fine del file prima di poter leggere un intero da memorizzare in

15

Da questa schema é chiaro che, nel caso di lettura di un solo intero, &€ sempre possibile capire quale
errore si € verificato semplicemente guardando il valore di ritorno della furfzsarenf .

Il programmaarrayerr.cé |'ultima versione del programma di lettura di un array da file. Questa volta
stato aggiunto un controllo sulla lettura: se la conversione in intero é fallita allora la fuing menef
ritorna il valore 0, e in questo caso il progranteranina.

/*

Legge un array da file fino all’eof.
Salta | e cose che non riesce a | eggere.
*/

#i ncl ude<stdlib. h>
#i ncl ude<st di 0. h>

int main() {

int n;
int vett[100];
FI LE *fd;
int res;
int i;
/* apre il file */
fd=f open("arrayerr.txt", "r");

/* verifica errori in apertura */
if(fd==NULL) {
perror("Errore in apertura del file");
exit(l);
}

/* legge | array */
for(n=0; n<=99; n++) {
res=fscanf (fd, "%", &vett[n]);
if(res==EOF)
br eak;
else if(res==0) {
printf("Non riesco a | eggere un intero da file\n");
exit(1);
}

/* stanpa |"array */
for(i=0; i<=n-1; i++)
printf("%\n", vett[i]);

/* chiude il file */
fclose(fd);

return O;

}

Nel caso in cui non interessa stabilire quale particolare errore si € verificato, basta controllare che il
valore di ritorno della funzionescanf coincida con il numero di elementi che doveva leggere (in
guesto caso, uno), e generare un messaggio di errore iOOTHEATIO.

16

Sottrazione fra file

Sottrazionefra file

Lo scopo di questo esercizio & quello di leggere due file che contengono degli interi, e scrivere un file
che contiene le differenza fra elementi del primo esdebndo.

Per essere piu precisi, i due file contengono ognuno una sequenza di numeri interi. Supponiamo che i
nomi di questo due file sianoo edue. Si vuole fare in modo che il file risultato, di nomies,

contenga anch’esso una sequenza di interi, di cui il primo € ottenuto facendo la sottrazione fra il primo
intero diuno e il primo intero ddue. Il secondo intero deve essere ottenuto per sottrazione fra il
secondo duno e il secondo dilue, ecc.

Questo esercizio si potrebbe risolvere usando i vettori, ossia leggendo tutti gli interi del primo file e
mettendoli in un vettore, e lo stesso per il secondo file. Facendo la sottrazione elemento per elemento,
e scrivendo il risultato su file, si ottiene il risultatluto

Vediamo ora una soluzione che non usa vettore, ed & quindi piu efficiente come occupazione di
memoria. Usiamo questo algoritmo: dopo aver aperto i due file, leggiamo un intero dal primo file e
uno dal secondo; facciamo la sottrazione e scriviamo il risultato sulfierzo

Per implementare questo algoritmo, dobbiamo aprire tutti e tre i file, i primi due in lettura e il terzo in
scrittura. Infatti, per poter accedere a un file, occorre prima aprirlo. Le successive operazioni di lettura
e scrittura usano il valore del descrittore di file per capire su quale file occorre leggere o scrivere.
Quindi, ci servono tre variabili per memorizzare i tre descrittori di file che si ottengono dall’'apertura
dei trefile.

Definiamo quindi le trevariabili:
FI LE *piu, *meno, *out;

Quando apriamo il primo file, assegnampiai il risultato della apertura del fileno, ossia il

descrittore di questo file. Facendo lo stesso per gli altri file, le tre vapahilimeno eout possono
venire usate per dire alle funzidnscanf ef pri ntf su quali file operare. Per esempio, per leggere
un intero dal fileuno passiamo &scanf il descrittore del primo file, ciogi u:

fscanf(piu, "%", &x);

Il programma completsottrai.cé riportato qui sotto. Quando uno dei due file di ifputu eneno) &
terminato, si smette di leggere e si chiudono tutti e tre i file. Quindi, il terzo file contiene un numero di
interi che & il minimo fra il numero di elementi del primo e del secdifelo

/*

Sottrae, elemento per elenmento, il contenuto
di due file
*/

#i ncl ude<stdl i b. h>
#i ncl ude<st di 0. h>

int main() {
FI LE *piu, *meno, *out;
int x, vy;
int res;

17

/[* apre il primo file in lettura */
pi u=fopen("piu", "r");
i f(piu==NULL) {
perror("Errore in apertura del prino file");
exit(1l);
}

/* apre il secondo file in lettura */
meno=f open(" meno", "r");
i f(meno==NULL) {
perror("Errore in apertura del secondo file");
exit(1l);
}

/[* are il file in scrittura */
out =f open("ris", "w');
i f(out==NULL) {
perror("Errore in apertura del file risultato");

exit(1l);
}
/* legge i file */
while(1) {
res=fscanf(piu, "%d", &);
if(rest=1)
br eak;

res=f scanf (meno, "%l", &y);
if(rest=1)
br eak;

fprintf(out, "%\n", x-y);

/* chiude i file */
fcl ose(piu);
fcl ose(neno);
fclose(out);

return O;

}

La cosa importante da notare in questo programma € che € possibile avere piu file aperti
contemporaneamente: in questo caso, i due file in lettura e il file in scrittura restano aperti
contemporaneamente. Per dire alle funzi@danf ef pri ntf quale é il file da cui devono leggere
0 scrivere, si usa il descrittorefde.

Non in programma: Lettura di un file per righe

18

Lettura di un file per righe

La funzionef scanf permette di leggere tutti i dati di tipo scalare, ossia interi, caratteri e reale.
Permette inoltre di leggere stringhe, utilizzando il formd&olLeggere una stringa in questo modo
puo a volte portare a risultati che non ci si aspetta: la funtisnanf , infatti, considera una stringa
in input conclusa quando incontra wsEazio.

In alcuni casi pud essere necessario leggere invece una intera riga da file. Per questa ragione, ¢ stata
introdotta la funzioné get s. L'uso tipico di questa funzione & quello di leggere una intera riga da un

file di testo, e poi suddividere questa linea usando la funzione di lettura da strawef che si

vedra piu avanti. Questa funzione viene anche usata quando una linea in ingresso va considerata come
una sola stringa, su cui poi si opera direttamente con le funzistirsghe.

La funzionef get s ha tre argomenti: il primo €& un vettore di caratteri in cui va memorizzata la linea

del file di testo; il secondo € il numero massimo di caratteri che si vogliono mettere in questa stringa; il
terzo & un descrittore di file, e indica da quale file si vuole leggere la stringa. Il prototipo di questa
funzione ¢ ilseguente:

char *fgets(char *s, int size, FILE *fd);
Diamo una descrizione degli argomenti e del valore di ritorno di gfiestene:

char *s
guesto € un puntatore a una zona di memoria in cui viene memorizzata la stringa letta; si noti che
la zona di memoria deve gia essere stata allocata, o staticamente oppurerabadg in altre
parole la funzioné get s non alloca la memoria in cui mettere la stringa: passare alla funzione
un puntatore non inizializzato € un errore;

int size
il numero memorizzato in questa variabile dice alla funzione quale € la dimensione della zona di
memoria puntata ds; in questo modo, la funzione sa che non puo scrivere nella zona di memoria
piu disi ze caratteri, altrimenti finira per scrivere dei valori in zone di memoria al di fuori di
guella allocata pes; la funzione non scrive mai piu sli ze caratteri, anche se la linea del file &
piu lunga;

FILE *fd
guesto ¢ il descrittore di un file, e indica da quale file bisogna leggere

valore di ritorno
coincide con il primo argomento della funziqisé se € stato letto almeno un carattere (incluso |l
ritorno a capo); altrimenti ritorndULL .

Capire quando il file & finito & semplice: basta infatti verificare se il valore risultatblvhle Se il
risultato éNULL, allora non é stato possibile leggere neanche un carattere. In questo caso, la zona di
memoria puntata d& non contiene un valore significativo, per cui norelaborata.

Esistono ovviamente casi in cui viene letta una linea da file “ogni tanto”, ma di solito la funzione
f get s viene usata per leggere tutto il contenuto di un file riga per riga. Su ogni riga vengono poi fatte
delleelaborazioni.

La struttura di un programma di questo genere é: prima si apre il file in lettura (con controllo errori), e
poi si entra in un ciclo, in cui si legge una riga a ogni iterazione. In ogni iterazione, si legge unariga, e
la si elabora. Se I'operazione di lettura ha dato risullakd_ allora vuol dire che non é stata letta
nessuna riga, per csiinon va elaborata, e si deve invece uscireidé.

19

1. apriil file

2. controllo errore in apertura

3. ciclo:
a) leggiriga
b) se non €& stata letta la riga, esci
c) elabora leiga

4. chiudi il file

Il programmarighe.criportato qui sotto legge un file riga per riga. La elaborazione di una riga € in
guesto caso semplicemente le sua stampa su schermo. Si noti che la fugetonenette nel vettore

s tutta la riga lettaincluso il carattere di fine linea. E per questo che la istruzione di stampa usa il
formato" %" invece ché %s\ n" : infatti, il carattere di andata a capo si trova gia nella stringa letta
dafile.

/*
Lettura di un file riga per riga.
*/

#i ncl ude<stdl i b. h>
#i ncl ude<st di 0. h>

int main() {
FI LE *fd;
char buf[200];
char *res;

/* apre il file */
fd=fopen("righe.txt", "r");
if(fd==NULL) {
perror("Errore in apertura del file");
exit(l);
}

/* |l egge e stanpa ogni riga */
while(l) {
res=f gets(buf, 200, fd);
if(res==NULL)

br eak;
printf("%", buf);
}
/* chiude il file */
fclose(fd);
return O;

}

Si faccia attenzione al fatto che il valore di ritono della funzfapet s (che serve per capire quando
il file & finito) é di tipo puntatore a carattere (ossiear *), e non intero come nel casofdicanf .
Questo puntatore non deve ovviamente vanizalizzato.

Linea piu lunga di un file

20

Linea piu lunga di unfile

In questo esercizio facciamo uso della funzione di lettura di una riga da file. Sia dato un file di testo, di
cui assumiamo che le linee siano tutte lunghe al piu 200 caratteri. Si vuole determinare quale é la
lunghezza della linea piu lunga del file. Per determinare la lunghezza di una stringa, possiamo usare la
funzionest r | en, che prende una stringa come argomento e ritorna la sua lunghezza. Se si preferisce,
si pud anche risolvere I'esercizio scrivendo una funzione che calcola quanti elementi ci sono nella
stringa prima del carattere di fine stringa0’ .

L’esercizio consiste in una lettura di un file linea per linea. In questo caso, la elaborazione consiste nel
confronto fra la lunghezza della linea e la massima lunghezza di linea trovata fino ad ora. Usiamo
guindi una variabile interamx per indicare quale é la massima lunghezza di una linea trovata fino a
guesto momento. Per ogni linea letta, confrontiamo la sua lunghezza con il contenuto di questa
variabile, eventualmente aggiornando il valorewlx.

Il programma completpiulunga.cé riportato quiotto.

/*

Trova | a massi ma | unghezza di |inea
inun file di testo.
*/

#i ncl ude<stdlib. h>
#i ncl ude<stdi 0. h>

int main() {
FI LE *fd;
char buf[200];
char *res
int max;

/* apre il file */
f d=f open("pi ulunga.txt", "r")
if(fd==NULL) {
perror("Errore in apertura del file")

exit(1l);
}
/* lettura per righe */
max=0;
while(1) {
res=f gets(buf, 200, fd)
if(res==NULL)
br eak;
if(strlen(buf)-1 > max)
max=strl en(buf)-1
}
/* chiude il file */
fclose(fd);

/* stanmpa | a massi ma | unghezza */

21

printf("Lunghezza massima di linea: %\n", nax);

return O;

}

Si noti che la lunghezza della linea lettsté& | en(buf) -1 e nonst rl en(buf) come ci si

potrebbe aspettare. Per capire come mai il programma funziona in questo modo, osserviamo che la
funzionef get s legge una intera lindacluso il carattere di fine linea. Questo significa che se una

linea & lunga dieci caratteri, la stringa che viene memorizzata é lunga undici caratteri, cioé i dieci che
compongono effettivamente la linea piu il carattere di ritorno a’capd. La funzionest r| en

ritorna la lunghezza complessiva della stringa memorizzata, metre per noi la lunghezza di una linea di
testo e il numero di caratteri nella linea, escluso quindi il carattere di ritaaymoa

Se ci sono dubbi sul funzionamento della funzibget s, si pud provare a scrivere un programma

che legge un file linea per linea, e per ogni linea stampa i valori numerici dei caratteri che stanno nella
zona di memoria che contiene la linea letta. Questo dovrebbe chiarire cosa c’é nella zona di memoria
dove viene messa le linea letta. Il progranteggilinea.cfa esattamente questo. Si provi ad eseguire

su un file di testo con linee non piu lunghe di diciannove caratteri, e si osservi il risultato. || numero

10 é il valore numerico di\ n’ , mentre0 & il terminatore dstringa.

Copia di un file

Copiadi un file

Questo esercizio consiste nel copiare, riga per riga, un file su un altro. Supponiamo che il nome del file
di partenza siaopi a. t xt e il file destinazione si debba chiamare

La soluzione é abbastanza ovvia: si aprono i due file (il primo in lettura e il secondo in scrittura). Poi si
legge dal primo file una linea per volta, e se questa operazione di lettura ha successo si scrive la linea
sul secondo file, altrimenti si esce dal cicldetiura.

Il programmecopia.crealizza questalgoritmo.

/*
Copia un file riga per riga
*/

#i ncl ude<stdlib. h>
#i ncl ude<st di o. h>

int main() {
FILE *in, *out;
char buf[200];

char *res
/* apre il file da | eggere */
i n=f open("copia.txt", "r");
if(in==NULL) {
perror("Errore in apertura del file da |eggere");
exit(1l);
}
/* apre il file da scrivere */

out =f open("x", "w')

22

i f(out==NULL) {
perror("Errore in apertura del file da scrivere");
exit(1l);

}

/* legge e scrive ogni riga */
while(l) {
res=f gets(buf, 200, in);
if(res==NULL)

br eak;
f puts(buf, out);
}
/* chiude i file */
fclose(in);

fclose(out);

return O;

}

Per scrivere la linea sul secondo file si € usata la funtipoés, che scrive una stringa su file. Al
suo posto si sarebbe potuta usare la funZigme nt f , facendd printf(fd, "%", buf),eil
risultato sarebbe statdentico.

Commenti in un file

Commenti in un file

Questo esercizio consiste nello scrivere un programma che stampa tutte le linee di un file che non sono
commenti, dove un commento & semplicemente una linea che inizia con il carattere

Si tratta chiaramente di leggere un file linea per linea. Ogni volta che si legge una riga, si controlla se
il primo carattere &#’ , e si stampa la linea su schermo solo in casdrario.

Il programma completoommenti.cé riportato qusotto.

/*

Stanpa le linee di un file che non sono conmenti,
dove i conmenti sono |inee che iniziano con il
carattere #

*/

#i ncl ude<stdlib. h>
#i ncl ude<st di 0. h>

int main() {

FI LE *fd;
char buf[200];
char *res;
/* apre il file */
f d=f open(" commenti.txt", "r");

if(fd==NULL) {
perror("Errore in apertura del file");
exit(l);

23

/* lettura linea per linea */
while(1) {
res=f gets(buf, 200, fd);
i f(res==NULL)

br eak;
if(buf[0] '="#)
printf("%", buf);
}
/* chiude il file */
fclose(fd);
return O;

Si noti che non vengono considerati commenti le linee in cui il caraté#éraon € in prima posizione.

Non é difficile modificare il programma in modo tale che sia considerato come commento anche solo
una parte di linea che segue un carattét’e. Il programmacommentidue.@ la versione modificata

del programma di sopra. Si noti che, in questo caso, una linea che inizi#f’ cerene stampata come
lineavuota.

Lettura da stringa

Lettura dastringa

La funzionef get s & molto utile quando un file di testo va elaborato una linea per volta. Esistono dei
casi in cui non é da sola sufficiente. Consideriamo per esempio il caso in cui si vuole leggere da file
degli interi, ignorando le linee che iniziano con un carattéfe In questo caso, per saltare le linee

che iniziano con #’ la funzionef get s risulta comoda, mentre per leggere degli interi la funzione

f scanf e la scelta migliore. Il problema e che, una volta letta una linea da fifegedrs, se si

cerca di fare una lettura céiscanf quello che silegge ¢ il seguito del file, ossia la linea letta da

f get s non viene poi scandita di nuovo fdacanf .

Una delle funzioni di libreria del C che risulta utile in questi casi € la funzione di lettura da stringa
(esistono molte altre situazioni in cui questa funzione puo essere utile). Questa funzione si chiama
sscanf, e ha gli stessi argomenti deflacanf tranne il primo, che & una stringa invece che un
descrittore di file. Questa funzione legge i dati dalla stringa invece che da file, ma per il resto il
comportamento &entico.

Il seguente programnraediacommenti.€ un esempio di uso di questa funzione: si legge un file di
testo, in cui le linee che iniziano con il carattete¢ sono commenti, mentre le altre linee contengono
due numeri interciascuna.

/*

Calcola la nmedia degli interi su file
Le linee che iniziano con # sono comenti
e non vengono consi derate
*/

#i ncl ude<stdlib. h>

24

#i ncl ude<st di 0. h>

int main() {
FI LE *fd;
char buf[200];
char *res;
int x, vy;
int n, somm, ned a;

[* apre il file */
f d=f open(" nedi acommenti.txt", "r");
if(fd==NULL) {
perror("Errore in apertura del file");
exit(1l);
}

/* legge una riga per volta */
somma=0;
n=0;
while(l) {
res=f gets(buf, 200, fd);
if(res==NULL)
br eak;

if(buf[o]!'=#) {
sscanf (buf, "%l %", &, &y);
sonmma+=(xX+y) ;
n+=2;
}
}

/* stanpa |la nmedia */
printf("La nmedia e %\n", somma/n);

return O;

}

Un possibile miglioramento di questo programma € il controllo che le linee che non sono commenti
contengono effettivamente due interi. Questo controllo si puo fare tenendo conto che il valore di
ritorno della funzionsscanf e lo stesso valore che avrelflecanf se la stringa fosse il contenuto

di unfile.

Stampa le righe con la data di oggi

Stampale righe con la data dioggi

Si supponga di aver memorizzato degli appuntamenti su un file, in questo modo: ogni linea contiene
una data, nel formatgi or no/ mese/ anno, uno o piu spazi, e una frase che descrive
'appuntamento.

Data una stringa che descrive una data, vogliamo sapere quali sono gli appuntamenti previsti per
quella data. Quindi, se la stringd 2/ 3/ 2001", allora vogliamo stampare tutte le linee che iniziano
con questatringa.

25

Sono ovviamente possibili diverse soluzioni a questo problema. Sappiamo pero che 6 necessario
leggere una riga di file per volta (dal momento che e questo che va stampato alla fine se la data
coincide con quella data). Inoltre, &€ necessario confrontare la parte iniziale della linea con la data di
oggi. Per confrontare due stringhe il C mette a disposizione la fureigrep, che restituisc@

solo se le due stringhe passate come argomentaigoiadi.

L’unica difficolta, a questo punto, & quella di estrarre dalla linea letta da file la parte iniziale che
descrive la data. Per fare questo, possiamo usare la fusacaaf , facendo una lettura di stringa
con il formato" %" .

Il programma final@ata.clegge una linea da file per volta. Per ogni linea, legge la stringa iniziale con
sscanf (buf, "%", prino):inquesto mod@ri no contiene ora la prima parte della stringa

buf (fino al primo spazio). Per verificare se la parte iniziale della linea coincide con la stringa data, si
puod ora usare la funziorsd r cnp. Se questa funzione ritor@asi stampa l'interdinea.

/*

Cerca in un file I e righe che iniziano
con la data corrente. Usa una striga
costante per |a data.

*/

#i ncl ude<stdlib. h>
#i ncl ude<st di o. h>

int main() {
FILE *fd;
char *oggi ="2/3/2001";
char buf[200];
char *res
char prino[200];

/* apre il file */
fd=fopen("date.txt", "r")
if(fd==NULL) {
perror("Errore in apertura del file")

exit(1l);
}
/* scansione del file */
while(1) {
res=f gets(buf, 200, fd)
i f(res==NULL)
br eak;
sscanf (buf, "9%", prim);
if(!'strenp(prino,oggi))
printf("%", buf);
}
/[* chiude il file */
fclose(fd);
return O;

}

26

Riportarsi all'inizio di un file

Riportarsi all'inizio di un file

La funzioner ewi nd permette di riposizionarsi all'inizio di un file. Nel caso di file aperti in lettura, &
equivalente a chiudere il file ed aprirlo di nuovo. Il progranmimo.c riportato qui sotto fa vedere
una applicazione di questa funzione: un file viene letto e stampato su schermo riga per riga. Quando si
arriva alla fine, viene chiamata la funzianewi nd che “riavvolge” il file, ossia ci riporta all'inizio
del file: la successiva operazione di lettura legge I'inizio del file. Il programma effettua poi un secondo
ciclo di lettura e stampa. L'effetto finale & quello di leggere e stampare due Yitdte il
/*

St anpa due volte un file.
*/

#i ncl ude<stdlib. h>
#i ncl ude<stdi 0. h>

int main() {

FI LE *fd;
char buf[200];
char *res;
/* apre il file */
fd=fopen("array.txt", "r");

if(fd==NULL) {
perror("Errore in apertura del file");
exit(1l);

}

/* legge e stanpa fino all’eof */
while(l) {
res=f gets(buf, 200, fd);
if(res==NULL)

br eak;
printf("%", buf);
}
/* ricomincia dall’inizio */
rewi nd(fd);
/* legge e stanpa fino all’eof */
while(l) {

res=f gets(buf, 200, fd);
if(res==NULL)

br eak;
printf("%", buf);
}
/* chiude il file */
fclose(fd);
return O;

27

Cancellazione di un file

Cancellazionedi un file

La cancellazione di un file si puo fare con la funzioreove. Questa funzione prende un solo
argomento, il nome del file da cancellare. Per esempio, il seguente progcameehta.cancella il
file di nome" x" . La funzione ritorn® se la cancellazione ha avuto succesgaaltrimenti (per
esempio, se il file da cancellare nesiste).

/*
Cancella un file
*/

#i ncl ude<stdlib. h>
#i ncl ude<stdi 0. h>

int main() {
int res;

res=renove("x");
if(res!=0)
perror("Errore nella rinozione del file");

return O;

}

28

	File di testo
	Memoria primaria e secondaria
	Apertura e chiusura di un file
	Verifica in apertura
	Lettura di un file
	Scrittura su file
	Scrittura in coda a un file
	Lettura e scrittura in sequenza
	Lettura di un array da file
	Scrivere la media in fondo a un file
	Rilevazione end-of-file
	Rilevazione errori
	Sottrazione fra file
	Lettura di un file per righe
	Linea più lunga di un file
	Copia di un file
	Commenti in un file
	Lettura da stringa
	Stampa le righe con la data di oggi
	Riportarsi all'inizio di un file
	Cancellazione di un file

