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What is an adversarial example?
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Sloth or Pain au chocolat?
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What is an adversarial example?

Sheepdog or Mop?
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What is an adversarial example?

Chihuahua or Muffin?
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What is an adversarial example?

Puppy or Bagel?
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What is an adversarial example?
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Adversarial examples for CNNs

Garbage Truck Sports car
99% confidence 85% confidence
Garbage Truck

3% confidence
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Adversarial examples for CNNs

Panda Adversarial Gibbon
58% confidence noise 99% confidence

Goodfellow et al. (2014). Explaining and Harnessing Adversarial Examples. ICLR
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Adversarial examples for CNNs

. <
” > . W e
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Alps: 94%

Puffer: 98% Crab: 100%

Dong et al. (2018). Boosting Adversarial Attacks with Momentum. CVPR




Image classification

WHEN A USER TAKES A PHOTO,
THE APP SHOULD CHECK WHETHER
THEY'RE. IN A NATIONAL PARK ...

SURE, ERSY GIS LOOKUR
GIMME A FEW HOURS.

... AND CHECK UHETHER
THE PHOTD IS OF A BIRD.

R xkcd: Tasks

\ TEAM AND FIVE YEARS.
% % “The Virtually Impossible”

IN CS, IT CAN BE HARD TO EXPLAIN

THE DIFFERENCE BETWEEN THE EASY
AND THE VIRTUALLY' IMPOSSIBLE.

Slides from Caffe framework tutorial @ CVPR2015
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Deep Learning with CNNs

Energy
C(xﬁ,V)
Compositional Models | - ;
Learned End-to-End i
I
LU
Hierarchy of Representations — =L
- vision: pixel, motif, part, object M:% |
- text: character, word, clause, sentence P
- speech: audio, band, phone, word e su:.'m,
input X output Y

concrete —————————) abstract
learning

Slides from Caffe framework tutorial @ CVPR2015
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Deep Learning with CNNs

Energy
Compositional Models ] | o ,
Learned End-to-End L
1
" | g
o x'-1i£ —
Back-propagation jointly learns al !
all of the model parameters to i s
optimize the output for the task. input X output ¥

Slides from Caffe framework tutorial @ CVPR2015
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Motivation - Why Convolutional?

Inputs usually treated as general feature vectors

In some cases inputs have special structure:
* Audio

* |mages

* Videos

Signals: Numerical representations of physical quantities

Deep learning can be directly applied on signals by using
suitable operators
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Motivation - Why Convolutional?

Audio

xi0*

0.0468

0.0468

0.0468

0.0390

0.0390

0.0390

0.0546

0.0625

0.0625

0.0390

0.0312

0.0468

0.0625

1D data - (variable length) vectors
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Motivation - Why Convolutional?

Images

45 ) 60 | 98 | 127] 132|133 137] 133
46 ]| 65 ) 98 | 123] 126|128 131 133

47 1 65 96 | 115] 119] 123 135] 137
47 | 63 | 91 | 107113122138 134
50| 59 80| 971110123133 134
49| 53| 68| 83 ] 97 |113]128]133
50 ] 50 58] 70 ) 84 | 102]116] 126
50| 50 52| 58] 69| 86 | 101] 120

2D data - matrices

Video

A sequence of images sampled through time - 3D data
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Some theory @x0

Center element of the kernel is placed over the (0x0)
source pixel. The source pixel is then replaced
with a weighted sum of itself and nearby pixels.

Convolution

Source pixel

Convolution kernel
(emboss)

New pixel value (destination pixel)

* Image filtering is
based on convolution
with special kernels

Original Emboss
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Some theory

[ Feature maps ]

{3

* Feed-forward:

— Convolve input
— Non-linearity (rectified linear) [ Pooling ]
— Pooling (local max) : ﬁ\[
* Supervised ~ Non-linearity
* Train convolutional filters by @
back-propagating classification error [ ©onvelution =
o tamnony LeCun et al. 1998 {F
B e BlorPe B G e g [ Input Image }

Comwoltons Subsamping Convolutorns  Sultmamging Ful connecton

Slide: R. Fergus
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Some theory

Pooling
Single depth slice
11124
max pool with 2x2 filters
5 106 7 | 8 and stride 2 6 | 8
3 | 2 [ENING ] 3
1 | 2 S
224x224x64
> 112x112x64
Yy pool
* Introduces subsampling l T
224 downsampling>‘I12
112
224
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Some theory

Activation

Standard way to model a neuron
f(x) = tanh(x) or f(x) = (1 + e>)!

Very slow to train (saturation)
f(x) = tanh(x)

TV
+2.0

+1.0

-1.0

=2.0
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— sigmaicl
4l|—thanh |
—RellU

= gofiplus

_

-5 0 5

Non-saturating nonlinearity (RELU)
f(x) = max(0, x)
Quick to train

f(x) = max(0, x)

+3.U
+2.0

+1.0

-1.0

-2.0




Some theory

\
e

output layer

D
g‘o\\

Y
b
'§

input layer
hidden layer 1 hidden layer 2

A regular 3-layer Neural Network

depth

STTHA) height

OO000K:
0/0/0/0/0)!¢ fugl M=
QOOOOY width

Every convolutional layer of a CNN transforms the 3D input
volume to a 3D output volume of neuron activations.

Material from Fei-Fei’s group
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Some theory

convolutional
input layer layer 4 feature maps
: 1 4 feature maps 6 feature maps 6 feature maps

fully-connected
l convolutional layer | pooling layer | convolutional layer | pooling layer | layer |
L0 wo
/ axon from a neuron S
32 WoZo
| cell body
@;>ooooo -

Zwlmz W output axon
activation
function

%
3
Each neuron is connected to a The neurons still compute a dot
local region in the input volume product of their weights with the
spatially, but to all channels input followed by a non-linearity

Material from Fei-Fei’s group
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Algorithms

e Each* neuron/layer is differentiable!

e Backpropagation algorithm (chain-rule)

e Use standard gradient-based optimization algorithms
(SGD, AdaGrad, ...)

e The devil lies in the details though ...

Choosing hyperparameters / loss-function
Exploding/Vanishing gradients — batch normalization
Overfitting — Regularization

Cost of performing experiments

Convergence

*what about max-pooling?
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Image classification with CNNs

] > Pus
p=C
=
Pl
” sunset [ p_
=0
— =i W Y o B
= e -
1 o o Pog
] o o
o L
o o p
o o cal
. : o o
convolution + max pooling vec | o \:
nonlinearity | o
convolution + pooling layers fully connected layers  Mx binary classification

Slides from Caffe framework tutorial @ CVPR2015
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Image classification with CNNs

M components N components

L — | Hidden Layers LastHidden  Softmax

Input Vector Layer Layer

X Z(X) F(X)

Slides from Caffe framework tutorial @ CVPR2015
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Cost function

Multiclass classication

Softmax activation function
eXp ( Zz )

Zj exp(Z;)

Likelihood corresponds to a Multinomial distribution

J; = —Insoftmax(~2); = anexp(Zj) — 7Z;

y = softmax(Z); =

. L J
Train network by minimizing the cross-entropy loss

N N
L= Z yiJ; = — Zyi In softmax(Z7);
i=1

1=1
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j Y
Kernels and ] \‘*" U \\..
Feature maps

RELU RELU RELU RELU RELU RELU
CONVlCONVl CONVlCONVl CONVlCONVl

bbby bbb

:

car

truck

alrplane

Ship

I?orse

A P I TRETE AN

Material from Fei-Fei’s group
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Brief history of CNNs

Foundational work done in the middle of the 1900s

« 1940s-1960s: Cybernetics [McCulloch and Pitts 1943,
Hebb 1949, Rosenblatt 1958]

« 1980s-mid 1990s: Connectionism [Rumelhart 1986,
Hinton 1989]

« 1990s: modern convolutional networks [LeCun et al.
1998], LSTM [Hochreiter & Schmidhuber 1997,
MNIST and other large datasets]
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Brief history of CNNs

“Simple cells”

© nmpkx

pooling

Multiple subsampling
convolutions
Hubel & Wiesel [60s] Simple & Complex cells architecture Fukushima’s Neocognitron [70s]
10 = 10 10 10 10
4x4 4x4 5] o 4x4x4
12 .
/ 8x8 8x8x2 || 8x8x2
| \\ |
16x16 16x16 E 16x16 16x16 16x16
Single layer Two layers FC locally connected Shared weights Shared weights

Yann LeCun’s Early CNNs [80s]:
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Brief history of CNNs

Convolutional Networks: 1989

C3: f. maps 161010
INPUT C1: feature maps 54 f. maps 16E5x5
3932 GE28x28

S2:f. maps Ch: layer F&: layer OUTPUT
10

BE14x14 r 120 Bd
r

Full GDI"IIJIE{:‘[iﬂl'I | Gaussian conneclions
Convolutions Subsampling Convolutions  Subsampling Full connection

LeNet: a layered model composed of convolution and subsampling operations followed
by a holistic representation and ultimately a classifier for handwritten digits. [ LeNet ]
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Recent success

Parallel Computation (GPU)
Larger training sets
International Competitions

Theoretical advancements
— Dropout

— RelLUs

— Batch Normalization

Standard Neural Net
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siz)

mushroom
jelly fungus
gill fungus

rdshire bullterrier
currant

- " 1
Madagascar cat
daimatian| T monkey

spider monkey
titi
indri

howler monk

dead-man’s-fingers




Recent success
Better Hardware — GPUs

10 SGEIYIM Performance 9.5 TFLOPS
{Matrix Size = 16K x 16K) . .
8
g
g 6 OpenCL branch
= 5.0 TFLOPS
E ,
g 4
&
2
0.7 TFLOPS
o . 1IN
IvyBridge 2 xK40 4 x K40
Dual-Socket

Android lib, demo
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http://www.nvidia.com/object/jetson-tx1-dev-kit.html
http://www.nvidia.com/object/jetson-tk1-embedded-dev-kit.html
https://github.com/sh1r0/caffe-android-lib
https://github.com/sh1r0/caffe-android-demo
https://github.com/BVLC/caffe/tree/opencl

Recent success

Larger training sets

ImageNet

« Over 15M labeled high resolution images

* Roughly 22K categories

* Collected from web and labeled by Amazon Mechanical Turk

[}

R m |
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ol ‘.- e > - ‘! ;;r-.‘# - *_?%} -

V. Ntouskos - Adversarial Examples




Recent success

Competitions
ILSVRC
« Annual competition of image classification at large scale
- 1.2M images in 1K categories
« Classification: make 5 guesses about the image label

B container s motor scooter
ip motor scooter
black widow lifeboat go-kart uar

cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat

pickup jelly fungus elderberry titi
beach wagon gill fungus shire bullterrier indri
fire engine | dead-man’s-fingers currant howler monkey

gr e mushroom cherry ada 'SICQI’ c;t TENR \
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CNNs in Computer Vision

* Image classification

28.2
25.8
16.4
8 layers
shallow
2010 2011 2012 2013

AlexNet
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152 layers
22 layers
19 layers
7.3
3.57
2014 2014 2015
VGG GoogleNet ResNet




Evolution of CNNs for image classification

Convo

utlonal Nets 2012

:_ 153 5% 2048 J4s \dense
Yol 13 _ 13 \
1"-__ 3. 1o
T3 nl 13 13 dense dense
1000
142 142 128 Max L] -
Max 128 Max poaling 2048 2048
pooling pooling AI ex N et
| Model | Top-1 (val) | Top-5 (val) | Top-5 (test) |
SIFT + FVs [7] — — 26.2%

[ Model | Top-1 | Top-5 | TCNN 30.7% 18.2% —
Sparse coding [2] | 47.1% | 28.2% 5CNNs 38.1% 16.4% 16.4%
el 3124 sl B RN 1 CNN* 39.0% 16.6% —

ke kel 7 CNNs* 36.7% 15.4% 15.3%

Table 1: Comparison of results on ILSVRC-

2010 test set.
achieved by others.

In italics are best results

. Ntouskos - Adversarial Examples

Table 2: Comparison of error rates on ILSVRC-2012 validation and
test sets. In italics are best results achieved by others. Models with an
asterisk* were “pre-trained” to classify the entire ImageNet 2011 Fall
release. See Section 6 for details.




Evolution of CNNs for image classification

Convolutional Nets: 2014 3 o3qgs
3 E@%@%ﬁ
g 3 @@ﬁ@@% g8
s 33933085 |
3 38338° %5 Rgas
2 pSqnd ®
9 RS R EE R ,
“@%@“ﬁ@ 38 a@i‘ et
@@“@% 2% 1 — | |
ILSVRC14 Winners: ~6.6% Top-5 error P
- GoogLeNet: composition of multi-scale + depth
dimension-reduced modules + data

+ dimensionality reduction
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Evolution of CNNs for image classification

Convolutional Nets: 2014

)
)
)

N ) TN N Y N N Y N N
© © ©

< <t Q & re) re) Te) N . ﬁ N N N
© © = - N N N o o o o o V)
AR ERHNEE NSRRI REERENEH R ER I RE R EERE IR IRE
o o 3o ™o 3o o Moo ”o oo Moo YT
O O & | O O & | O O O & | 0O 3] Ol & | O O 0| & | o O O
™ ™ ™ ™ ) ™ ™ ™ ™ ™ ™ ™ )
> x X x >< % >< X >< >< % x %
) %) %) & %) & & & ) %) %) %) &
N—— e/ S N—— S

(
[
[
[
[
[
[

ILSVRC14 Winners: ~6.6% Top-5 error
- VGG: 16 layers of 3x3 convolution + depth
interleaved with max pooling + + data
3 fully-connected layers + dimensionality reduction
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Evolution of CNNs for image classification

256-d

64-d

bn,relu

1x1,64
3x3,64

bn,relu

1x1,256

bn,relu

N bn,relu

bn,relu

3x3,64

2015

Convolutional Nets

( 3x364 )

)

ResNet

ILSVRC15 Winner: ~3.6% Top-5 error

cfg=13,4,6,3]

50 layers

Intuition: Easier to learn zero than identity function

cfg=13,4,23,8]

101 layers

ofe=13,8,36,3]

152 layers

000L° 24
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Adversarial attack methods

 White-box attacks

— The network is “transparent” to the attacker — both the
architecture and the weights are known

 Black-box attacks

— The attacker has only access to the input and output of the
network

« Gray-box attacks

— The attacker knows the network architectures but not the
weights
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White-box attack methods

Fast Gradient Sign Method (FGSM)

* Classifier (e.g. ResNet-50)
y=r(0,x)

* Find adversarial image x' that maximizes the loss:

L(x',y) = L(f(0,x),y)
* Bounded perturbation:

|x" — x||oc <€, € the attack strength

Optimal adversarial image:
x' = x + €-sign (VL(x,y))

Goodfellow et al. (2014). Explaining and Harnessing Adversarial Examples. ICLR
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White-box attack methods

lterative Fast Gradient Sign Method (IFGSM)

« Similar to FGSM
 (Generates enhanced attacks

x(m) — x(m—=1) + € - sign (Vxﬁ(x(m_l)ay))

with x(® = x and x’ = x™)_where M is the number of
iterations

Both FGSM and IFGSM are fix-perturbation attacks

Kurakin et al. (2016). Adversarial examples in the physical world. arXiv
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White-box attack methods

Step Least Likely (I.l.) attack
* Similar to FGSM

x =x—e€-sign (Vi L(X,v11.))

where y;; the least likely class predicted by the
network on clean image x

« Strong attack as it emphasizes least likely class

Kurakin et al. (2016). Adversarial examples in the physical world. arXiv
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White-box attack methods

CW-L2 attack (Carlini and Wagner)
« zero-confidence attack

« for all t # y find the adversarial image that will be
classified as t by solving the problem:

min | 5|3
subject to

f(x+9)=t, x+0€]0,1]"

* Finding the exact solution is difficult

Carlini & Wagner (2016). Towards evaluating the robustness of neural networks. ESSP

V. Ntouskos - Adversarial Examples




White-box attack methods

CW-L2 attack (Carlini and Wagner) (cont.)
* Relaxed version:

méin 16]12 + ¢+ g(x + 0)
subject to

x+06€[0,1]", ¢>0

Letting Z(x) be the neural net activations before the
output layer (logits)

g(x) = max (maX(Z(:L')@-) ~ Z(x), o)

it
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White-box attack methods

CW-L2 attack (Carlini and Wagner) (cont.)
* Let |
d = §(tanh(w) +1)—x

We get the following unconstrained optimization
problem:

1
min ||§(tanh(w) +1) — x5+ ¢

max {0, I?EE(Z(%(tanh(w) 1)) — Z(%(tanh(w) + 1))t}

« powerful attack method
* resists many defense methods
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White-box attack methods

Other norms
* For a bound based on L, norm:

Ix" — x| <e

FGSM solution becomes:

VXE(XJ y)
HVX‘C(Xv y) H

!/
X =X+ €

* For bounds based on L; and L, norms:
— sparse perturbation patterns
— e.g. single-pixel attack
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Adversarial Examples for different norms

Original fo-norm=10 oo-norm=0.05 £o-norm=5000 (sparse)

vl vl

egyptian cat (28%) traffic light (97%) traffic light (96%) traffic light (80%)

original /oo -norm £y-norm (sparse) sparse perturbation

Shafahi et al. (2019). Are adversarial examples inevitable? ICLR (to appear)
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Single Pixel attack

Planetarium Comforter
Mosque(7.81%) Pillow(6.83%)

Jellyfish Whorl
Bathing tub(21.18%) Blower (37.00%)

AllConv

SHIP
CAR(99.7%)

HORSE DOG BIRD
DOG(70.7%) CAT(75.5%) FROG(86.5%)
v
DEER CAT
AIRPLANE(82.4%) DOG(86.4%) BIRD(66.2%)

DEER BIRD SHIP
AIRPLANE(49.8%) FROG(88.8%) AIRPLANE(88.2%)
HORSE SHIP CAT
DOG(88.0%) AIRPLANE(62.7%) DOG(78.2%)

Su et al. (2017). One Pixel Attack for Fooling Deep Neural Networks. IEEE Trans. Ev. Comp.
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Black-box attack methods

Transferability

 adversarial examples are highly transferable

 Itis very likely that an adversarial example of one

network can fool another network

* transferability depends on the type of attack

— e.g. examples built with FGSM are highly transferable
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Black-box attack methods

Main Idea

* train a substitute network based on the input/output
pairs of the target network

 build adversarial examples for the substitute
network

* attack the target network with the examples built for
the substitute network

 due to transferability the attack is very likely to
succeed
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Black-box attack methods

Observations

* need “suitable” architecture for substitute network

— High-level knowledge about the problem is required (e.g.
for images convolutional layers are needed)

 collection of a sufficient number of input/output
pairs from the target may be costly/impractical
— collect a limited number of samples for each class
— augment the dataset (e.g. using the network Jacobian)

Papernot et al. (2016). Practical Black-Box Attacks against Machine Learning. CCS
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Adversarial Example Properties

Adversarial examples success for small e depends:

* Dimensionality of input space
— The larger the dimensionality the easier to find AE
— Theoretical results based on isoperimetric inequality

* Image complexity
— Datasets with more “complex” classes are more susceptible

Does not depend on:
 Dataset size
 Network structure / classifier

Shafahi et al. (2019). Are adversarial examples inevitable? ICLR (to appear)

V. Ntouskos - Adversarial Examples




Adversarial Example Properties

Adversarial Examples seem to follow a power law for

small e

10° 0

o $'Q¢ 7?’0‘4

i
00. ”00"’

10| FGSM " "=
v . s
L] -
S "8e 5
Pt ) .
= 102 n e Inception v3 )
q'f ;c () + Inception v4 %
> v -
5 -" m Inception v3 adv. tr. rg
© _a{ e ResNet vl o>
107 ;g’ ¢ ResNet v2 O
--'" e Inception-ResNet v2
;O:f = Inception-Resnet v2 adv. tr.
104 .0. e NASNet mobile
° ¢ NASNet
10 10° 10°% 10' 10° 10! 107
€

Cubuk et al. (2018). Intriguing Properties of Adversarial Examples. ICLR

V. Ntouskos - Adversarial Examples




Adversarial Example Properties

Adversarial Examples seem to follow a power law for

small e
0 0 o
O .......... .w
e CNNFGSM ’ Randomly ,¢° ’ * Lot . ,'.
e FCFGsM  ®° e shuffled e ¢ FGSM y
_ —1| v Linear FGSM 4 MNIST _1| * PGD
o step I.1.
| -
Q
3 2 = -2
©
o .
o _3 -3 Y —3
(a) ’ (b) (c)
—4 -4 -4
-2 -1 0 1 2 2 -1 o0 1 2 2 -1 0o 1 2 3
log o€ l0g ¢ l0g1g€

Cubuk et al. (2018). Intriguing Properties of Adversarial Examples. ICLR
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What does the network see?

55 — —
27
13 13 13
N
1 N g
N = e
S 5| \-| — =]~ ¥ Ny 4> .
1IN (L] .- T =0 |13 o T 13 3 — =% 13 dense dense
224 5 — 27 3 g 3 3 s
55 384 384 256M 100C
ax
256 ) L__] L
Max Max pooling ~ 409 4096
Stride\| o¢ | PO°ling pooling
224 of 4
3
Numerical Data-driven o
¥ s
5 7
g
£
= g
g P
g
Conv 1: Edge+Blob Conv 3: Texture Conv 5: Object Parts Fc8: Object Classes
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What does the network see?

Layer 5

<
—
2
1]

-

Layer2 Layer3

Layer 1

Understanding Neural Networks Through Deep Visualization
Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, Hod Lipson
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What does the network see?

Pirate Ship Rocking Chair Teddy Bear

Windsor Tie

Pitcher

Understanding Neural Networks Through Deep Visualization
Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, Hod Lipson
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What does the network see?
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1st layer filters

image patches that strongly activate 1st layer filters [Zeiler-Fergus]
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Defense Mechanisms — Adversarial Training

Main idea

Augment the training dataset with adversarial
examples

Pros:

* simple to implement

« works well for the considered attack types
cons:

* depends on specific attack type / strength

* |ess effective against black-box attacks

* |eads to accuracy drop of unperturbed images

Bruna et al. (2014). Intriguing Properties of Neural Networks. ICLR
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Defense Mechanisms — Gradient Masking

Main idea

Build a model that does not have useful gradients

- e.g. replacing the last layers with nearest neighbor
classifier

Pros:

* simple to implement

+ effective against white-box attacks

cons:

* Not effective against black-box attacks

* |eads to accuracy drop of unperturbed images

Papernot et al. (2016). Practical Black-Box Attacks against Machine Learning. CCS
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Defense Mechanisms — PGD Adversarial Training
Main idea

Instead of simply training the network with adversarial
examples solve the saddle point problem:

min E(X,y),\,p max E(f@ (X + 5)3 y)

/) 5€S
Pros:
 State-of-the-art performance
cons:

* depends on specific attack type

Madry et al. (2018). Towards deep learning models resistant to adversarial attacks. ICLR
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Defense Mechanisms — DefenseGANSs

Main idea

Train a Generative Adversarial Network (GAN) that
generates unperturbed images

Instead of classifying a given input image, use the
closest image generated by the GAN

Pros:

- effective against white-box and black-box attacks
* no accuracy drop (theoretically)

Cons:

« complex method

- difficult to train GAN

Samangouei et al. (2018). Defense-gan: Protecting classifiers against adversarial
attacks using generative models. ICLR
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3D Adversarial Objects
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B Classified as turtle  [[| Classified as other [ Classified as rifle

Athalye et al. (2018). Synthesizing Robust Adversarial Examples. PMLR
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3D Adversarial Objects

B Classified as baseball || Classified as other [l Classified as espresso

Athalye et al. (2018). Synthesizing Robust Adversarial Examples. PMLR
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Other types of attack

Adversarial Noise

“panda” “gibbon”

Adversarial Rotation

3
~

“vulture” “orangutan”

_+_

Adversarial Photographer

+'/'<:

“not hotdog” “hotdog”

Brown et al. (2018). Unrestricted Adversarial Examples. arXiv
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Adversarial Examples in Semantic Segmentation

Each color represents a different class:
(road, traffic sign, car, sky, building, etc.)

Xiao et al. (2018). Characterizing Adversarial Examples Based on Spatial Consistency
Information for Semantic Segmentation. ECCV
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Adversarial Examples in Semantic Segmentation

Each color represents a different class:
(road, traffic sign, car, sky, building, etc.)

Xiao et al. (2018). Characterizing Adversarial Examples Based on Spatial Consistency
Information for Semantic Segmentation. ECCV
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Thank you!




Resources

Frameworks:

« Caffe/Caffe 2 (UC Berkeley) | C/C++, Python, Matlab
« TensorFlow (Google) | C/C++, Python, Java, Go

* Theano (U Montreal) | Python

« CNTK (Microsoft) | Python, C++ , C#/.Net, Java

« Torch/PyTorch (Facebook) | Lua/Python

« MxNet (DMLC) | Python, C++, R, Perl, ...

« Darknet (Redmon J.) | C
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Resources

High-level libraries:
- Keras | Backends: TensorFlow (TF), Theano

Models:

« Depends on the framework, e.g.
— https://github.com/BVLC/caffe/wiki/Model-Zoo (Caffe)
— https://github.com/tensorflow/models/tree/master/research (TF)

Interactive Interfaces:
« DIGITS (NVIDIA) | Caffe, TF, Torch
 TensorBoard (TF)

Tools:
« http://ethereon.qgithub.io/netscope (for networks defined in protobuf)
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https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/tensorflow/models/tree/master/research
http://ethereon.github.io/netscope

