
9 – Functions in Processing

Francesco Leotta, Andrea Marrella

Last update : 19/4/2018

Corso di Laurea Magistrale in Design, Comunicazione

Visiva e Multimediale - Sapienza Università di Roma

Interaction Design
A.A. 2017/2018

Functions

2 Interaction Design 17/18 9 - Functions

 Functions are a means of taking the parts of a sketch and separating them

out into modular pieces, making the code easier to read and to revise.

 When we write: line(0,0,200,200) we are calling the function line(…), a

built-in function of the Processing environment, which allows to draw a line…

 …but the ability to draw a line does not magically exist. Someone defined

(hence, wrote the code for) how Processing should display a line!

 Processing provides a library of available built-in functions called processing.core

 Programmers can define their user-defined functions. A function definition

requires:

 Return type

 Function name

 Arguments

 It looks like:

returnType functionName (arguments) {

// Block of code with the content of function

}

Remember the definition of the functions

setup() and draw(). They follow the

same schema as below.

Defining and calling a function

3 Interaction Design 17/18 9 - Functions

 For now, let’s focus solely on the functionName and code body, ignoring

returnType and arguments. Here is a simple example:

void drawBlackCircle() {

fill(0);

ellipse(50,50,20,20);

}

void draw() {

background(255);

drawBlackCircle();

}

Function called drawBlackCircle that

performs one task through two instructions,

and consists of drawing an ellipse colored
black at coordinate (50,50).

ATTENTION: The code will never happen

unless the function is actually called from a
part of the program that is being executed

This is accomplished by referencing the
function name, that is, calling the function.

Divide the code with functions

4 Interaction Design 17/18 9 - Functions

int x = 0;

int speed = 1;

void setup() {

size(200,200);

}

void draw() {

background(255);

x = x + speed; // Change x by speed

// If we’ve reached an edge, reverse speed

if ((x > width) || (x < 0)) {

speed = speed *-1;

}

// Display circle at x location

stroke(0);

fill(175);

ellipse(x,100,32,32);

}

Let’s examine a bouncing ball example
and divide the code by using functions.

Move the ball!

Bounce the ball!

Display the ball!

Divide the code with functions

5 Interaction Design 17/18 9 - Functions

int x = 0;

int speed = 1;

void setup() {

size(200,200);

}

void draw() {

background(255);

move();

bounce();

display();

}

// A function to move the ball

void move() {

// Change the x location by speed

x = x + speed;

}

// A function to bounce the ball

void bounce() {

// If we’ve reached an edge, reverse speed

if ((x > width) || (x < 0)) {

speed = speed * - 1;

}

}

// A function to display the ball

void display() {

stroke(0);

fill(175);

ellipse(x,100,32,32);

}

Instead of writing out all the code
about the ball in draw(), we

simply call three functions.

Functions can be defined

anywhere in the code outside of
setup()and draw()

Arguments and Parameters

6 Interaction Design 17/18 9 - Functions

 Arguments are values that are “passed” into a function.

 You can think of them as inputs that a function needs to operate.

 When we call the function drawCircle(20,255) we are calling the function

drawCircle by passing it two arguments…

 …but we are required to give each argument a name and a type during the

definition of the function. To this aim, we will use parameters!

void drawCircle(int diameter, int fillColor) {

fill(fillColor);

ellipse(50,50,diameter,diameter);

}

 A parameter is a variable declaration inside the parentheses in the function

definition. This variable is a local variable to be used only in that function.

 When we invoke the function drawCircle(20,255), we are passing to it an

integer representing the diameter of the circle (20) and another integer with

the fill color (255).

diameter and fillColor

are parameters of the
function drawCircle.

Passing Parameters

7 Interaction Design 17/18 9 - Functions

 Technically speaking, parameters are the variables that live inside the parentheses in the
function definition: void drawCircle(int diameter, int fillColor) {…}

 Arguments are the values passed into the function when it is called, that is,
drawCircle(20,255).

drawCircle(20,255)

void drawCircle(int diameter, int fillColor) {…}

 You must pass the same number of parameters as defined in the function.

 When a parameter is passed, it must be of the same type as declared within the

arguments in the function definition.

 An integer must be passed into an integer, a float into a float, and so on.

 The value you pass as a parameter to a function can be a literal value (20, 5, 4.3,

etc.), a variable (x, y, etc.), or the result of an expression (8 + 3, 4 * x/2,

random(0,10), etc.).

passing parameters

Return Type

8 Interaction Design 17/18 9 - Functions

 Finally we can answer to the question: «What does void means?»

 Let’s recall our function drawCircle

void drawCircle(int diameter, int fillColor) {

fill(fillColor);

ellipse(50,50,diameter,diameter);

}

 drawCircle is the function name, diameter and fillColor are the

parameters of the function and void is the return type. Specifically, void

means: no return type.

 The return type is the data type that the function returns.

 Let’s recall for a moment the random(…) function.

float w = random(1,100);

 We asked the function for a random number between 1 and 100, and random(…) gave us

back a random value within the appropriate range. Therefore, The random(…) function

returned a value, specifically a float .

Return Type

9 Interaction Design 17/18 9 - Functions

 If we want to write our own function that returns a value, we have to specify the return

type in the function definition. Let’s create a simple example:

int sum(int a, int b, int c) {

int total = a + b + c;

return total;

}

 Instead of writing void as the return type as we have in previous examples, we now

write int, hence, we want the functions returns an integer value.

 This specifies that the function must return a value of type integer. In order for a
function to return a value, a return statement is required, followed by the return value.

 As soon as the return statement is executed, the program exits the function and sends

the returned value back to the location in the code where the function was called.

 That value can be used in an assignment operation (to give another variable a

value) or in any appropriate expression.

int answer = sum(5,10,32);

Exercise 1 – Drawing Rects with functions

10 Interaction Design 17/18 9 - Functions

 Write a sketch that draws a new rectangle any

time the user presses the left click of the

mouse.

 Any rectangle:

 Is centered around the <x,y> position of the

mouse cursor

 Has a fixed size

 Is filled by random colors

 Accomplish the task by using a function
drawRect

Solution of Exercise 1

11 Interaction Design 17/18 9 - Functions

int w;

int h;

void setup() {

size(640, 480);

background(255);

w = 50;

h = 50;

}

void draw() {}

void mouseClicked() {

if(mouseButton == 37) {

drawRect(mouseX, mouseY);

}

}

void drawRect(int xCoord, int yCoord) {

float r = random(0,255);

float g = random(0,255);

float b = random(0,255);

rectMode(CENTER);

fill(r,g,b);

rect(xCoord,yCoord,w,h);

}

What is an object?

12 Interaction Design 17/18 9 - Functions

 In Object-Oriented Programming languages, an object is a thing that has

properties and can do stuff.

 For example, a human being:

 has an height, a weight, etc.

 performs some activities, as it can wake up (presumably you can also sleep), eat,

or ride the subway, etc.

 In Programming languages, the human being template (to have height, hair,

to sleep, to eat, and so on) is known as a class.

 A class is different from an object.

 You are an object. I am an object. Albert Einstein is an object. Any person is

an object of the class of human beings.

 So how does this relate to programming?

 The properties of an object are variables.

 The stuff an object can do are functions.

Using an object

13 Interaction Design 17/18 9 - Functions

Human human1;

Human human2;

void setup() {

human1 = new Human();

human2 = new Human();

}

void draw() {

background(0);

human1.move();

human2.eat();

}

Step 1: Declare an object

It is like the declaration of a variable, but in this

case the data type is complex and

corresponds to a class name. The declared

variables are human1 and human2, two

different variables thought to store two objects

of kind Human (hence, two human beings).

Step 2: Initialize an Object

While with variables we simply assign primitive

values, in this case we create a new instance object

using the new operator followed by a special

function called the constructor. Any class provides

at least a constructor (it is a function with the same

name of the class, and it can provide arguments)

that initializes all the object variables.

Step 2: Using an Object

Once an object has been successfully declared and

initialized with a variable, we can finally use it

calling the functions that are written into that object.

More on OOP

14 Interaction Design 17/18 9 - Functions

 Any programmer can create its own class!

 In this course, we do not go into details of classes and objects.

 Interested readers can find more details at the following URL:

https://processing.org/tutorials/objects/

https://processing.org/tutorials/objects/

