Universita degli Studi di Roma “La Sapienza”
Corso di Laurea in Ingegneria dell’Informazione (sede di Latina)
Corso di Laurea in Ingegneria dell’Informazione (consorzio Nettuno)

Insegnamento di
PROGETTAZIONE DEL SOFTWARE

Prof. Domenico Lembo
A.A. 2010/11

Programmazione in Java (3): Le Eccezioni

Eccezioni

O L’esistenza di una eccezione indica che si & verificato un problema
durante I'esecuzione di un programma (situazione anomala)

~

O Questa & una situazione che un metodo non € in grado di controllare
(ma per la quale si possono prendere provvedimenti opportuni)

O Java possiede un meccanismo che permette al programmatore di trattare
le situazioni anomale in modo flessibile e perfettamente integrato con
la metodologia orientata ad oggetti

O le eccezioni sono viste come oggetti di classi particolari

Propagazione delle eccezioni

Come funziona il meccanismo di gestione delle eccezioni?

O Quando si verifica un imprevisto, il metodo attivo lancia (throws)
un’'eccezione che viene passata al metodo chiamante

O Il metodo attivo termina I'esecuzione (come con return)

O Per default, un metodo che riceve un’'eccezione termina |'esecuzione e
passa |'eccezione al metodo chiamante

O Quando |'eccezione raggiunge il main, |'esecuzione del programma ter-
mina stampando un opportuno messaggio di errore

Comportamento di default (esempio)

Per sperimentare con la propagazione delle eccezioni, si compili e si esegua
la classe NestedNullPointer:

public class NestedNullPointer {

public static void bar(){
Object o = null;
System.out.println(o.toString());

}

public static void foo(){
bar() ;

}

public static void main(String [] args){
foo();

© 00 N O O+ W N =

o
N = O
(S}

[}

Comportamento di default (esempio)

La macchina astratta Java scrivera qualcosa come:

> java NestedNullPointer

Exception in thread "main" java.lang.NullPointerException
at NestedNullPointer.bar(NestedNullPointer. java:4)
at NestedNullPointer.foo(NestedNullPointer. java:7)
at NestedNullPointer.main(NestedNullPointer.java:10)

elencando la catena dei metodi attivi nel momento in cui si verifica |'ec-
cezione (bar - foo - main) e per ogni metodo la linea di codice dove si &
verificata.

Le istruzioni try-catch-finally

E possibile gestire le eccezioni in modo che il programma non termini in

modo “disastroso” e il seguente

O Il programmatore racchiude in un blocco try il codice che pud generare
una eccezione

O Il blocco try € immediatamente seguito da zero o piu blocchi catch

O Un blocco catch specifica i tipi di eccezioni che pu0d gestire, e il codice
che le gestisce

O Un blocco finally facoltativo, dopo I'ultimo blocco catch, specifica del
codice che viene sempre eseguito

Le istruzioni try-catch-finally

try
{ /* blocco try */ }

catch(TipoEccl el)
{ /* blocco catch */ }
catch(TipoEcc2 e2)
{ /* blocco catch */ }

catch(TipoEcc2 e2)
{ /* blocco catch */ }

finally
{ /* blocco finally */ }

Le istruzioni try-catch-finally

O Quando viene lanciata una eccezione, il programma abbandona il bloc-
CO try e ricerca il gestore appropriato nei blocchi catch

O Se il tipo di eccezione lanciata corrisponde a quello di un blocco catch,
allora il codice di quel blocco viene eseguito, |'esecuzione riprende dopo
I'ultimo blocco catch

[Se non sono lanciate eccezioni nel blocco try, I'esecuzione riprende
dopo l'ultimo blocco catch

(O Se c’e’ un blocco finally, questo viene sempre eseguito

Le istruzioni try-catch-finally (esempio)

public class NestedNullPointer2 {
public static void bar(){
Object o = null;
try{ System.out.println(o.toString()); }
catch(NullPointerException e)
{ System.out.println("Si e’ verificata una eccezione di "+

"tipo NullPointerException"); }
finally { System.out.println("Questo viene sempre stampato"); }

}
public static void foo(){

bar () ;

}

public static void main(String [] args){
foo();

}

Comportamento di default (esempio 2)
L'eccezione pu0 essere catturata in uno qualsiasi dei metodi in cui € prop-
agata
public class NestedNullPointer3 {

public static void bar(){
Object o = null;
System.out.println(o.toString());

}
public static void foo(){
try{ bar(Q; }
catch(NullPointerException e)
{ System.out.println("Si e’ verificata una eccezione di "+
"tipo NullPointerException nel metodo bar()"); }
finally { System.out.println("Questo viene sempre stampato"); 1}
}
public static void main(String [] args){
foo();
T}

Nota

Le eventuali istruzioni del blocco finally vengono eseguite sempre, anche in
presenza di una eccezione verificatasi nel blocco try che non viene catturata
da alcun blocco catch, 0 in presenza di un return del blocco try O catch. Il
blocco finally pu0O contenere delle istruzioni che chiudono dei files oppure
rilasciano delle risorse, per garantire la consistenza dello stato.

10

La clausola throws

Le eccezioni che non sono state trattate tramite le istruzioni
try-catch-finally vanno dichiarate nella clausola throws, facente parte del
prototipo del metodo in cui I'eccezione si pu0 verificare

// File Esempio5.java
import java.io.x*;

public class Esempio5 {
public static void main(String[] args) throws IOException {
// stampa su schermo il file passato tramite linea di comando
FileInputStream istream = new FileInputStream(args([0]);
BufferedReader in = new BufferedReader(new InputStreamReader(istream));
String linea = in.readLine();
while(linea != null) {
System.out.println(linea) ;
linea = in.readLine();
}

in.close();

11

Eccezioni checked vs unchecked

In realta, non e necessario specificare nella clausola throws tutti i
tipi di eccezione non ‘catturate”

Non si ha quest'obbligo per le eccezioni che ereditano dalla classe
RuntimeException (unchecked)

Lo stesso dicasi per gli errori, che sono oggetti che ereditano dalla
classe Error; questi oggetti rappresentano errori di sistema che non
devono essere gestiti

In pratica, eccezioni di tipo RuntimeException non devono necessaria-
mente essere gestite, e cioé non devono necessariamente essere cat-
turate con il meccanismo try-catch, O dichiarate con la clausola throws

12

Si noti che nella classe NestedNullPointer presentata all’inizio di queste
slide, I'eccezione che si pu0 verificare & di tipo NullPointerException,
che & una sottoclasse di RuntimeException, € per questo non deve essere
necessariamente gestita (come fatto nella classe NullPointerException2)

Gerarchia delle eccezioni

13

Definire una propria classe di eccezioni

E possibile farlo estendendo la classe Exception (0 una sua sottoclasse). Ad
esempio:

public class MyException extends Exception {
private String messaggio;
public MyException(String m) {

messaggio = m;

¥

public String toString() {
return messaggio;

¥
3

14

Come lanciare una eccezione

O Per lanciare una eccezione si usa l'istruzione throw, che accetta un
qualungque oggetto Throwable

O Si possono anche definire proprie classi di eccezioni, derivandole da
Exception

MyException e;
throw e;

Le eccezioni lanciate vanno segnalate nella clausola throws (ovviamente
questo non & necessario se si tratta di RuntimeException)

15

Esempio

public class Divisione {
public static float divisione(float x, float y) throws MyExceptionf{
if (y==0)
throw new MyException("La divisione per zero non e’ possibile");

return x/y;

¥

public static void main(String [] args){
int a=3, b=0;
try { System.out.println(divisione(a,b)); }
catch (MyException e)
{ System.out.println(e.toString());}

16

